

Moiré Stitching Measurement

Edges of adjacent fields overlap, generating a moiré pattern.

Phase of moiré pattern indicates the amount of transverse stitching error

Reference moiré fringes provide a basis for comparison.

Optical Micrograph of Field Boundaries 100 µm

visually: can resolve fringes to ~P/10 (~20 nm stitching resolution)

Measurement of Spatial Phase using offline FFT method:

- 1. F[k] = FFT(f[n]) compute spectrum of signal
- 2. $k_0 = arg max |F[k]|$ find peak in spectrum
- 3. f = angle (F[k₀]) *compute spatial-phase*

Can resolve fringes to ~P/100 (~2 nm stitching resolution)

Moiré Fringe Discontinuity Computed via FFT

Moiré Technique vs Vernier Measurement

Optical Micrograph of Field Boundary (20X, 0.4 NA objective)

SEM of Vernier Marks (after liftoff of Chromium)

Moiré Fringe Discontinuity (computed via FFT)

Application: Measuring Stitching Statistics

wrote 8 x 8 array of 100 μm fields on VS2A e-beam system stitching error measured at each boundary using moiré technique

Application: Investigation of Field Distortion

Measure Stitching Error at Several Points along 400 µm Field Boundary Infer Amount of Intra-field Distortion

Summary of Features

- SENSITIVE: 2 nm resolution (better than Vernier method)
- CONVENIENT: Requires no liftoff or post-exposure pattern transfer
- INEXPENSIVE: uses only a conventional optical microscope