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Dimensionality reduction and dynamical filtering: Stimulated Brillouin scattering in optical fibers
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Stimulated Brillouin scattering (SBS) is a noise-driven nonlinear interaction between acoustical and optical
waves. In optical fibers, SBS can be observed at relatively low optical powers and can severely limit signal
transmission. Although SBS is initiated by high dimensional noise, it also exhibits many of the hallmarks of
a complex nonlinear dynamical system. We report here a comprehensive experimental and numerical study of
the fluctuations in the reflected Stokes wave produced by SBS in optical fibers. Using time series analysis, we
demonstrate a reduction of dimensionality and dynamical filtering of the Stokes wave. We begin with a careful
comparison of the measured average transmitted and reflected intensities from below the SBS threshold to
saturation of the transmitted power. Initially the power spectra and correlation functions of the time series of the
reflected wave fluctuations at the SBS threshold and above are measured and simulated. Much greater dynamical
insight is provided when we study the scaling behavior of the intensity fluctuations using Hurst exponents and
detrended fluctuation analysis for time scales extending over six orders of magnitude. At the highest input powers,
we notice the emergence of three distinct dynamical scaling regimes: persistent, Brownian, and antipersistent.
Next, we explore the Hilbert phase fluctuations of the intensity time series and amplitude-phase coupling. Finally,
time-delay embedding techniques reveal a gradual reduction in dimensionality of the spatiotemporal dynamics
as the laser input is increased toward saturation of the transmitted power. Through all of these techniques, we
find a transition from noisier to smoother dynamics with increasing input power. We find excellent agreement
between our experimental measurements and simulations.
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I. INTRODUCTION

Brillouin scattering is a well-known effect in which a pho-
ton is inelastically scattered or reflected by a density fluctuation
or acoustical phonon in a material. At sufficiently high optical
power, the optical field in turn produces a mechanical strain
through the process of electrostriction, which is the origin
of the nonlinear effect termed stimulated Brillouin scattering
(SBS) [1–3]. While SBS can be described as a nonlinear
interaction among two counterpropagating optical waves and
an acoustical wave, it can emerge from a single optical
input wave in the presence of thermal acoustical fluctuations.
SBS is one of the leading nonlinear impairments in fiber
optic communication and high-powered laser systems, where
it can produce a strong, fluctuating backward-propagating
Stokes wave even at relatively low optical input power [4,5].
An existing method to control SBS is through modulation
of the input laser [6,7]. Additionally, SBS is also seen in
plasmas [8–11], where it produces deleterious effects in the
laser-plasma interaction necessary for inertial confinement
fusion. Although SBS can result in severe impairments in
laser communications, it is also a flexible mechanism for
controlling light. In particular, there has been interest in using
SBS for integrated circuits, which is possible by tailoring
wave guides to produce SBS with large gains [12–16].
Recently SBS has also been characterized in media such as
perfluorocarbon-compounds [17], where SBS behaves stably
for high-input powers needed for high-power laser systems,
and in photonic crystal fibers, where the tight confinement
of light allows a strong photon-phonon interaction, which

is excellent for exploiting SBS [18]. Existing applications
of SBS are numerous, including microwave generation [19],
self-induced transparency [20], large controlled delays for
subnanosecond pulses [21], optical spectrum analysis [22],
and storing light [23]. The interest of SBS ranges from
removing the detrimental effects in fiber optic communication
and high-power laser systems to exploiting it as a key process
for optical control and information processing. In all of
these cases, understanding and characterizing the dynamics
of noise-driven SBS allow for improved exploitation of its
effects in many applications.

Since the early observations of SBS, powerful new tech-
niques have been developed for acquiring and quantifying
the nature of fluctuations in time series. Surprisingly, these
techniques have yet to be applied to study how the stochastic
fluctuations observed at the onset of SBS evolve into emergent
dynamical states as the optical power is increased. In this work
we observe and analyze the dynamics of SBS in single-mode
optical fiber without external feedback as a function of the
input power. We find that a transition from high-dimensional
noisy dynamics to smoother lower dimensional dynamics
occurs as the input power increases above the threshold
for SBS. The interpretation of this transition as being due
to dynamical filtering and spectral reshaping is supported
quantitatively by the results of multiple time series analysis
techniques.

