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Abstract: The nonlinear response of nanoporous silicon optical waveg-
uides is investigated using a novel pump-probe method. In this approach we
use a two-frequency heterodyne technique to measure the pump-induced
transient change in phase and intensity in a single measurement. We
measure a 100 picosecond material response time and report behavior
matching a physical model dominated by free-carrier effects significantly
stronger than those observed in traditional silicon-based waveguides.
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1. Introduction

The interest in silicon photonics has been motivated by the possibility of leveraging mature
semiconductor processing technology to manufacture low-cost, integrated electronic and pho-
tonic components on a single chip [1–3]. Though silicon is transparent in the near-infrared, its
indirect band gap and long carrier lifetime [4] have generated interest in silicon alternatives
with more desirable optical properties [5–7]. One such material is nanoporous silicon (pSi),
which is composed of a remnant irregular silicon framework permeated by nanometer scale,
air-filled pores and formed through an electrochemical etching process. Porous silicon has the
appealing property that its effective refractive index can be well controlled during the fabrica-
tion process [8] to form waveguides and other layered dielectric structures.

Despite the potential of pSi as a material for optical devices, there have been relatively few
studies investigating the behavior of pSi at the technologically important wavelength of 1550
nm. Earlier studies at this wavelength [9,10] have indicated exceptionally large and fast carrier-
based optical nonlinearities in this material. In this study, we carry out definitive measurements
on pSi waveguides using a novel pump-probe technique that unambiguously characterizes both
the magnitude and phase of the nonlinear response in a single measurement. A simple model
establishes that the enhancement in the nonlinearity is due to short-lived free-carriers in the
nanoporous silicon, indicating a potential pathway for new devices based on these effects. These
results encourage further studies of pSi waveguides as a viable platform for application areas
such as all-optical switching [11] and optical logic gates [12].

The work presented here is organized in the following manner: The “Fabrication and ex-
perimental setup” section provides details regarding the pSi waveguide fabrication and char-
acterization methods. The essential features of the experimental setup used to characterize the
nonlinear optical properties of the pSi waveguides are also discussed. The section “Experimen-
tal results and discussion” presents the transient relative intensity and phase response for the pSi
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Fig. 1. Scanning electron micrographs showing nanoporous silicon structure (a) and the
waveguide end facet of the type characterized in this study (b). The dashed circle shows the
approximate mode dimension as estimated by a diffraction technique described in the text.
The polymer cover layer (appearing as the topmost material in (b)) was not present during
device characterization.

waveguide. Data showing the power dependence of the optical nonlinearity are also presented.
A simple model incorporating carrier-based effects is developed and the instantaneous and free-
carrier nonlinear coefficients are estimated and shown to be dramatically different from those
observed in silicon-on-insulator (SOI) waveguides. An appendix is also provided and gives a
detailed discussion of the two-frequency heterodyne method.

2. Fabrication and experimental setup

Porous silicon is formed by electrochemically etching a conductive silicon substrate. The
columnar pores, which are oriented perpendicular to the silicon wafer surface plane and along
the same direction as the applied current, form naturally with the proper choice of wafer doping,
crystallographic direction, etchant solution chemistry, and applied current [13,14]. The amount
of silicon removed is in direct proportion to the applied current, thereby enabling the formation
of 1-dimension profiles of varying silicon volume fraction by controlling the current during
the etching process. A representative nanoporous silicon structure is shown in the top-down
scanning electron micrograph shown in Fig. 1(a). The waveguides tested in this study utilized
a current-controlled electrochemical etch that produced a buried optical slab waveguide with a
1.9 µm core with an effective refractive index of n = 1.72 surrounded on each side by n = 1.67
cladding layers. To confine the optical mode in the second transverse direction, a computer
controlled laser ablation writing system was used to fabricate two parallel trenches on the sur-
face of the porous silicon wafer having a length and spacing that define respectively the length
and width of the optical waveguide. The waveguide refractive index profile and width are de-
signed to support single mode operation at 1560 nm. An optical micrograph showing the device
fabricated as described above is shown in Fig. 1(b). Full details of the pSi optical waveguide
fabrication and characterization process are given in [9, 15].

