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Many physical processes, including the intensity fluctuations of a
chaotic laser, the detection of single photons, and the Brownian
motion of a microscopic particle in a fluid are unpredictable, at
least on long timescales. This unpredictability can be due to a
variety of physical mechanisms, but it is quantified by an entropy
rate. This rate, which describes how quickly a system produces
new and random information, is fundamentally important in
statistical mechanics and practically important for random number
generation. We experimentally study entropy generation and the
emergence of deterministic chaotic dynamics from discrete noise
in a system that applies feedback to a weak optical signal at the
single-photon level. We show that the dynamics transition from
shot noise to chaos as the photon rate increases and that the
entropy rate can reflect either the deterministic or noisy aspects of
the system depending on the sampling rate and resolution.
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Continuous variables and dynamical equations are often used
to model systems whose time evolution is composed of dis-

crete events occurring at random times. Examples include the
flow of ions across cell membranes (1), the dynamics of large
populations of neurons (2), the birth and death of individuals in
a population (3), traffic flow on roads (4), the trading of secu-
rities in financial markets (5, 6), infection and transmission of
disease (7), and the emission and detection of photons (8). We
can identify two sources of unpredictability in these systems: the
noise associated with the underlying random occurrences that
comprise these signals, which are often described by a Poisson
process, and the macroscopic dynamics of the system, which may
be chaotic. When both effects are present, the macroscopic dy-
namics can alter the statistics of the noise, and the small-scale
noise can in turn feed the large-scale dynamics. This can lead to
subtle and nontrivial effects including stochastic resonance and
coherence resonance (9, 10). Dynamical unpredictability and
complexity are quantified by Lyapunov exponents and dimen-
sionality, whereas shot noise is characterized by statistical metrics
like average rate, variance, and signal-to-noise ratio. Charac-
terizing the unpredictability of a system with both large-scale
dynamics and small-scale shot noise remains an important
challenge in many disciplines including statistical mechanics and
information security.
Many cryptographic applications, including public key encryp-

tion (11), use random numbers. Because the unpredictability of
these numbers is essential, physical processes are sometimes used
as a source of random numbers (12–25). Physical random number
generators are usually tested using the National Institute of
Standards and Technology (26) and Diehard (27) test suites, which
assess their ability to produce bits that are free of bias and cor-
relation. These tests are an excellent assessment of the perfor-
mance of a physical random number generator in practical
situations but leave an important and fundamental problem un-
addressed. Deterministic postprocessing procedures, such as hash
functions (25), are often used to remove bias and correlation.
Because these procedures are algorithmic and reproducible, they

cannot in principle increase the entropy rate of a bit stream. Thus,
the reliability of a physical random number generator depends on
an accurate assessment of the entropy rate of physical process
that generated the numbers (28). It remains difficult to assess the
unpredictability of a system based on physical principles.
Evaluation of entropy rates from an information-theoretic

perspective is also centrally important in statistical mechanics
(29–36). One might expect that the unpredictability of a system
with both small-scale shot noise and large-scale chaotic dynamics
would depend on the scale at which it is observed. In many
systems, the dependence of the entropy rate on the resolution, «,
and the sampling interval, τ, can reflect the physical origin of
unpredictability (37–40). This dependence has been studied ex-
perimentally in Brownian motion, RC circuits, and Rayleigh–
Bénard convection (34, 35, 37, 41, 42).
Here, we present an experimental exploration and numerical

model of entropy production in a photon-counting optoelec-
tronic feedback oscillator. Optoelectronic feedback loops that
use analog detectors and macroscopic optical signals produce
rich dynamics whose timescales and dimensionality are highly
tunable (43–47). Our system applies optoelectronic feedback to a
weak optical signal that is measured by a photon-counting de-
tector. The dynamic range of this system (eight orders of mag-
nitude in timescale and a factor of 256 in photon rate) allows us
to directly observe the transition from shot noise-dominated
behavior to a low-dimensional chaotic attractor with increasing
optical power—a transition that, to our knowledge, has never
been observed experimentally. We show that the entropy rate
can reflect either the deterministic or stochastic aspects of the
system, depending on the sampling rate and measurement reso-
lution, and describe the importance of this observation for physical
random number generation.