Although SBS is initiated and sustained by noise [24,25],
the resulting optical and acoustical fluctuations can grow
to macroscopic amplitudes that far exceed the thermal in-
homogeneities from which they originate. In this regime,
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the signals acquire the distinct dynamical signature of the
nonlinear governing equations. While the process originates in
thermal noise, the emerging signals at higher input powers are
quite distinct due to the nonlinear spatiotemporal equations
governing the system. Nature is filled with examples of
noise-initiated and influenced complex dynamical phenomena.
Models of the emergence and spread of viral epidemics [26]
and ecological models of species populations and natural
resources often require stochastic noise sources to account
for observations made in the field [27–29]. Unlike most
systems found in nature, stimulated Brillouin scattering is a
rare example of a spatiotemporal noise-driven system with
very accessible data.

Recent studies of chaotic lasers and random number gen-
eration have suggested that spontaneous emission fluctuations
are amplified to observable macroscopic signals by chaotic
dynamics [30]. In these examples, complex macroscopic
dynamical states emerge from small stochastic fluctuations.
Understanding and predicting the behavior of such systems
requires a clear understanding of the interplay between
noise and dynamics. In the case of SBS, Gaeta and Boyd
showed that the intensity fluctuations were stochastic near the
threshold of initiation [1]. The fluctuations can also behave
chaotically as predicted theoretically by Randall [31] and
shown experimentally by Harrison et al. [32,33] and Lee
et al. [34], in the presence of external feedback. In the studies
presented here, we examine fluctuations of the reflected Stokes
wave with negligible external feedback and determine the
scaling properties and exponents as well as determine the
dimensionality of the phase-space dynamics by time-delay
reconstruction.

II. SPATIOTEMPORAL MODEL AND
EXPERIMENTAL APPARATUS

The Brillouin scattering process may be described by three
complex coupled partial differential equations [1–3,35,36]:
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The input laser electric field EL(z,t), the backward Stokes
wave electric field Es(z,t), and the density variation ρ(z,t)
from its mean ρ0 are functions of time t and position z within
the fiber. The spectral full-width-at-half-maximum Brillouin
line width is �νB ≈ 35 MHz. The fiber attenuation coefficient
α is 0.209 dB/km for our optical fiber with index of refraction
n = 1.45 and c the speed of sound in a vacuum.

The coupling parameter κ is expressed as

κ = πγ

2nρ0λLM
(2)

with electrostriction coefficient γ = 0.902 1/(Wm) [37] and a
mean density ρ0 = 2210 kg/m3. The polarization is assumed
to be completely scrambled so that the polarization parameter
M = 1.5 [38]. In our experiments we used an incident
laser wavelength of λL = 1550 nm. The acoustic coupling

parameter [36] is

	 = πnε0γ

λLv
, (3)

where ε0 is the permittivity of free space and the speed of sound
v is 5800 m/s. The Langevin noise source f (z,t), arising from
thermal phonons, is delta-correlated in time and space so that
〈f (z,t)f ∗(z′,t ′)〉 = Qδ(z − z′)δ(t − t ′) [24]. The noise source
strength is described by

Q = 4πkTρ0�vB

v2A
(4)

with Boltzmann’s constant k, a room temperature of T =
293 K, and fiber modal area A of 55 μm2.