The linear propagation loss of the waveguide was estimated by performing cutback measure-
ments [16] for devices of different lengths. This approach produced a loss estimate of 13.5
dB/cm; indicating 7.7 dB of total loss attributed to linear absorption for the 0.57 cm long
waveguide. There are several factors that contribute to this linear loss, including Rayleigh
scattering from the nanoporous structure, edge roughness from the laser-patterned waveguide
boundaries, residual free-carrier absorption, and transverse evanescent leakage. Inverse trans-
mission measurements [17] were used to estimate the free-space input coupling loss and the
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two-photon absorption coefficient, β2PA, and found to be 5.25 dB and 1.15 cm/GW respec-
tively. The optical mode size was estimated by a observing the far-field diffraction of the the
light exiting from the back facet of the waveguide. The measured beam divergence is nearly
symmetric and Gaussian, from which a mode size of 10.27 µm2 is inferred. The inferred mode
profile is overlaid on the micrograph in Fig. 1(b).

To characterize the nonlinear optical properties of the waveguides, a two-frequency pump-
probe heterodyne technique was used. The experimental setup used in this study differs slightly
from more conventional pump-probe heterodyne techniques [18, 19] and is diagrammed in
Fig. 2. As with traditional pump-probe heterodyning, the two-frequency approach uses a ref-
erence pulse, chopped pump pulse, and probe pulse that are sequentially launched into the
waveguide, with a variable delay τ between the pump and probe pulse. After traversing the
waveguide, the reference and probe pulses are temporally overlapped at the detector using a
Michelson interferometer to produce a heterodyne signal (see Fig. 2). The amplitude and phase
of the probe pulse is modified due to the presence of the pump in the sample, thus altering the
magnitude and phase of the heterodyne signal measured by the lock-in amplifier. Measuring the
amplitude and phase change as a function of pump delay time (τ) gives the transient absorption
and phase response, respectively.

The chopping of the pump beam introduces additional tones above and below the heterodyne
frequency. By using a lock-in amplifier that is capable of measurement at two different refer-
ence frequencies (the heterodyne frequency and the first upper sideband due to the chopping),
it is possible to simultaneously determine both the magnitude and phase of the probe pulse.
The dual-frequency measurement described here determines the only the relative changes in
intensity and phase that are caused by the chopping of the pump signal, and is hence insensitive
to slow phase fluctuations and drift that otherwise plague heterodyne measurements.

The pump pulse is produced by a 100 MHz mode-locked fiber-laser (Menlo Systems), and
the probe and reference pulses are obtained from a second, similar mode-locked laser. The two
lasers have intra-cavity piezoelectric actuators that allow for fine adjustment of their repetition
rates. Using external synchronization circuitry, the two lasers are locked together with a small
difference frequency δ f = 0.1 mHz, thereby producing a slow, linear sweep of the time delay
τ between the pump and probe. This allows for large delays (nanoseconds for the system used
in this study) without the use of mechanical delay lines [20]. Both lasers are co-polarized and
have a center wavelength of 1.56 µm and a pulsewidth of 100 fs (FWHM).

The time delay T between the probe and reference is set to 830 ps using a fixed external
delay line. This delay limits the maximum pump-probe delay that can be unambiguously meas-
ured in the experiment. The reference and probe pulses are derived from the same laser and
are frequency blue-shifted by frequencies of fD = 35 MHz and fD + fH = 35.0625 MHz re-
spectively using a pair of acousto-optic frequency shifters (AOFS). The difference frequency
between the two AOFSs defines the heterodyne frequency, which was set to fH = 62.5 kHz for
this study. The AOFS causes the probe and references pulses to broaden to approximately 700
fs, as determined by autocorrelation measurements at the output.

The pump beam, which is chopped at frequency fc = 1 kHz, is combined with the probe
and reference beams and passed through a polarizing beam cube, resulting in an horizontally
polarized beam impinging on the waveguide end facet. The ratio of the pump power to the
combined probe and reference beam power (the probe and reference beams are equipotent) can
be controlled with half-wave plates (HWP) prior to beam combination and ranged between 35
and 70 for the measurements reported here.

