Design, Fabrication and Measurement of Integrated Bragg-Grating Filters

presented by:

Thomas E. Murphy - MIT

in collaboration with

Michael H. Lim (MIT) Dr. Juan Ferrera M. Jalal Khan (MIT) J. Todd Hastings (MIT) Dr. Brent E. Little Prof. Henry I. Smith (MIT) Prof. H. A. Haus (MIT) Ed Laskowski & others (Lucent)

A. Introduction to Bragg Gratings

- 1. Why they are needed
- 2. How they work
- **B.** Applications of Grating Filters
 - 1. Add/Drop Filtering
 - 2. Noise Filtering
- **C. Waveguides and Couplers**
 - **1. Fabrication Processes**
 - 2. Insensitive Couplers
- **D. Integrated Bragg Gratings**
 - 1. Lithographic Tools
 - 2. Alignment Mechanism
 - 3. Gratings on Waveguides
 - 4. Measurements
- E. Conclusions / Future Work

All-Optical Communications System: (the need for Filters)

Filters are used at transmitting end, receiving end, and intermediate points

Integrated Bragg Gratings

Sub-micron-period grating acts as narrow-band reflector (filter)

APPLICATIONS:

Lasers (DFB, DBR)Dispersion CompensationAdd/Drop FiltersNoise FilteringGain EqualizationSensorsFiber Coupling (mode size transformers)

Bragg Grating Filters: principle of operation

Dielectric Stack Filter (eg Mirror)

Filtering Strategies in WDM

Full Spectral Resolving Filter

All channels must be resolved, even if only one is needed.

Filter becomes more complex as channel number increases

One channel may be added or dropped without effecting the others

System can be easily expanded to include more channels

Grating Filter Configurations

Key Integrated Components: waveguides, couplers and gratings

Building Blocks:

Advanced Devices:

Types of Bragg Gratings

Noise Filtering In Optical Communications

Matched Filter / Correlation Filter

Fabry-Perot Filter (currently used)

Types of Waveguides Considered

Silicon-on-Insulator Ridge Waveguide

Comparison of Waveguide Types

Doped-Glass Channel Waveguide

Low propagation loss Efficient coupling to fiber Typically relatively long Low birefringence Large bending radius Multiple deposition technologies: Flame Hydrolysis Chemical Vapor Dep. (CVD) PECVD Silicon-on-Insulator Ridge Waveguide

Mature technology Commercially available, inexpensive Somewhat higher loss Efficient coupling to fiber possible (requires ARC, shallow ridge) Can be made relatively short Higher birefringence & polarization dependence Does not require overgrowth

Glass Waveguide Fabrication

Micrographs of Integrated Glass Waveguide

Etched Waveguide

Optical Micrograph of Polished Chip Facet

Raw materials and deposition by PIRI, Inc. Flame Hydrolysis Deposition (Ge, Ti dopants) nominal index contrast: $\Delta n/n = 0.3 \%$

Silicon Waveguide Fabrication

Completed Silicon-on-Insulator Ridge Waveguide

Summary of Waveguide Performance

Bending Radius 20-40 mm (typical) Polarization Dependent Loss: < 1 dB

Silicon-on-Insulator Ridge Waveguide

Total Insertion Loss: ~12 dB over 1.7 cm

Propagation Loss: ~2-6 dB/cm

Bending Radius 10-15 mm (typical)

Polarization Dependent Loss <1 dB

Birefringence: ~50 GHz

Conventional Integrated Directional Coupler

P₁

 P_2

λ

Splitting Ratio:

$$S = \frac{P_2}{P_1 + P_2} = sin^2(\mu L)$$

Splitting Ratio Changes With:

- w, h (width, height)
- d (center-to-center separation)
 - L (interaction length)
- n_0, n_1 (core/cladding index)
 - T (temperature)
 - (wavelength)
- **TE/TM** (polarization)

An Improved Directional Coupler

Caused by changes in polarization, wavelength, materials dimensions, temperature, refractive indices, etc...