The boundary conditions for the transmitted and
Stokes waves are ES(L,t) = 0, ES(z,0) = 0, and EL(0,t) =
[(2Pin)/(ncε0A)]

1
2 where Pin is the laser input power. Here

L = 12.6 km is the length of the fiber. The boundary conditions
for the density variation are

ρ(z,0) =
√

nQ

2cπ�νB

S(z,0), (5a)

ρ(0,t) =
√

nQ

2cπ�νB

S(0,t), (5b)

where S(0,t) and S(z,0) are complex Gaussian random
variables with zero mean and unit variance [35]. The equations
are solved by an iterative Euler finite-difference method with
appropriately chosen step sizes of dt = 2 ns and dz = (c/n) dt

to ensure numerical accuracy. The equations are first integrated
up to t = 20tf , where tf is the transit time (nL/c), to remove
initial transients and then integrated for an additional 40
transit times to provide our simulated data. This model is
flexible and may be altered to account for initial laser phase
modulation [36] and even transients in stimulated Brillouin
scattering pulse compressors [39].

The experimental setup used to examine SBS is shown in
Fig. 1. The light from the tunable laser (Agilent 81682A) is
amplified by a high-power erbium-doped fiber amplifier. The
signal is then passed through an optical variable attenuator
before it enters into the optical fiber. Afterwards the light
is launched into a 12.6-km single-mode fiber by an optical
circulator. This directs the Stokes light into a photoreceiver,
which is then displayed on a digital oscilloscope (Tektronix

1550 nm 
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EDFA

VA

Circulator

12.6 km SM fiber
Power 
Meter

Power Meter 

PR

Digital
Oscilloscope

Variable 
Attenuator (VA)

PT

PR

Pin

FIG. 1. Experimental setup for SBS measurements. An erbium-
doped fiber amplifier (EDFA) and variable attenuator (VA) are used
to control the input power Pin before entering the single-mode (SM)
optical fiber. The circulator redirects the reflected wave onto another
VA before a photoreceiver (PR) converts the light into an electrical
signal to be collected by a digital oscilloscope.
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FIG. 2. Measured transmitted power PT (a) and reflected power
PR (b) vs Pin. Dark squares are experimental measurements; smooth
lines are simulated timed-averaged power values. The dotted line in
(b) is the simulation without Rayleigh backscattering.

DPO 4034B) with a 250 MHz sampling frequency; the
oscilloscope bandwidth is 350 MHz. In our experiments we
use angled optical fiber connectors for the laser input and
output and find no trace of external feedback, periodicity [40],
or chaos [41].

III. OVERVIEW OF SBS

The measured transmitted and reflected output powers are
plotted in Figs. 2(a) and 2(b) alongside the simulated powers
obtained from Eqs. (1a)–(1c) calculated by time averaging the
simulated transmitted and reflected optical fields:

PT = ncε0A

2
〈|EL(L,t)|2〉, (6a)

PR = ncε0A

2
〈|ES(0,t)|2〉. (6b)

In Fig. 2(b) we see that the backward wave grows rapidly
with increasing input power, and SBS eventually depletes
most of the light from the transmitted beam. Simulated and
experimental data are in good agreement after accounting for
Rayleigh scattering [36] in the reflected power through an
additive term of 3.3 × 10−4Pin. Similar effects on the reflected
and transmitted output powers in plasma can also be seen at
various wavelengths [42]. SBS is a severe impairment in laser
communications because of this rapid rise in reflected power
and saturation of transmitted power.

We will examine in detail the time series of the Stokes wave
at input powers of 9 dBm and 14 dBm, which are indicated by
the arrows in Figs. 2(a) and 2(b); at Pin of 9 dBm we are near
the onset of SBS where the reflected output power is relatively
weak compared to the transmitted power, and at 14 dBm
the transmitted power approaches saturation. To compare
simulated and experimental time series, the simulated wave
is sampled at 4 ns and passed through a high-pass filter with
a cut-on of 30 kHz to match that of the photoreceiver. Finally,
the background noise measured from the photoreceiver, scaled
with respect to amplitude, is added to the simulated data.

