Published/Posted: May 1, 2011

Authors: Cohen, A. B.; Ravoori, B.; Sorrentino, F.; Murphy, T. E.; Ott, E.; Roy, R.

Abstract: The master stability function (MSF) is a mathematical tool for determining if a given configuration of coupled chaotic oscillators will synchronize. By decoupling the network dynamics from the individual equations for each of the chaotic trajectories, the MSF reveals the stability of a globally synchronous solution using only the eigenvalues of the adjacency matrix. In this talk, we analyze the stability of an adaptive method that can maintain synchrony even when coupling strengths are time-varying.

A. B. Cohen, B. Ravoori, F. Sorrentino, T. E. Murphy, E. Ott and R. Roy, "Master Stability Function Approach for Designing Synchronous Networks", SIAM Dynamical Systems, Snow Bird, UT (USA) MS86 (2011)