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S1 Plasmon Modes in Metal/Graphene Grating

Maxwell's equations are solved for the general case of plasmon modes in a graphene-metal

array with period Λ under normal-incidence plane-wave excitation as shown in Figure S1.

We employ the method described in1 to obtain an integral equation for the E(x), complex

amplitude of the x-polarized electric �eld within the graphene channel,

E(x) =
βc

β
(
1 + βc

2

)Ein +
β − βc
βΛ

∞∑
l=−∞

ei2πlx/Λ

1 + i
κlβc

2

w/2∫
−w/2

E(x′)e−i2πlx
′/Λdx′ (S1)

where Ein denotes the complex amplitude of the normally-incident, x-polarized incident plane

wave with free-space wavelength λ, and κ2
l = [(lλ/Λ)2−1]. β and βc represent the frequency-

dependent (Drude) conductivity of the 2D material and contact, respectively, normalized to

the free-space impedance,

β = σ(ω)
Z0√
ε

, βc = σc(ω)
Z0√
ε

where Z0 (= 377 Ω) is the wave impedance in vacuum. The contact conductivity σc is either

zero, to model isolated graphene ribbons without contacts, or in�nity to model a perfect

electrical conducting boundary, or more generally it can describe the Drude response of an

arbitrary conductive contact. The sheet conductivity of the metal was estimated from the

bulk Drude conductivity, multiplied by the metal �lm thickness.

By Fourier-expanding the electric �eld in the graphene channel from −w/2 to +w/2,

E(x) =
∞∑
n=0

En cos(2πnx/w) (S2)
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the integral equation (S1) can be re-cast as a matrix equation,

1 + δ0m

2
δmn +

(βc − β)

4β

w

Λ

∞∑
l=−∞

R
(l)
mn

1 + i
κlβc

2

En = δm0
βc

β(1 + βc/2)
Ein (S3)

where

R(l)
mn ≡ [sinc(nπ + lπw/Λ) + sinc(nπ − lπw/Λ)]

× [sinc(mπ + lπw/Λ) + sinc(mπ − lπw/Λ)] (S4)

The Fourier components of the electric �eld can be obtained by numerically solving (S3).

In practice, for smoothly-varying plasmon modes, only the lowest few Fourier components

are needed to accurately approximate the �eld.

Then, from E(x), the fractional absorbed power in the 2D material is computed as

AG(ω) =
Z0/
√
ε0

2Λ|Ein|2

w/2∫
−w/2

Re
{
J∗(x)E(x)dx

}
=

Re
{
β
}

2Λ

1

|Ein|2

w/2∫
−w/2

|E(x)|2dx (S5)

S2 Equivalent Circuit Model

The optical response and plasmon resonance of the metal-graphene grating can be approx-

imated from a two-port transmission line model shown in Figure S2(a). The resistance,

inductance and capacitances appearing in this model are de�ned as:

RG = σ−1
0 (S6)

LG = (σ0Γ)−1 (S7)

CG = 2ε0ε̄Λ ln[sec(πw/2Λ)]/π (S8)

CM = 2ε0ε̄Λ ln[csc(πw/2Λ)]/π (S9)
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Figure S1: A unitcell of a periodic array (in x direction) of graphene-contact. Λ is the array
period and w is the graphene channel width. ε is the dielectric constant of the surrounding
material. σc(ω) is the contact conductivity. (p.b.: periodic boundary)
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Figure S2: (a) Equivalent two-port transmission line model representing the sub-wavelength
graphene-metal periodic structure. (b) Simpli�ed circuit model when there are no input
waves to the system, which is used to determine resonant (plasmon) frequency and damping
rate.
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and the incident and substrate regions are modeled as transmission lines with characteristic

impedances of Z1 ≡ Z0/
√
ε1 and Z2 ≡ Z0/

√
ε2, respectively.