In Fig. 3 are the resulting temporal fluctuations of the Stokes
intensity Is , normalized with respect to its standard deviation
σs ; we present a detailed statistical and nonlinear analysis in
the following sections, which shows good agreement between
simulation and experiment. Also, we confirmed that these
fluctuations follow an exponential distribution in agreement
with previous observations [43].
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FIG. 3. (Color online) Time series, sampled at 4 ns intervals, of
the Stokes wave intensity Is(t) normalized to the standard deviations
σs from input powers of 9 dBm (a) simulation; (b) experiment, and
14 dBm (c) simulation; (d) experiment.

IV. RESULTS AND DISCUSSION

A. Intensity correlations and power spectra

In Fig. 4 are shown the intensity autocorrelation functions
for input powers of 9 dBm and 14 dBm. The correlation
functions are characterized by peaks of width approximately
50 ns followed by a small tail which continues for larger time
scales not shown in Fig. 4. Although the reflected powers
between 9 dBm and 14 dBm inputs change by a factor of nearly
1000, the fluctuation time scales of the intensity correlations
are not that different. The constancy in fluctuation time scales
has also been observed by Gaeta and Boyd [1].

Shown in Fig. 5 are the power spectra of the simulated
Stokes wave intensity fluctuations. These simulations have
not been calibrated to the experimental setup so that we may
see the Stokes spectrum for very low input powers. For the
lowest input power of 4 dBm in Fig. 5(a) there is a significant
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FIG. 4. (Color online) Normalized intensity autocorrelation
functions C(τ ) of simulations (a) and experimental measurements
(b) of reflected waves from input powers of 9 dBm (green dotted
line) and 14 dBm (solid blue line).
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FIG. 5. (Color online) Stokes power spectrum |S(f )|, calculated by normalizing the fast Fourier transform of zero-mean simulated intensity
fluctuations to its standard deviation. Plots shown are for input powers of 4 dBm black (a), 9 dBm green (b), and 14 dBm blue (c).

amount of power at frequencies above the Brillouin line width
of 35 MHz. As the input power is increased, not only does
the line width of the spectrum begin to narrow, but the large
tail additionally decreases in magnitude through the dynamical
filtering of system. This change may be quantified by the root-
mean-square bandwidth calculated using

σB =
√√√√∫ fu

0 f 2|S(f )| df∫ fu

0 |S(f )| df
. (7)

Here |S(f )| is the Stokes power spectrum from Fig. 5,
and we take the upper limit fu to be 150 MHz. The root-
mean-squared bandwidth changes from 61.08 MHz at the
lowest input power of 4 dBm, to 26.10 MHz for 9 dBm, and
finally to 8.51 MHz for 14 dBm; there is clear narrowing.
The line-width narrowing found in our intensity fluctuations
is similar to those seen in the direct measurements of the
optical spectrum by Gaeta and Boyd [1]. Finally, in Fig. 6
we create a direct comparison between the power spectra
of the experimental and simulated intensity fluctuations by
compensating for the photoreceiver filter and photoreceiver
noise in our experimental setup. We see excellent agreement
between simulated and experimental power spectra, both of
which display line width narrowing and tail reduction with
increasing input power. The spectral reshaping between the
two input powers indicates a transition from high-dimensional
noise towards a lower-dimensional system as will be demon-
strated in Sec. IV D.

B. Scaling behavior

As shown in Figs. 4(a) and 4(b), the intensity correlation
functions and timescales are similar for both low and high input
powers; however, further examination of the scaling behavior
shows a dramatic difference. One way to quantify long-term
dependence is through the Hurst exponent H , first used to study
optimal dam sizing [44]. A method of estimating this exponent
is through detrended fluctuation analysis (DFA) which was
first used on DNA sequences [45] and may also be used on
systems with time-varying Hurst exponents [46]. Processing
a time series X(n) of length N through the DFA consists of

several steps. The first is subtracting the mean X̄ from the data
and creating a cumulative sum:

Y (n) =
n∑

i=1

[X(i) − X̄]. (8)

This cumulative sum is then separated into different data sets
of window length �T . Each of these sets is detrended within
the window by a polynomial of known order; in our case a
linear fit is adequate. The fluctuations are then calculated as
the root-mean squared deviation of Y (n) from the piecewise
linearly approximated series Y

