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S1. NONLINEAR THERMAL MODEL

The electron temperature in the graphene may be modeled by the following nonlinear

differential equation:

αT
dT

dt
+ β1(T − TL) + β3(T 3 − T 3

L) = I(t) (S1)

where T represents the graphene electron temperature, TL is the lattice temperature, and

I(t) is the absorbed optical power per unit area. αT is the specific heat in the graphene and

the terms proportional to β1 and β3 describe momentum-conserving cooling and disorder-

assisted supercollision cooling, respectively.

We re-write these equations in terms of x ≡ T − TL, the deviation from the lattice

temperature:

α(TL + x)
dx

dt
+ β1x+ β3

[
(TL + x)3 − T 3

L

]
= I(t) (S2)

We next assume that x� TL, i.e., the photoinduced change in electron temperature is small

in comparison to the equilibrium (lattice) temperature. With this assumption, x(t) may be

expanded in a power series in the intensity I,

x(t) = x(1)(t) + x(2)(t) + x(3)(t) + . . . (S3)

Where x(n) ∝ In, and we are retaining terms up to third order. Substituting this expansion

into (S2) gives

α(TL + x(1) + x(2) + x(3))
d

dt
(x(1) + x(2) + x(3)) + β1(x(1) + x(2) + x(3))+

β3

[
(TL + x(1) + x(2) + x(3))3 − T 3

L

]
= I(t) (S4)

Next, we expand (S4) and separately equate the orders to obtain the following inhomoge-

neous linear differential equations for x(1), x(2) and x(3),

αTL
dx(1)

dt
+ (β1 + 3β3T

2
L)x(1) = I(t) (S5)

αTL
dx(2)

dt
+ (β1 + 3β3T

2
L)x(2) = −αx(1)dx

(1)

dt
− 3β3TL

[
x(1)
]2

(S6)

αTL
dx(3)

dt
+ (β1 + 3β3T

2
L)x(3) = −αx(1)dx

(2)

dt
− αx(2)dx

(1)

dt
− 6β3TLx

(1)x(2) − β3

[
x(1)
]3

(S7)
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which can be re-written as:

dx(1)

dt
+ γx(1) =

I(t)

αTL
(S8)

dx(2)

dt
+ γx(2) = − 1

TL
x(1)dx

(1)

dt
− 3β3

α

[
x(1)
]2

(S9)

dx(3)

dt
+ γx(3) = − 1

TL
x(1)dx

(2)

dt
− 1

TL
x(2)dx

(1)

dt
− 6β3

α
x(1)x(2) − β3

αTL

[
x(1)
]3

(S10)

where

γ ≡ β1 + 3β3T
2
L

αTL
(S11)

represents the equivalent (linearized) cooling rate, taking into account both cooling mecha-

nisms.

For the two-laser illumination considered here, the optical intensity absorbed in the

graphene is given by

I(t) = I1 + I2 + 2
√
I1I2 cos Ωt (S12)

where I1 is the absorbed intensity of laser 1, I2 is the absorbed intensity of laser 2, and

Ω ≡ ω1 − ω2 is the heterodyne beat frequency between the two lasers.

Substituting this expression into (S8), one can find a solution for x(1)(t), which is used

in turn to find x(2)(t) from (S9), and x(3)(t) from (S10).

The photovoltage produced through the Seebeck effect can be expressed as

V (t) = rT (T − TL) = rx(x+ TL) (S13)

where rT is the Seebeck coefficient of graphene. Substituting x = x(1) +x(2) +x(3) + . . . into

(S13), evaluating only the DC component of V (t), and retaining only terms up to the third

order in I, one finds, after simplification:

V (I1, I2) = r

{
I1 + I2

αγ
+ β1

(I1 + I2)2

(αγTL)3
− (3β2

3T
4
L + 7T 2

Lβ1β3)
(I1 + I2)3

T 6
Lα

5γ5
. . . (S14)

+ 2I1I2

[
β1

(αγTL)3
− (9T 4

Lβ
2
3 + 15T 2

Lβ1β3 + 2β2
1)

(I1 + I2)

T 6
Lα

5γ5

]
γ2

Ω2 + γ2
. . . (S15)

− 2I1I2

[
(6T 2

Lβ1β3 − 2β2
1)