The light is next free-space coupled into the TE eigenmode of the waveguide using an 0.65
NA 60× aspheric lens. The electric field of the TE mode is perpendicular to the principal
direction of the columnar pores, resulting in a lower linear propagation loss in comparison to
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Fig. 2. Diagram of pump-probe experiment used in this study. The inset shows the relative
timing of pulses incident on the device under test (DUT). A dual-phase lock-in amplifier
measures the in-phase and quadrature components (x and y respectively) at two different
frequencies fH and fH + fC. AOFS: acousto-optic frequency shifter; HWP: half waveplate;
PBS: polarizing beam splitter.

the TM eigenmode. At the back facet of the waveguide, the emerging light is re-collimated
and directed into a Michelson interferometer with a temporal path difference of T , chosen
to temporally overlap the reference and probe pulses. Both outputs of the interferometer are
differentially detected in a balanced photoreceiver to reduce the large common mode pump
signal. A dual-phase digital lock-in amplifier (Signal Recovery 7270) is used to simultaneously
detect both quadratures at both the heterodyne frequency, fH , and at the first upper sideband
of the heterodyne, fH + fC, which is generated by a nonlinear interaction with the pump pulse
in the waveguide. The AOFSs, optical chopper, and lock-in reference signal are all derived
from a common 4-channel synthesizer (Novatech 409B), thereby ensuring a common phase
relation between the heterodyne and chopping frequency. The Appendix explains how these
two-frequency measurements can be used to calculate the transient change in relative intensity
and phase in a manner that is robust to noise, including a complete derivation of the relevant
equations.

3. Experimental results and discussion

The experimental method described in the previous section was used to measure the time do-
main characteristics of the nonlinear optical properties of the pSi waveguides. Figure 3(a) shows
the measured transient intensity change of the probe, (ΔI/I), as a function of the pump-probe
delay, τ . The inset shows an enlarged view near zero delay for three different coupled pump
intensities. The absorption of the probe pulse is caused by a combination of instantaneous two-
photon absorption of the pump and probe signal and subsequent free-carrier absorption caused
by the associated electrons and holes.

The transient data reveals that multiple recombination time scales exist for the pSi waveg-
uides measured in this study, as has been previously observed in photoluminescence studies in
bulk pSi [21]. The intensity exhibits an initial exponential recovery with a 1/e recovery time
of τc = 10 ps, as depicted in the inset to Fig. 3(a), followed by a slower recovery. The 90%
recovery time for free-carrier absorption in the pSi waveguides was found to be 100 ps. This
result is several times faster than absorption-based measurements in conventional SOI waveg-
uides of comparable geometry [4,9] which have lifetimes on the scale of τc =1 ns, and is orders
of magnitude faster than the carrier lifetime in bulk silicon. The rapid recombination time is
believed to originate in reduced mean free path lengths in the carrier diffusion process due to
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the presence of local surface recombination sites in the nanoporous material [21].
Figure 4(a) plots the corresponding phase as a function of delay, which shows both an ultra-

fast decrease caused by instantaneous cross-phase modulation, followed by a slower positive
phase shift caused by free-carrier dispersion. As with the intensity measurements, the free-
carrier response exhibits a 90% recovery time of approximately 100 ps.
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Fig. 3. (a) Transient normalized change in probe intensity for coupled pump intensity of 2.4
GW/cm2. The inset shows a zoomed view of transient near zero delay for different coupled
pump intensities (1.4, 2.4, 3.3 GW/cm2 top to bottom). An effective time constant for the
initial recovery is also indicated on the inset. (b) Relative change in probe intensity for
delays τ = 0 ps (top curve) and τ = 7 ps (bottom curve) for varying coupled pump intensity.
The theoretical curve (dotted line) is an approximate solution valid at low intensities.

In order to quantify the strength of the instantaneous and carrier-based nonlinearities, we
measured the dependence of the transient magnitude and phase on the pump intensity. Fig-
ures 3(b) and 4(b) show the relative change in intensity and the change in phase as a function
of the coupled pump peak intensity, for fixed values of pump-probe delay. In these plots we
examine the intensity and phase dependence near zero delay, where we expect ultrafast effects
such as two-photon absorption and the optical Kerr effect to dominate the response, and also the
at 7 ps, where we anticipate effects predominantly from free-carriers generated by the strong
pump.