(1)
�T (n):

F (�T ) =
{

1

N

N∑
i=1

[
Y (i) − Y

(1)
�T (i)

]2

} 1
2

. (9)
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FIG. 6. (Color online) Stokes power spectrum |S(f )|, calculated
by normalizing the fast Fourier transform of intensity fluctuations in
Fig. 3 to its standard deviation. Plots shown are for input powers of
9 dBm (a) simulation; (b) experiment, and 14 dBm (c) simulation;
(d) experiment.
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FIG. 7. (Color online) Normalized integral of the intensity time
series of Fig. 3 for simulated (a) and experimental (b) data for Pin of
9 dBm (green) and 14 dBm (blue): Y (n) = ∑n

i=1 Is(i). Fluctuations
of Stokes wave intensities for simulated (c) and experimental (d) data
for 9 dBm (green dotted line, simulation; green circle, experiment)
and 14 dBm [blue solid (highest) line, simulation; blue square,
experiment]. The remaining gray solid lines represent fluctuations
of Stokes wave intensities for input powers of 10 (lightest gray,
second lowest), 11, 12, and 13 dBm (darkest gray, second highest).
The dashed black line has a slope of 0.5 (Brownian motion). The
arrows indicate crossover points between persistent, Brownian, and
antipersistent scaling regimes.

We study the power-law scaling behavior F (�T ) ∼ (�T )α

of the fluctuations from the Stokes waves to approximate H .
We have that H = α for fractional Gaussian noise (fGn) and
H + 1 = α for fractional Brownian motion (fBm) because
fBm is the cumulative sum or integral of fGn. Shown in
Figs. 7(a) and 7(b) are the integrals of the zero-mean and
normalized Stokes waves from input powers of 9 dBm and
14 dBm. The time scale here is much larger than the correlation
widths in Fig. 3, and clear differences are now evident. At the
lower power the integral drifts over a wide range, while at
the higher power the drift is significantly limited. By applying
the DFA to the fluctuations of the actual signals, we can
clearly quantify the difference. A plot of the fluctuations
against window length is shown in Figs. 7(c) and 7(d). Since
we have not normalized the time series for Figs. 7(c) and
7(d) we can first notice that the curves from input powers of
9 dBm and 14 dBm are offset by about 3 orders of magnitude,
corresponding to the 30 dB difference in reflected power.
Furthermore, several regions have different scaling behaviors.
First, before a crossover point on the order of the correlation
time of roughly 50 ns, indicated by the first arrow, the intensity
fluctuations due to Pin of 14 dBm have a steep slope of
α = 1.75, which is indicative of persistent data with a Hurst
exponent H = 0.75. In the 9 dBm case these slopes are 1.79
with H = 0.79. These large Hurst exponents correspond to
the small time scale under which the integrated curves appear

fairly smooth. After the crossover point the slopes in the
14 dBm and 9 dBm cases are 0.55 and 0.56, respectively,
which means the integrated curves in this window length are
similar to Brownian motion with H = 0.5 [47]. This scaling
behavior resembling randomness is a property of the noise
initiation of SBS. The scaling exponents are similar for both
low and high input powers on these window lengths, but
the exponents change significantly for larger window lengths.
For window lengths above the fiber transit time (≈60 μs),
indicated by the second arrow, the slope decreases to 0.08 for
the 14 dBm case, evidence of antipersistent fluctuations. This
is a clear transition from the slope of 0.46 for the 9 dBm case.
Intermediate values are slopes of 0.47, 0.41, 0.29, and 0.07 for
input powers of 10, 11, 12, and 13 dBm respectively, which
show a gradual transition from Brownian motion dynamics
towards an antipersistent system. This behavior is very visible
from the integrals plotted in Fig. 7(a) and 7(b). While the
original temporal fluctuations of the Stokes wave resemble
an exponential distribution, which has the “memoryless”
property [48], the integrals of these waves transition from
dominantly Brownian motion statistics to an antipersistent
behavior with memory. The transition occurs as the input
power is increased to a level where the transmitted power
saturates and the nonlinear dynamics governing SBS evolution
becomes significant. This memory originates from the Stokes
wave affecting the input laser at the front end of the fiber. The
modified pump wave carries information from the Stokes wave
and alters the Stokes wave dynamics at the end of the fiber,
effectively impressing the history of the previous Stokes wave.