The graphene and contact capacitances can be combined into a single equivalent capaci-

tance of

C = CG + CM = 2ε0ε̄Λ ln(2 csc(πw/Λ))/π (S10)

S2.1 Transmission, Re�ection and Absorption

The relationship between the amplitudes of the incoming and outgoing wave amplitudes can

be described by a scattering matrix,

E(−)
1

E
(+)
2

 =

S11 S12

S21 S22


E(+)

1

E
(−)
2

 (S11)

For the circuit model shown in S3(a), the scattering matrix is calculated to be:

S11 S12

S21 S22

 =
1

Y1 + Y2 + Y (ω)

Y1 − Y2 − Y (ω) 2Y2

2Y1 Y2 − Y1 − Y (ω)

 (S12)

where Yi = 1/Zi and Y (ω) is the complex admittance of the combined resistor, capacitor

and inductor,

Y (ω) =
Λ/w

RG − iωLG
− iωC (S13)

For waves incident from region 1, the re�ection, transmission and absorption are calcu-

lated to be
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R(ω) = |S11|2 =

∣∣∣∣Y1 − Y2 − Y (ω)

Y1 + Y2 + Y (ω)

∣∣∣∣2 (S14)

T (ω) =
Y2

Y1

|S21|2 =
4Y1Y2

|Y1 + Y2 + Y (ω)|2
(S15)

AG(ω) = 1−R(ω)− T (ω) =
4Y1 Re

{
Y (ω)

}
|Y1 + Y2 + Y (ω)|2

(S16)

S2.2 Resonant Frequency and Linewidth

If there are no input waves applied to the system, the two transmission lines representing

regions 1 and 2 may be simply replaced by their equivalent parallel impedance, which results

in the simple second-order circuit shown in Figure S2(b). In this circuit model, the power

dissipated in Z1 and Z2 represents the radiative loss into regions 1 and 2 respectively, while

the power consumed in RG gives the absorption in the two-dimensional material. Applying

Kircho�'s laws, the voltage v(t) is found to satisfy the following second-order homogeneous

di�erential equation:

v̈(t) +

[
RG

LG
+

(Y1 + Y2)

C

]
v̇(t) +

[
Λ/w

LGC
+
RG(Y1 + Y2)

LGC

]
v(t) = 0 (S17)

which describes a damped harmonic oscillator. In the limit of low-damping, the resonant

frequency (or plasmon frequency) is

ω0 =

√
Λ/w

LGC
(S18)

= e

√
vF
√
π/2h̄

√ √
n

wε0ε̄ ln[2 csc(πw/Λ)]
(S19)
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The damping rate describes the linewidth of the plasmon resonance, which is found to be:

∆ω =
RG

LG
+

(Y1 + Y2)

C
(S20)

= Γ +
π

2ε0ε̄Λ ln[2 csc(πw/Λ)]

(
Z−1

1 + Z−1
2

)
(S21)

S2.3 Absorbed Power and Impedance Matching

In many applications, one wishes to optimize the power that is absorbed in the graphene

layer, by appropriately designing or selecting the properties and dimensions of the grating

and �lm. By maximizing the absorption (S16) with respect to the complex admittance Y (ω),

one readily �nds the optimal load admittance is

Yopt = (Y1 + Y2)∗ (S22)

Since Y1 and Y2 are real numbers, (S22) implies that Y (ω) must be real, which occurs at an

optimal frequency that is close to the resonant frequency,

ωopt =

√
Λ/w

LGC
−
(
RG

LG

)2

(S23)

Y (ωopt) =
RG

LGC
(S24)

In this case, the condition for maximum power transfer to the graphene layer can be expressed

as

RG

LG
= Γ = (Y1 + Y2)/C (S25)

which means that for maximum on-resonant absorption, the intrinsic material damping Γ is

equal to the radiation damping.