Significance

The unpredictability of physical systems can depend on the
scale at which they are observed. For example, single photons
incident on a detector arrive at random times, but slow in-
tensity variations can be observed by counting many photons
over large time windows. We describe an experiment in which
we modulate a weak optical signal using feedback from a
single-photon detector. We quantitatively demonstrate a tran-
sition from single-photon shot noise to deterministic chaos.
Furthermore, we show that measurements of the entropy rate
of a system with small-scale noise and large-scale deterministic
fluctuations can resolve both behaviors. We describe how
quantifying entropy production can be used to evaluate physical
random number generators.
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Experiment and Results
Fig. 1 shows a schematic of our experimental configuration. Our
system has a similar architecture to earlier experiments involving
optoelectronic feedback loops but differs in that we use a pho-
ton-counting detector, whereas previous experiments used an
analog photodetector. In either case, the signal from the detector
is time-delayed and filtered, and the output of the filter drives
the Mach–Zehnder electrooptic modulator (MZM), which in turn
controls the light incident on the detector, forming a feedback
loop. When an analog photodiode is used, the feedback loop is
modeled by a time-delayed nonlinear differential equation:

dx
dt

=Ex+ βFIðtÞ,

IðtÞ= sin2
�
GTxðt−TdÞ+ϕ

�
.

[1]

Here, x is the state variable of a linear, time-invariant filter,
matrix E and the vectors F and G describe the characteristics
of the filter, IðtÞ is the normalized intensity of light transmitted
through the MZM, and Td is the time delay. When a photon-
counting detector is used in place of an analog photodiode, the
filter variables can be modeled by a linear differential equation
driven by discrete photon arrivals. In our implementation, the
equations of motion for the filter variables are as follows:
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where the photon arrivals times, ftig, are generated by a non-
stationary Poisson point process whose rate, λðtÞ, depends on the
state of the filter variables:

λðtÞ= λ0IðtÞ= λ0sin2½x1ðt−TdÞ− x2ðt−TdÞ+ϕ�. [3]

In the limit that the λ0 is large, the stochastic term in Eq. 2 can be
replaced with its expectation value, IðtÞ, leading to Eq. 1.
In our implementation, the time delay is Td = 1.734 ms, the

modulator bias is ϕ= π=4, and the filter constants T1 = 1.2 ms,
and T2 = 60 μs. The filter and time delay are implemented dig-
itally using an Altera Cyclone II field programmable gate array
(FPGA) and a digital-to-analog converter (DAC). The clock

speed of this device is 151.1515 MHz, and we record all of the
photon arrival times to this precision. The light source in our
experiment is a continuous-wave fiber-coupled distributed feedback
laser with a wavelength of 850 nm. Our detector has a dark count
rate of ∼ 100 cps and a dead time of about 100 ns. We vary the
photon rate over a factor of 256, from λ0Td = 12.5 (7.20× 103 cps)
to λ0Td = 3,200 (1.845× 106 cps). In all of the experiments shown
here, β is kept constant at 8.87.
Fig. 2 shows several time series recorded with this system with