C. Hilbert phase analysis

The intensity dynamics of the Stokes wave due to low
and high input powers behave very differently over long time
scales, and it is interesting to ask if a change in dynamics also
occurs for the phase fluctuations. In a previous study, the phase
of Stokes pulses in gases were observed to have large phase
jumps [25], but here we study the phase of a continuous wave
laser in an optical fiber and we find a transition away from
noiselike behavior. Since we do not have optical phases for the
experimental measurements, we can use the residual Hilbert
phase increments of the unwrapped Hilbert phase calculated
from the analytic signal Xa(n) = X(n) + iX̂(n), where X̂(n)
is the Hilbert transform of X(n) [49,50].

Calculating the residual phase increments of a time series
X(n) consists of several steps. The first is to obtain the
analytic signal Xa(n) = X(n) + iX̂(n), where X̂(n) is the
Hilbert transform of X(n). From this complex signal we create
the unwrapped version of the Hilbert phase obtained from
the four-quadrant inverse tangent function. The unwrapped
Hilbert phases when X(n) is the Stokes wave time series
for input powers of 9 dBm and 14 dBm are shown in
Figs. 8(a), 8(c), 8(e), and 8(g) with respective zooms displayed
in Figs. 8(b), 8(d), 8(f), and 8(h).

We then approximate this unwrapped phase with a line
of best fit, as shown in Figs. 8(b), 8(d), 8(f), and 8(h), and
produce the residuals by subtracting the best-fit line from the
unwrapped phase. These Hilbert phase residuals obtained from
the Stokes wave for input powers of 9 dBm and 14 dBm
are shown in Figs. 9(a), 9(c), 9(e), and 9(g) respectively.
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FIG. 8. (Color online) Unwrapped Hilbert phase from time series X(n) of the simulated backward Stokes wave obtained from input powers
of 9 dBm (a) with zoom (b) and 14 dBm (c) with zoom (d). Solid lines are the phases plotted at 4 ns intervals for 300 000 points (a), (c) and 300
points (b), (d). Dashed lines are best fit lines of the unwrapped Hilbert phase for 1.2 ms (a), (c). Corresponding measurements for experimental
data are in (e)–(h).

We observe that for both low and high input powers the
phases appear to be drifting randomly. Finally, shown in
Figs. 9(b), 9(d), 9(f), and 9(h) are zoomed-in versions of
Figs. 9(a), 9(c), 9(e), and 9(g). In these zooms of the phase
residuals we can see noisy characteristics found in the lower
input powers. In addition, the arrows indicate examples of
large jumps in phase above π/2.

In Figs. 10(a)–10(d) we display the analytic signal magni-
tude and phase in polar coordinates for a short time interval
of 2 μs. For an input power of 9 dBm there is evidence
of a sharply fluctuating trajectory. For the 14 dBm case the
trajectories in the polar graphs are much smoother. This may
be accounted for by the relative decrease in large phase jumps
as input power increases. Plotted in Fig. 11 are the number
of phase jumps larger than π/2 for various input powers,
calculated through the discretized derivative of the residual

phase. We note that similar large phase jumps, manifestations
of the noise which initiates SBS, were first revealed through
heterodyne measurements in Ref. [25]. The movement from
a high-dimensional noisy behavior to a lower-dimensional
system seen in these polar plots is due to the decrease in
the number of large phase jumps as we increase the input, and
thus the reflected power, to a level far beyond the strength of
the noise which initiates SBS.