Performance of Insensitive Couplers

Interference Lithography Systems

Split-beam Interferometer

Lloyd's Mirror Interferometer

Finge-locking required
Change period by adjusting θ
(or by raising substrate)
Spherical wavefronts interfering
at substrate

Change period by rotating mirror-substrate assembly Spherical wavefronts, but larger R is possible

Phase Mask Interference Lithography

Does not require coherent illumination Period of grating is P/2 (cannot be adjusted without changing phase mask.) High contrast exposure requires small 0th order Phase mask must be made by some other technique

X-ray Nanolithography

High resolution (~30 nm) Does not require antireflective coatings

Alignment of Gratings to Waveguides

FOR INTEGRATED INTERFEROMETER DEVICES, ANGULAR ALIGNMENT OF GRATING TO WAVEGUIDE IS CRITICAL

 θ < 0.2 milliradians

Adding Alignment Marks to X-ray Mask

Dual Hard Mask Procedure

Pattern grating etch mask on substrate

Pattern waveguide mask over grating mask

Remove excess grating mask, exposing substrate

Etch waveguide features

Remove waveguide mask, revealing underlying grating mask 5 5 Etch shallow grating features, then remove grating mask

Pattern Grating Hard Mask

Patterning Bragg Gratings over Glass Waveguides

Bragg Grating on Glass Waveguide

Overgrowth on Bragg Gratings

Prior to Overgrowth

After Overgrowth

Possible Solutions: Modify composition (raise T_g) Change deposition parameters Pattern grating in bottom cladding Alternative grating materials (nitride?)

Dual Hardmask Process for SOI ridge Waveguides

Transmission Spectrum for 4 mm Bragg Grating on SOI ridge waveguide

Grating-Assisted Coupling to Leaky Modes (a simple model)

Transmission Spectrum of Bragg Grating: Theory vs. Measurement

Evidence of Chirp in Bragg Gratings

(4 mm-long grating)

(8 mm-long grating)

Measuring Chirp via E-beam Metrology

Measured phase profile from grating produced via interference lithography

Conclusions

Bragg gratings could play an important role in many areas of optical communications

We have developed flexible fabrication methods for constructing waveguides, couplers, and Bragg gratings

Demonstrated wavelength- and polarizationinsensitive directional couplers

Measured integrated Bragg gratings in SOI ridge waveguides

FUTURE WORK:

Improve overgrowth technique for glass grating structures

Construct integrated Add/Drop filter by combining couplers and gratings

Hank Smith	Peggy Carney	Desmond	Lim The	e Hightower Family	
L. C. Kimerling Dario G	il Howard Ram	seur Patric	cia Marra	Roseanne Cook	
John Mu	rphy Dave C	arter	Oliver Stolz	Terry Orlando	
Brent Little	Dorothy Leme	elson Ci	indy Lewis	John A. Simpson	
Chuck Joyner J. P. La	ine Brent Kn	ewlton E	rik Thoen	Mark Sanchez	
Alice White Mom and I)ad Baiest	Menon	The NSF	Erich P. Ippen	
li-Lun Cl	nen najesi		Steve Chi	inn	
Dave Foss			VOI	Minghao C)i
John Guttag			IUI	Kent Pryor	
Mike Lim Brando	n Morrisey Je	ff Livas	Anu Agarwa	al Marilyn Pierce	
Juan Ferrera Jay Dam	Jalal Khan ask	Hollis	Williams	Paul Stevenson	ì
Todd Hastings	Ed Murphy	y N	/laya Farhoud	Elaine Joseph	
Keith Jackson	Jim Carter	Cath	erine Keating	Jim Daley	
God Mike Walsh	Mark Schatt	tenburg	William	Ruth Mark Monde	ol
lamos Goodbarlat	Ed Lasko	wski Eu	Iclid Moon	Ryan Koopma	ns
Greg Wornell	Sridevi Sarma	Tim Sava	Vince Wong as	Hermann A. Haus	
-					