(I1 + I2)

T 6
Lα

5γ5

](
γ2

Ω2 + γ2

)2}
(S16)

For the room-temperature conditions reported here (TL = 300 K), we may make the ad-

ditional approximation that β1 � β3T
2
L. In this regime, the linearized cooling rate (γ)
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is determined primarily by supercollision cooling, even though both cooling processes con-

tribute to the measured nonlinearity in the response. With this assumption, (S14)-(S16)

simplify to:

V (I1, I2) = r

{
I1 + I2

αγ
+ β1

(I1 + I2)2

(αγTL)3
− 3β2

3

(I1 + I2)3

T 2
Lα

5γ5
. . . (S17)

+ 2I1I2

[
β1

(αγTL)3
− 9β2

3

(I1 + I2)

T 2
Lα

5γ5

]
γ2

Ω2 + γ2

}
(S18)

The photoinduced voltage can be rewritten as

V (I1, I2) =a1(I1 + I2) + a2(I2
1 + I2

2 )− a3(I3
1 + I3

2 ) . . . (S19)

+ 2a2I1I2

[
1 +

γ2

Ω2 + γ2

]
− 3a3I1I2(I1 + I2)

[
1 +

2γ2

Ω2 + γ2

]
(S20)

where the coefficients a1, a2 and a3 are given by

a1 ≡
r

αγ
, a2 ≡

β1

(αγTL)3
, a3 ≡

3β2
3

T 2
Lα

5γ5
(S21)

When the two beams I1 and I2 are double-chopped and synchronously detected at the

chopper difference frequency, the lock-in amplifier produces a signal proportional to (S20):

V∆ = V (I1, I2)− V (I1, 0)− V (0, I2) + V (0, 0) (S22)

= 2a2I1I2

(
1 +

γ2

Ω2 + γ2

)
− 3a3I1I2(I1 + I2)

(
1 +

2γ2

Ω2 + γ2

)
(S23)

The DC photovoltage therefore has a Lorentzian dependence on the heterodyne difference

frequency Ω ≡ ω1−ω2, with a spectral width that is proportional to the carrier cooling rate

γ, as shown schematically in Fig. S1

S2. NONLINEAR PHOTORESPONSE OF THE LOWER MOBILITY SAMPLE

Fig. S2 shows a measurement similar to Fig. 2 performed on lower-mobility exfoliated

graphene on SiO2. In this device, the diffusion length is estimated to be only 500 nm, which

is about one order of magnitude smaller than for the encapsulated device. Because of this

difference, the majority of the photoresponse in this device originates from the Fermi-level

pinned region near the contact, where the carrier concentration is not as easily controlled

by the applied gate voltage. For positive gate voltages, Fermi level pinning produces a

pn junction and charge-neutral region near the contact[34, 35], which contributes to the
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2a2I1I2 − 3a3I1I2(I1 + I2)

4a2I1I2 − 9a3I1I2(I1 + I2)

γ =
β1 + 3β3T

2
L

αTL

Ω = ω1 − ω2

V∆

� 3β3TL/α.

heterodyne frequency

photovoltage (double-chopped)

FIG. S1. DC photovoltage V∆ as a function of the heterodyne difference frequency Ω = ω1 − ω2.

observed sub-linear response. Otherwise, the response is qualitatively similar to that of the

HBN-encapsulated device, and we observe a similar expected transition from supercollision

cooling to conventional cooling under negative gate bias.

From the data in Fig. S2, the sublinear-superlinear transition occurs at Vg = −6 V

where the estimated Fermi level is EF = 80 meV. Assuming a disorder mean-free-path of

l = 40 nm (which was independently determined from DC electrical measurements), we

can use equation (5) in the main text to determine the ratio of the two rate coefficients,

β1/β3 = 5300 K2.