The data was modeled by numerically solving the coupled equations of evolution for the
reference, pump, and probe pulses in the presence of ultrafast optical nonlinearities and carrier-
based effects. The equation governing pulse propagation is given by:

∂
∂ z

u(z, t) =

[
−α

2
+

(
i
ω
c

n2 − β2PA

2

) |u(z, t)|2
Aeff

−
(

i
ω
c

ΔnFCD(z, t)+
1
2

ΔαFCA(z, t)

)]
u(z, t)

(1)

where u(z, t) represents the field envelopes including the pump, reference, and probe pulses,
α is the linear absorption coefficient, n2 is the Kerr coefficient, β2PA corresponds to the two-
photon absorption coefficient, and Aeff is the effective area of the optical mode. The coefficients
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3.3 GW/cm2 bottom to top). (b) Change in phase for delays τ = 0 ps (top curve) and τ = 7
ps (bottom curve) for varying coupled pump intensity. The theoretical curve (dotted line)
is an approximate solution valid at low intensities.

ΔαFCA and ΔnFCD are related to the free-carrier population through the following relations:

ΔαFCA(z, t) = σFCAΔN(z, t) (2)

ΔnFCD(z, t) = kFCDΔN(z, t) (3)

where σFCA is the free-carrier absorption cross section and kFCD is the free-carrier dispersion
coefficient. The term ΔN(z, t) is the excess carrier density present in the waveguide caused by
the strong pump pulse. The carrier density is related to the pump field in the waveguide by:

∂
∂ t

ΔN(z, t) =
β2PA

2h̄ω

[ |u(z, t)|2
Aeff

]2

− ΔN(z, t)
τc

(4)

with τc being the carrier recombination time, which was inferred from the transient measure-
ments of Figs. 3 and 4. Second-order dispersion is excluded in Eq. (1) because the waveguides
considered are not long enough to cause significant broadening of the 100 fs pulses used in the
measurement. The Raman contribution to the nonlinear susceptibility was omitted in Eq. (1) be-
cause the pulses used in this experiment do not have sufficient bandwidth or spectral separation
to efficiently couple through the vibrational modes of the crystal. Earlier measurements have
shown that the Raman spectrum in porous silicon is only moderately broadened and shifted and
otherwise retains many of the characteristics of the original silicon substrate [22].

The split-step Fourier method was implemented to solve the coupled equations for all pulses
in the experiment and produce numerical (ΔI/I) and Δφ curves. The fitting was done si-
multaneously for all the data given in Figs. 3(b) and 4(b) and are shown as solid black
lines. Fit parameters produced from the numerical solution give σFCA = 137×10−17 cm2 and
kFCD = 13.5×10−21 cm3. The fit value for the free-carrier absorption in pSi waveguides is two
orders in magnitude larger than those for SOI waveguides while the free-carrier plasma dis-
persion is approximately 3 times larger. For bulk silicon, the free-carrier parameters have been
reported in the literature as [23] σFCA,Si = 1.45× 10−17 cm2 and kFCD,Si = 3.5− 7.5× 10−21

cm3 [9, 24]. We note that these measurements are consistent with earlier reports that also show
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a significant enhancement in the free-carrier parameters compared to crystalline silicon [9].
Unlike earlier measurements, which relied upon indirect estimates of the free-carrier disper-
sion and nonlinear refraction coefficients based only on spectral measurements, the present
approach provides a direct measurement of the temporal phase response, which enables a less
ambiguous determination of these parameters. Also notable in the data is the optical Kerr effect
which is apparent immediately after zero delay in the inset of Fig. 4(a) and appears as a nega-
tive change in phase. Estimates for the Kerr coefficient produced by the full numerical solution
gives n2 = 6.7×10−14 cm2/W; comparable to that of crystalline silicon [9].

Approximate solutions for the probe field, and hence approximate (ΔI/I) and Δφ curves, can
be found for delay values larger than zero delay (τ � T0), once the strong pump pulse arriving
at time zero is no longer present. Assuming weak probe and reference pulses, the probe pulse
evolution dynamics are dominated primarily by the pump generated free-carrier population.
Thus for times after the initial transient, the change in phase and relative intensity should be
related to the carrier population. For carrier lifetimes τc � T0, the initial carrier population can
be determined by integrating the pump intensity squared over the total duration of the pump
pulse and will be a function of the initial coupled pump power and position. Furthermore, the
net change in phase or relative intensity is given by the integral of the carrier population over the
length of the waveguide. An approximate solution for the pump is assumed, which incorporates
linear loss and two-photon absorption effects and assumes a sech2 (t/T0) temporal dependence.
The probe evolution is then given by the solution of Eq. (1) with only linear absorption and
carrier-based effects included. The approximate probe field is given by:

uprobe(t) = u0,probe(t − τ)exp
(
−α

2
L
)

exp

{
−
(

1
2

σFCA + i
ω
c

kFCD

)