Under these matched conditions, the lumped circuit may be regarded as impedance
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matching between two dissimilar media. The maximum fractional absorbed power is

Amax =
Y1

(Y1 + Y2)
(S26)

S2.4 Circuit Model vs Finite Element Calculations

Figure S3 compares the transmission (T) and re�ection (R) obtained from the full-wave �nite

element calculation (a and b) with the approximated values from circuit model (c and d).

This �gure exhibits close agreement between the results from circuit model (Figure S2a) and

the exact solution for di�erent grating periods.

S3 Geometrical Dependence

The equivalent circuit model predicts that the plasmon resonant frequency depends on the

graphene channel width w and period Λ according to (S19). Apart from the weak logarithmic

dependence on the duty cycle w/Λ, the resonant frequency is predicted to scale in proportion

to w−1/2, as for isolated graphene ribbons.2,3 To con�rm this scaling relation, we conducted

a second set of re�ection measurements using a graphene same that was fabricated with a

narrower channel.

Figure S4 shows the normalized re�ection measurement for metal-graphene gratings with

two di�erent graphene channel widths of w = 350 nm and 200 nm. For the same carrier den-

sity, the resonant frequency is seen to increase by approximately 30% (=
√

350 nm/200 nm)

when the width is decreased, as predicted by (S19).

S4 Higher Order Plasmon modes

Beyond the fundamental mode that is considered in this letter, higher order plasmon modes

also exist in the hybrid graphene-metal structure. Figure S5a shows the charge density pro�le
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Figure S3: (a)/(b) transmission/re�ection for di�erent periods computed by full-wave �nite
element calculations. (c)/(d) transmission/re�ection for di�erent periods calculated by the
circuit model showed in Figure S2a. ε1 = 1 (air), ε2 = 9 (SiC), w = 0.35 µm, µ = 1000
cm2/Vs, n = 1.5× 1013 cm−2
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Figure S4: Comparison of measured normalized re�ection for w = 200 nm, Λ = 5 µm (green
curve), with w = 350 nm, Λ = 7 µm (gray curve) at the same carrier denisty n = 10.3×1012

cm−2. Plasmon resonance is blue-shifted by about 30%.
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Figure S5: (a) Charge density pro�le at the 3rd plasmon mode frequency for metal-graphene
structure. (b) Graphene absorption (AG) under plane-wave excitation of metal-graphene
gratings with di�erent periods (w = 350 nm, n = 1.5× 1013 cm−2, µ = 1000 cm2 /Vs ). The
surrounding material was assumed to be uniform (ε1 = ε2 = 5). (c) Graphene absorption
in metal-graphene gratings (w = 350 nm, n = 1.5 × 1013 cm−2) with Λ = 8w as a function
of graphene mobility. The absorption is close to the maximum value (50%) for µ = 9000
cm2V−1s−1.
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for the next dipole-active (third order) mode. Figure S5b is the same plot as in Fig. 1e but

extended to show the behavior at higher frequencies. The third order mode appears as a

small peak in the absorption around 17 THz. For the parameters chosen in this �gure, the

highest on-resonant absorption is obtained for Λ = 8w = 2.8 µm (red curve).

For the higher order modes, the equivalent circuit model Figure S2 can no longer be

used to characterize the resonant frequency and radiative damping rate. We nonetheless

expect that, as with the fundamental mode, optimal resonant absorption in the graphene

can be attained when the radiative losses are matched to the graphene scattering rate. To

con�rm this principle, we varied the scattering rate Γ by changing the mobility µ. Figure S5c

plots the calculated absorption for Λ = 2.8 µm for six di�erent graphene mobilities ranging

from 1000 to 20,000 cm2V−1s−1. The absorption at the 3rd order peak approaches the

theoretical maximum (50%) for graphene mobility of 9,000 cm2V−1s−1. This demonstrates

that, unlike most plasmonic structures in which higher order modes are weakly coupled to

the incident plane-wave, the plasmon modes in the hybrid graphene-metal system can be

e�ciently excited by appropriately choosing the geometry of the metal contacts and graphene

properties.
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