increasing photon rate, showing a transition from Poisson noise
to deterministic chaos. We plot NwðtÞ, the number of photon
arrivals in the interval [t−w,t]. In Fig. 2, all of the plots were
generated with w=Td=4. When the incident photon rate is
λ0Td = 12.5, the photons appear to arrive at random, uncorre-
lated times as in a stationary Poisson process. Increasing the
incident photon rate to λ0Td = 200, a smooth modulation of the
photon rate starts to become apparent. At λ0Td = 3,200, NwðtÞ
has a smooth character and qualitatively resembles a low-
dimensional chaotic signal. We also plot the results of a de-
terministic simulation using Eq. 1. This time series was smoothed
with a moving average over a time window of width w to be
directly comparable with NwðtÞ. We plot the autocorrelation
function, Cðt′Þ= hðNwðtÞ−NwÞðNwðt− t′Þ−NwÞi, normalized so
that the value of the autocorrelation function is unity at t′= 0. As
the photon rate increases from λ0Td = 12.5, the autocorrelation
function changes from a δ-like peak, characteristic of a Poisson
process, to an oscillatory function that shows correlations at long
timescales (tens of milliseconds). The autocorrelation function
of the deterministic simulation time series is in close agreement
with the autocorrelation function of the photon arrivals with
λ0Td = 3200. Histograms of NwðtÞ also show a transition from a
nearly Poisson distribution to a bimodal distribution character-
istic of the deterministic chaotic process.
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Fig. 1. Experimental configuration. We use a silicon avalanche photodiode,
which detects individual photon arrivals. This signal is time-delayed and fil-
tered using an FPGA, and the output of the filter drives the modulator,
which in turn varies the light incident on the detector, forming a feed-
back loop.
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Fig. 2. Time series, probability distributions, and autocorrelation functions.
A–C show experimental data, and D shows the result of a deterministic
simulation of Eq. 1. (A) At a low photon rate of λ0Td = 12.5, the dynamics
appear Poissonian. The time series has no visible structure, the autocorre-
lation function is sharply peaked at 0, and the distribution of photon counts
in a window of w = Td=4 is nearly Poisson. (B) λ0Td = 200, a slow modulation
of the photon rate is evident. (C) At λ0Td = 3,200, the photon rate varies
smoothly, the photon count distribution is bimodal and much wider than a
Poisson distribution with the same mean, and the autocorrelation function
shows slow oscillations. The deterministic simulation D shows the same
features as the high photon rate data shown in C.
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To visualize the development of chaos with increasing photon
rate, we show Poincaré surfaces of section in Fig. 3. We perform
a time delay embedding of the experimental time series NwðtÞ,
using a time delay of Δ=Td=4, by constructing a list of points in
2D space of the form ½NwðtÞ,Nwðt−ΔÞ�. Because the attractor
has a dimension higher than 2, we reduce the dimensionality of
the attractor by plotting the points only when the state variables
pass through a codimension 1 Poincaré surface defined by
x1 − x2 = π. The embeddings show a similar trend to the plots in
Fig. 2. We see a development of complex chaotic dynamics from
discrete photon noise as the photon rate increases. The de-
terministic simulation is plotted for comparison, and, as in Fig. 2,
a moving average of width w is used so that the smoothed in-
tensity time series, IwðtÞ, is directly analogous to NwðtÞ. The de-
terministic signal in Fig. 3D can be regarded as the infinite
photon rate limit of the photon-counting system.
Fig. 4 shows the dependence of the variance of Nw on the

window w and offers another indication of the transition from
shot noise to deterministic chaos. The time integral of an un-
correlated random signal executes a random walk in which the
variance grows linearly with the integration time. For this reason,
we plot VarðNwÞ=w in Fig. 4. We see distinct asymptotic growth
rates of the variance with small and large w. When w is small, the
variance reflects the Poissonian nature of the photon arrivals,
and the growth rate of the variance has roughly constant value of
VarðNwÞ=w= λ0I. In the limit where the counting window is
much longer than the timescale of the variations in intensity,
NwðtÞ can be regarded as the sum of the photon counts in many
independent identically distributed intervals, and the central
limit theorem implies that the variance will grow in proportion to w.

As we increase the photon rate from λ0Td = 12.5 to λ0Td = 3,200,
we see an increasing offset between the two asymptotic rates
of growth of the variance. The variance can be related to the
photon rate, counting window, and the unnormalized autocor-
relation function, cIðt′Þ= hðIðtÞ− IÞðIðt− t′Þ− IÞi (Eq. 4 is found
in section 14.9.2 of ref. 8):

VarðNwÞ=w
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The second term in Eq. 4 accounts for the difference between
the observed variance and the variance of a Poisson process with the
same rate. The quantity ΘðwÞ has units of time and measures the
correlations in IðtÞ introduced by the feedback. This quantity in-
creases from 0 to an asymptotic value Θ∞ as w increases, account-
ing for the shape of the curves shown in Fig. 4. In deterministic
simulations, we find Θ∞ = 150 μs. The value of Θ∞ is related to the
size of the intensity fluctuations, and the rate at which ΘðwÞ ap-
proaches this asymptotic value is determined by the timescales of
the correlations of IðtÞ.
We characterize the entropy production using the ð«, τÞ en-