×
[

β2PA

2h̄ω

∫ L

0

∫ τ

−∞
I2
pump(z, t

′; I0,pump)dt ′dz

]
e−t/τc

} (5)

In the above expression u0,probe is the temporal field envelope, IPump(z, t ′; I0,Pump) is the pump
intensity ansatz which has linear and two-photon absorption effects included, and I0,Pump is the
initial coupled pump input intensity. From the probe field solution, (ΔI/I) and Δφ can be cal-
culated and are plotted as a dashed line in Figs. 3(b) and 4(b). The theoretical curves are an
excellent match to the numerical solution and data taken at 7 ps delay for low intensities; sup-
porting the claim that the observed effect is predominantly the result of free-carriers generated
by the pump. For small coupled input intensities, the 7 ps delay data and theoretical curves
are quadratic with power as expected. For larger values of intensity, the pump is depleted by
two photon absorption and a sub-quadratic power dependence is observed. At higher intensi-
ties (≥ 1.5 GW/cm2) the theoretical and numerical solution diverge, with the theoretical curves
over-predicting the nonlinear effects. This is expected as the theory does not incorporate the
nonlinear absorption of the pump from self generated carriers, which further limits the amount
of carriers generated at high intensities.

4. Conclusion

We reported the first measurements of the combined transient intensity and phase response
for pSi optical waveguides. The transient response revealed carrier recombination lifetimes
for both absorptive and refractive nonlinearities approximately 10 times faster than those ob-
served in comparatively sized SOI waveguides. This enhancement in lifetime is the likely re-
sult of increased carrier accessibility to recombination sites on the surface of the nanoscale
pores [14, 21]. Additionally, the magnitude of both the intensity and phase effects in pSi
were observed to be exceedingly large relative to crystalline silicon-based waveguides. For
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our waveguides, we measure a free-carrier cross section of σFCA = 137×10−17 cm2, which is
two orders in magnitude larger than the same figure in SOI waveguides. The free-carrier plasma
dispersion coefficient was also found to be many times larger than that of silicon waveguides
with a measured value of kFCD = 13.5×10−21 cm3 being reported for the porous silicon-based
waveguides. The size of the free-carrier effects in pSi are compelling in that only a small vol-
ume fraction of the material consists of silicon, indicating that the scale of the carrier-based
nonlinearities may possibly be a consequence of excess carriers in the remaining p-doped
silicon. Other potential explanations for the enhanced free-carrier effects include modifica-
tions to the mode area resulting from higher field concentrations in the remaining silicon and
also higher order nonlinearities including electron avalanche multiplication which has been ob-
served in crystalline silicon waveguides at mid-IR wavelengths [25]. In our model, attribution
of these potential higher order effects to free-carrier cross-section and dispersion could cause an
overestimation of these parameters. Nonetheless, the agreement between the presented macro-
scopic model and the data indicates a useful means by which to gauge the material platform
for prospective applications. These results favor further study of pSi as an alternative silicon
material and already suggest that the fast, large carrier-based nonlinearity could be exploited
and engineered [26] for specific photonics applications.

The measurements presented in this study were achieved using a new technique that is ro-
bust to noise and can be carried out using standard laboratory equipment. In this approach,
the pump beam is chopped which creates additional sidebands when nonlinear mixing of the
pump and probe beams occurs in the sample. Measuring one of the sidebands along with the
heterodyne signal allows common mode phase variations in the probe and reference pulses to
be removed as long as the integration time is fast in comparison to the noise fluctuations. Anal-
ysis and experimental details were presented that demonstrate how this new approach can be
implemented.

Appendix: two-frequency heterodyning technique

Traditional optical heterodyning detects a difference, or beat, frequency generated by the
mixing of two optical waves of different frequency in a square-law photo-detector [27, 28].
This beat frequency has a phase and magnitude that is directly related to the optical phase dif-
ference and amplitudes of the constituent fields, thus making optical heterodyning an attractive
method for pump-probe spectroscopy.