D. Time-delay embedding and dimensionality reduction
by dynamical filtering

The last method to characterize the transition in dynamical
behavior is through estimating the dimensionality of the phase
space needed to capture the dynamics of the Stokes waves.
In Figs. 12(a) and 12(b) are time-delay embeddings of the
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FIG. 9. (Color online) Hilbert phase residuals from time series X(n) of the simulated backward Stokes wave obtained from input powers of
9 dBm (a) with zoom (b) and 14 dBm (c) with zoom (d). Arrows indicate examples of phase jumps above π/2. Corresponding measurements
for experimental data are in (e)–(h).
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FIG. 10. (Color online) Polar plots of 500 points at 4 ns intervals of the analytic signal magnitude and residual phase generated by the
Stokes wave with Pin of 9 dBm (a) simulation; (b) experiment, and 14 dBm (c) simulation; (d) experiment.

measured Stokes intensities from input powers of 9 dBm and
14 dBm for a time interval of 6 μs. In these two-dimensional
embeddings the lower input power again results in a noisier less
coherent form than the higher power. However, a dimension
of two is not enough to capture the Stokes wave dynamics.

An algorithm for finding the minimum embedding di-
mension of a time series is the false nearest neighbors
algorithm [51]. Nearest neighbors are identified in the phase
space within a threshold distance but may no longer be nearest
neighbors when embedded into a higher dimension. The
percentage of these false nearest neighbors is then calculated
for chosen embedding dimensions. A sophisticated variant is
the false nearest strands (FNS) algorithm [52], which groups
adjacent neighbors into a strand to remove some correlation,
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FIG. 11. Count of phase jumps larger than π/2 for simulated
(solid line) and experimental (square) time series of 300 000 points.

and nearest strands are then compared for increasing embed-
ding dimensions. In Fig. 13(a) we apply the FNS algorithm
to simulated Stokes waves for input powers of 4, 7, 9, and
14 dBm. For the 4 dBm case the amount of false nearest
strands does not vanish with increasing dimension, which is
a typical signature of noisy dynamics. With increasing input
power, the percentage of nearest strands steadily decreases
and converges towards zero at an embedding dimension of
eight. As in Fig. 3, to directly compare the experimental
data to simulations we apply a high-pass filter and additive
noise to the simulated data and plot the results of the FNS
algorithm in Fig. 13(b). For comparison we plot the percentage
of FNS for the measured noise. We conclude from the excellent
comparison between experimental and simulated data that
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FIG. 12. (Color online) Time-delay embeddings of experimental
Stokes wave time series for input powers of 9 dBm (a) and 14 dBm
(b) from 1500 points at 4 ns intervals. We selected delays T of 52 ns
(a) and 48 ns (b) from the data in Fig. 3(f).
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addition of measurement noise (b). Black triangles represent the percentage of FNS for measured photoreceiver noise. Calculations were made
on 300 000 data points.

there is a distinct transition from a noisy high-dimensional
system to lower-dimensional dynamics as the input power
increases and the dynamical system filters away noise from
the Stokes wave.

V. CONCLUSIONS

In conclusion, although SBS is noise initiated, the decreas-
ing dimension of the Stokes wave dynamics becomes evident
with increasing input power. Nonlinear time-series analysis
techniques allow us to investigate the complex dynamics
of a spatiotemporal system containing stochastic elements
that become less significant with increasing input power: the
DFA shows a shift from Brownian motion dynamics to a
system with memory, the phase analysis shows increased noise
filtering, and the FNS algorithm clearly displays a decreasing
dimensionality with increasing pump power. We have shown
a transition from noisy high-dimensional behavior towards a
lower-dimensional system dynamics through several measures
with excellent agreement between experimental data and

simulations, strengthening our confidence in both the numer-
ical model and experimental results. Physically this transition
characterizes the shift from thermal phonon excitation of
spontaneous Brillouin scattering, to the electrostriction-driven
process of SBS. We have provided details on this shift
that were previously unseen, and a better understanding of
the characteristics of SBS could enable improvements in
applications of its effects.
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