tropy per unit time, hð«, τÞ (37). This measurement of entropy
has two parameters: sample resolution, «, and sampling time
interval, τ, which are natural parameters for most experiments
because measurement devices record data to finite resolution at
discrete times. In addition to being experimentally relevant, the
dependence of hð«, τÞ on these parameters can reflect the un-
derlying physical origin of unpredictability (37, 39, 40).
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Fig. 3. Poincaré sections. We visualize the emergence of a chaotic attractor
from Poisson noise with increasing photon rate by embedding photon count
time series in two dimensions with a time delay of Δ= Td=4, and reducing
the dimensionality of the dynamics by plotting points only when the state of
the system in phase space passes through a codimension 1 surface defined by
x1 − x2 = π. A–C show experimental data, and D shows the result of a de-
terministic simulation. These histograms are constructed with a bin width of
one photon in A and B, four photons in C, and 0.005 in D.
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In chaotic systems, unpredictability is due to the sensitive
dependence on initial conditions. Because small perturbations
grow exponentially in time, chaotic systems generate informa-
tion. The growth of uncertainty is quantified by the Lyapunov
exponents, μi, and in particular the largest exponent, μ1. Positive
Lyapunov exponents and entropy rate both quantify unpredict-
ability, and there is a close relationship between these two
quantities. One would expect that, if a chaotic system is sampled
infrequently (τμ1 � 1), successive samples will be uncorrelated
because of the growth of uncertainty between measurements. On
the other hand, if the interval between successive samples is
small (τμ1 � 1), one expects strong correlations between adja-
cent samples and a reduced entropy per sample. Experimental
and theoretical work using semiconductor lasers has shown that
these considerations are crucial to physical random number
generation using chaotic dynamics (20, 21, 48). In the limit that
τ, «→ 0, hð«, τÞ will approach a finite value, the Kolmogorov–
Sinai (or metric) entropy, hks (40, 49–51). The metric entropy is
related to the Lyapunov exponents, μi, by the following:

hks =
1

logð2Þ
X
μi>0

μi. [5]

We calculated the spectrum of Lyapunov exponents from Eq. 1
(52, 53). There is only one positive Lyapunov exponent with a
value of μ1=logð2Þ = 345 bits/s. The Kaplan–Yorke dimension
(54) calculated from the Lyapunov spectrum is 3.56.
The ð«, τÞ entropy will have qualitatively different behavior as

«→ 0 depending on the physical origin of unpredictability. In
chaotic systems, the entropy rate does not depend on either the
sampling rate or the sampling resolution. This property of cha-
otic systems imposes a theoretical limitation on physical random
number generation. Increasing the speed and resolution of a
measurement device cannot in principle increase the entropy
that can be harvested from a deterministic chaotic system beyond
hks. In contrast to deterministic systems, the entropy rate of
stochastic signals diverges like −logð«Þ for finite τ (37, 39).
Another advantage of the ð«, τÞ entropy is that it can be cal-

culated from experimental data using an algorithm described by
Cohen and Procaccia (55). In our case, we chose to calculate the
entropy from NwðtÞ with a counting time window of w=Td=4.
With this window, NwðtÞ approximates the behavior of the de-
terministic signal IðtÞ as seen in Figs. 2 and 3. We do not use an
averaging time window to compute the entropy from determin-
istic simulations.
The first step to computing the entropy rate of an experi-

mental signal is to generate a list of points in d-dimensional
space using time delay embedding with a delay of τ. These vec-
tors can be regarded as samples of a d-dimensional probability
distribution over phase space. The entropy of this probability
distribution, Hd, is sometimes referred to as the pattern entropy
for patterns of length d (41). In principle Hd can be calculated
by building a histogram with boxes of width « and applying
Shannon’s formula, H =−

P
ipi log2pi (56). In practice, direct

application of this approach requires a very large amount of data
when the embedding dimension is large. Cohen and Procaccia
(55) proposed a more efficient algorithm to estimate the pattern
entropy in the context of estimating metric entropy from ex-
perimental data. First, one randomly selects a small numberM of
reference points from the time series. In our case, M = 5,000 was
sufficient. For each reference point i, one computes nið«Þ, the
fraction of points within a box of width « centered on the reference
point. The only difference between a direct calculation of the
Shannon entropy and the Cohen–Procaccia procedure is that, in a
direct calculation, a rectangular array of bins is used, rather than a
set of bins centered on random points chosen from the dataset. In
searching for neighbors for the ith reference point, we exclude

points within a time window of τ of that point, as suggested by
Theiler (57). The pattern entropy is then estimated by the following:

Hdð«Þ=−
1
M

XM
i=1

log2 ni ð«Þ. [6]

It is a general feature of unpredictable signals that Hd grows
linearly with d in the limit that d is large, and the entropy rate
is the slope of this linear increase:

hð«, τÞ= 1
τ
lim
d→∞

½Hdð«Þ−Hd−1ð«Þ�. [7]