The fidelity of the heterodyne signal is susceptible to uncontrolled mechanical and thermal
effects introduced by sample heating, thermal relaxation of the opto-mechanical components
comprising the system, as well as by laser power fluctuations. A comprehensive study of ther-
mal drift in optical heterodyne systems can be found in [29]. These effects introduce instability
into the signals of interest and specialized approaches utilizing radio receivers [18, 30, 31] or
fast measurements with radio-frequency lock-in detection [19] have been employed to mitigate
them. In this study, we introduce a heterodyning technique that detects two heterodyne signals;
a technique thus requiring two lock-in detectors or a single lock-in detector with two phase
sensitive channels (in this work we used a single Signal Recovery 7270 with dual-phase lock-in
detection). A detailed discussion of the two-frequency heterodyning technique is provided in
this appendix.

In contrast to conventional pump-probe heterodyne experiments, deleterious thermal drift
and power fluctuation effects in the two-frequency technique are managed by additionally
chopping our pump signal. Chopping the pump signal produces sidebands at ± fC from the
heterodyne frequency, where fC is the chopping frequency. It will be shown that measurement
of one of the sidebands in addition to the primary heterodyne signal provides a simple and
robust means of eliminating noise, particularly phase drift, in the heterodyne measurement. It

#212659 - $15.00 USD Received 22 May 2014; revised 25 Jun 2014; accepted 26 Jun 2014; published 10 Jul 2014
(C) 2014 OSA 14 July 2014 | Vol. 22,  No. 14 | DOI:10.1364/OE.22.017466 | OPTICS EXPRESS  17474



should also be noted that a judicious choice of the heterodyne frequency to be an odd integer
multiple of the chopper half-frequency (i.e., fH = N fC

2 , N = odd integer), spectrally segregates
the strong, co-propagating and co-polarized pump signal from the heterodyne signal; further
improving the signal to noise ratio of the measurement.

Essential to the success of this method is that a common master clock is used to generate
the frequencies driving the AOFSs, the chopper, and the reference input on the lock-in detector.
This ensures that a common phase relationship is maintained between all beams and detection
hardware in the experiment. For the measurements reported here, we used a four-channel, 171
MHz digital digital signal generator (Novatech Intruments Inc. Model 409B, which incorpo-
rates the Analog Devices AD9959 programmable synthesizer chip.) The first two channels were
programmed to generate the 35 MHz and 35.0625 MHz signals required to drive the AOFSs.
The third channel produces a fc = 1 kHz signal that was used to drive the optical chopper.
The fourth output of the synthesizer was programmed to produce a 500 Hz reference frequency
equal to half of the chopper frequency that was sent to the lock-in amplifier. The lock-in am-
plifier was then configured to simultaneously measure at both 62.5 kHz and 63.5 kHz (i.e., the
125th and 127th harmonics of the reference frequency.) The heterodyne frequency is specifi-
cally chosen to be an odd integer multiple of the chopper half-frequency, which ensures that
there is no interference from higher harmonics of the strong chopped pump pulse.

In order to unambiguously measure the relative phase and intensity shift, the correct phase
relationship must be established between the pump beam and the chopper wheel since a phase
offset can occur depending on the relative spatial position of the pump beam in the chopper
wheel slot and the chopper wheel position with respect to the photo-interrupter in the chopper
wheel controller. To eliminate this phase offset, the phase of the detected pump signal at the
chopping frequency is zeroed in the lock-in amplifier immediately prior to conducting measure-
ments.

1/fC

1/fH

{X0,Y0} {X1,Y1}

Time

s(
t) 

[A
U

]

fN=fH=62.5 kHz

fM=fH+fC=63.5 kHzfH–fC=61.5 kHz

Frequency [kHz]

M
ag

ni
tu

de
 [d

B
]

X0

Y0

X1

½(∆I/I)

Y1

∆ɸ

100

1

0

1

-1

0 61 62 63 64

-15

-30

-45

-60

-75

-90

-105

-120

½(∆I/I)}

(a) (b) (c)

Fig. 5. (a) Notional time series data showing the function s(t) over one chopping period
as described by Eq. (6). The chopper wheel blocks or passes the pump beam in time inter-
vals of length 1

2 fc
with the sinusoidally varying signal in each interval being described by

{X0,Y0} or {X1,Y1} respectively. (b) Component representation of the notional time series
is shown in the first quadrant of the in-phase and quadrature-phase plane. (c) Measured
frequency spectrum of s(t) with relevant harmonics indicated. Harmonics of the collinear
pump, which occur at even integer multiples of the 0.5 kHz lock-in amplifier reference
frequency, are suppressed through the use of balanced detection.