S3. LINEARIZED COOLING RATE AT THE CHARGE NEUTRAL POINT

The thermal model presented in the manuscript and in (S1) ignores the fact that when

the graphene is gated at the charge neutral point, the carriers are no longer degenerate, and

under these conditions, the specific heat (αT ) and conventional cooling coefficient (β1) must

be modified to [14, 22, 36]:

αT → α2T
2, where α2 ≡ 18ζ(3)k3

B/πh̄
2V 2

F (S24)

β1 → β5T
4, where β5 ≡ 7π3k5

BV
2
D/30ρh̄5v6

F (S25)
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FIG. S2. (a) Single-laser photovoltage (V1), and nonlinear photomixing signal (V∆) measured vs.

the gate voltage Vg, for the exfoliated graphene on SiO2. (b) Measured photovoltage |V1| vs. optical

input power, showing clearly the sub-linear and super-linear behaviors.

and the nonlinear thermal equation under these conditions becomes

α2T
2dT

dt
+ β5T

4(T − TL) + β3(T 3 − T 3
L) = I(t) (S26)

If (S26) is linearized about the lattice temperature, one obtains, analogous to (S5)

α2T
2
L

dx

dt
+ (β5T

4
L + β3T

2
L)x = I(t) (S27)

where x = T −TL is the photoinduced change in electron temperature relative to the lattice.

The linearized cooling rate is then

γ′ =
β5T

2
L + 3β3

α2

(S28)

which is shown by the red curve in Fig. 5b.

We expect that at low temperatures, kbT will be much smaller than E∗F , the charge-

puddle-limited Fermi level, in which case the cooling can instead be accurately described

by (S1). The boundary between the two regimes can be estimated by equating (S11) and

(S28), which, for the parameters considered in Fig. 5 indicates that (S11) should only be

applicable for TL < 80 K. This condition is represented by the intersection between the blue

and red curves in Fig. 5.
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When the parameters determined from the low-temperature fit to (S11) are used in (S28),

with no additional free parameters, we correctly predict the observed cooling rate above 80

K, which further supports the model.

S4. DEVICE FABRICATION AND DC ELECTRICAL CHARACTERIZATION

Both devices considered here employed a doped silicon substrate (ρSi = 100 Ω·cm), with

300 nm of thermally grown SiO2 as a gate dielectric. The substrate served as a large-area

gate contact for adjusting the carrier concentration.

The HBN-encapsulated device [20] was fabricated per the method described in[21]. A

piece of polypropylene carbonate (PPC) coated polydimethylsiloxane (PDMS) was first used

to pick up HBN, monolayer graphene and another piece of HBN, in that order. The resulting

heterostructure was then transferred to the aforementioned SiO2 substrate, where electron

beam lithography (EBL) was used to define a hydrogen silsesquioxane (HSQ) hard mask

on poly(methy methacrylate) (PMMA). The surrounding areas were then etched in CHF3

plasma to shape the device channel and expose the graphene edge. Afterwards, HSQ was

lifted off and EBL was used again to define the contact leads and pads using PMMA, and

1.5 nm/20 nm/50 nm Cr/Pd/Au was e-beam evaporated and lifted off for edge contact. The

HBN-encapsulated graphene channel length was 7 µm and width 0.7 µm .

For the second device, a single layer of graphene was mechanically exfoliated from bulk

graphite and transferred directly to the SiO2/Si substrate. The exfoliated graphene exhibits

a mobility about µ = 5, 000 cm2V−1s−1, which was inferred from DC transport measure-

ments. Electron-beam lithography was used to pattern a bi-layer resist comprised of methyl

methacrylate (MMA) and polymethy methacrylate (PMMA). The contacts were deposited

using successive angled evaporations of chromium (15 nm) and gold (30 nm), thereby provid-

ing dissimilar contacts to the opposing edges of the graphene channel. Dissimilar electrical

contacts are not necessary when the optical beams are focused onto one contact, as for

the measurements reported here, but this configuration also provides the thermal asymme-

try needed for detection of spatially homogeneous or longer wavelength illumination. The

graphene channel length was 2.5 µm and width 7 µm.

To quantify the electrical characteristics and gating behavior, we conducted unilluminated

measurements of the DC resistance as a function of the gate voltage, for both the HBN-
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encapsulated device and the non-encapsulated device. Fig. S3 shows the DC measurements,

along with optical micrographs showing the graphene active region, contact geometry, and

cross-sectional diagram.
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FIG. S3. The DC resistance R as a function of the applied gate voltage Vg and the optical

micrograph for (a) the HBN-encapsulated graphene device and (b) the exfoliated graphene on

SiO2 device.
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