Fig. 5 shows the entropy per unit time in both deterministic
simulation and experiment with τ= ð3=4ÞTd. The duration of
the simulation was 512× 106 Td. Fig. 5A shows that, in the
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tons. At low photon rates, we see a divergence characteristic of a Poisson
processes. As the photon rate increases, the dependence of the entropy on «

becomes progressively flatter and approaches hks. Across photon rates, we see
a divergence of the entropy rate for small «. The Poisson curves were calcu-
lated by approximating the Shannon entropy of a Poisson process by an in-
tegral over a Gaussian distribution with a mean and variance of λ0Iw.
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deterministic simulation, the entropy rate remains flat as « de-
creases. As d increases, this plateau approaches hks, as indicated by
Eq. 5. In Fig. 5B, we see that, as the photon rate increases, the
dependence of the entropy on « becomes progressively flatter at
high «. Furthermore, in the region that this flattening is present,
the value of hð«, τÞ is close to hks. The flattening of hð«, τÞ at high
photon rate is another indication that this system behaves more
deterministically in this regime. At all photon rates, we see hð«, τÞ
sharply increases as « decreases, which is due to the shot noise
inherent in the system. It is natural to compare the entropy rates
we observe to a constant-rate Poisson process with the same average
rate. The Poisson curves in Fig. 5 were calculated by approximating
the Shannon entropy of a Poisson distribution by an integral over a
Gaussian distribution with a mean and variance of λ0Iw. In the limit
that « �

ffiffiffiffiffiffiffiffiffiffi
λ0Iw

p
, this leads to the asymptotic expression hð«, τÞ=

ð−1=τÞlog2ð«=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πeλ0Iw

p
Þ, indicated by the dashed curves in Fig. 5B.

For small e, hðe, τÞ increases logarithmically with decreasing «, and
parallels this curve. This logarithmic dependence is more pronounced
at lower λ0.

Discussion
We show in this paper that the choice of the resolution with which
we observe our system allows us to see either noisy or deterministic
dynamics. By counting photon arrivals over timescales on the order
of the delay time and filter time constants, we see deterministic
dynamics in the time series, Poincaré sections, and the autocorre-
lation functions. Furthermore, when we observe the dynamics on
large scales of both value («) and time (w and τ), we find that the
entropy rate is close in value to the metric entropy calculated from
the positive Lyapunov exponents of the deterministic model, which
shows that the entropy generation is dominated by the deterministic
exponential amplification of small perturbations in this regime.
In contrast, by using high resolution in photon counts and time-

scales, we see that both the entropy rate and variance reflect the
stochastic nature of the photon arrivals. For small values of w, the
variance of the number of photon counts is equal to the average
number of counts, characteristic of a Poisson process. The loga-
rithmic dependence of the entropy on « shown in Fig. 5 offers an-
other indication of the noisy nature of the dynamics at small scales.
In addition to showing both shot noise and chaos at different scales,
our experiment also shows a transition from shot noise to chaos with
increasing photon rate. The precise control over the rate of photon

arrivals and dynamical timescales afforded by our experiment
allows for experimental observation of the interplay of noise and
dynamics. Our results can be seen to bridge two widely used
methods of physical random number generation.
Two prevalent methods have attracted attention for optical

random number generation: those based on single-photon de-
tection from strongly attenuated light sources (58, 59), and those
based on digitized high-speed fluctuations from chaotic lasers
(13). In the former case, the entropy is claimed to originate
entirely from quantum mechanical uncertainty, yet in practice
these methods are also subject to unpredictable drift and envi-
ronmental variations. In the latter case, the entropy is attributed
to the dynamical unpredictability of chaos, but the unavoidable
presence of spontaneous emission is thought to play a role in
seeding these macroscopic fluctuations (20, 21). The system
presented here is unprecedented in that it can approach mac-
roscopic chaos from the single-photon limit, thereby revealing
the transition from noise to chaos. Moreover, the analysis offers
a unified measure of entropy that captures both behaviors and
clarifies the relationship between sampling frequency, measure-
ment resolution, and entropy rate.
The designer of a physical random number generator must

choose the sampling rate and resolution that they will use to
collect numbers from a physical system. These decisions will im-
pact the entropy rate. Heuristically, finer discretization (smaller «)
and more frequent sampling (smaller τ) lead to higher entropy
rates, but without the methods presented here it is difficult to
assess the dependence of the entropy rate on these parameters in
any given system. The statistical tests that are usually used to
evaluate physical random number generation (26, 27) were not
designed to answer these questions, but rather to certify that a
stream of bits is free of bias and correlation. If a random number
generator employs postprocessing (as most do), existing statistical
tests applied to the output binary sequence provide no insight into
whether the entropy originates from the physical process or the
postprocessing algorithm used. The (e, τ) entropy clarifies the
origin and nature of uncertainty and informs the choice of sam-
pling rate and measurement resolution.
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