Figure 5 illustrates the principle of operation of the two-frequency lock-in detection, for
a fixed pump delay. When the probe and reference pulses interfere with one another in the
balanced detector, they produce a sinusoidal heterodyne signal at the heterodyne frequency
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fH(= 62.5 kHz). We note that the detectors used are not fast enough to resolve the individual
pulses (≈ 500 fs) or their repetition period (10 ns). As illustrated notionally in Fig. 5(a), the
magnitude and phase of the heterodyne signal depends on whether the pump is on or off. When
the pump intensity is chopped, the received signal s(t) may be written as a periodic signal:

s(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

X1 cos(Nt)+Y1 sin(Nt) −π < t ≤−π
2

X0 cos(Nt)+Y0 sin(Nt) −π
2 < t ≤ 0

X1 cos(Nt)+Y1 sin(Nt) 0 < t ≤ π
2

X0 cos(Nt)+Y0 sin(Nt) π
2 < t ≤ π

(6)

In this expression, the the period 2π represents two full chopping cycles and N(= 125) hetero-
dyne cycles, where N is an odd number. The coefficients X0 and Y0 represent the in-phase and
quadrature-phase components of the heterodyne signal when the pump is off, while X1 and Y1

correspond to the in-phase and quadrature-phase components when the pump is on. Figure 5(b)
illustrates vector component representation of heterodyne signal when the pump is off and on,
illustrating the change in intensity and phase.

Figure 5(c) shows a representative spectrum of the received signal s(t), measured using an
electrical spectrum analyzer. In addition to the heterodyne tone at fH(= 62.5 kHz), we see
sidebands at fH ± fC, where fC is the chopping frequency (1 kHz.) The lock-in detector is
configured to simultaneously measure the Fourier components at fH and fH + fC.

The periodic signal s(t) can be expanded in a Fourier series:

s(t) =
x0

2
+

∞

∑
n=1

xn cos(nt)+ yn sin(nt) (7)

with the expansion coefficients being given by:

xn =
1
π

∫ π

−π
s(t)cos(nt)dt, n = 0,1,2, . . . (8)

yn =
1
π

∫ π

−π
s(t)sin(nt)dt, n = 1,2, . . . (9)

Substituting Eq. (6) into Eqs. (8) and (9), we obtain the following expressions for the Fourier
cofficients at the heterodyne frequency (n = N(= 125)) and at the first upper sideband (n =
M = N +2(= 127)):

xN =
X0 +X1

2
+

Y1 −Y0

πN
(10)

yN =
Y0 +Y1

2
+

X1 −X0

πN
(11)

xM =
Y0 −Y1

π
(12)

yM =
X1 −X0

π
(13)

The dual-frequency lock-in detector employed in these experiments allows for simultaneous
measurement of these four quantities, although we note that with a appropriate reference signals
the four quantities could be also measured using two independent lock-in amplifiers. From these
four measured quantities, one can calculate the the Fourier coefficients of the heterodyne signal

#212659 - $15.00 USD Received 22 May 2014; revised 25 Jun 2014; accepted 26 Jun 2014; published 10 Jul 2014
(C) 2014 OSA 14 July 2014 | Vol. 22,  No. 14 | DOI:10.1364/OE.22.017466 | OPTICS EXPRESS  17476



when the pump is off (X0, Y0) and on (X0, Y0).

X0 = xN +
1
N

xM − π
2

yM (14)

Y0 = yN − 1
N

yM +
π
2

xM (15)

X1 = X0 +πyM (16)

Y1 = Y0 −πxM (17)

From these results we can calculate the relative change in intensity, (ΔI/I), and change in
phase, Δφ , (

ΔI
I

)
=

X2
1 +Y 2

1

X2
0 +Y 2

0

−1 (18)

Δφ = tan−1
(

Y1

X1

)
− tan−1

(
Y0

X0

)
(19)

This approach subtracts off the intensity and phase noise fluctuations common to both measured
harmonics leaving only the change in intensity and phase resulting from the presence of the
pump pulse.

For small changes in the relative intensity and phase, or equivalently, when the Fourier am-
plitudes satisfy (xM,yM)� (xN ,yN), Eqs. (18) and (19) can be expanded to first order to give

(
ΔI
I

)
= 2π

(
xNyM − yNxM

x2
N + y2

N

)
(20)

Δφ =−π
(

xNxM + yNyM

x2
N + y2

N

)
(21)
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