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In this thesis, we report work in two areas: synchronization in networks of

coupled oscillators and the evaluation of physical random number generators.

A “chimera state” is a dynamical pattern that occurs in a network of coupled

identical oscillators when the symmetry of the oscillator population is spontaneously

broken into coherent and incoherent parts. We report a study of chimera states

and cluster synchronization in two different opto-electronic experiments. The first

experiment is a traditional network of four opto-electronic oscillators coupled by

optical fibers. We show that the stability of the observed chimera state can be

determined using the same group-theoretical techniques recently developed for the

study of cluster synchrony. We present three novel results: (i) chimera states can

be experimentally observed in small networks, (ii) chimera states can be stable,

and (iii) at least some types of chimera states (those with identically synchronized

coherent regions) are closely related to cluster synchronization.



The second experiment uses a single opto-electronic feedback loop to investi-

gate the dynamics of oscillators coupled in large complex networks with arbitrary

topology. Recent work has demonstrated that an opto-electronic feedback loop can

be used to realize ring networks of coupled oscillators. We significantly extend

these capabilities and implement networks with arbitrary topologies by using field

programmable gate arrays (FPGAs) to design appropriate digital filters and time

delays. With this system, we study (i) chimeras in a five-node globally-coupled net-

work, (ii) synchronization of clusters that are not predicted by network symmetries,

and (iii) optimal networks for cluster synchronization.

The field of random number generation is currently undergoing a fundamental

shift from relying solely on pseudo-random algorithms to employing physical entropy

sources. The standard evaluation practices, which were designed for pseudo-random

number generators, are ill-suited to quantify the entropy that underlies physical ran-

dom number generation. We review the state of the art in the evaluation of physical

random number generation and recommend a new paradigm: quantifying entropy

generation and understanding the physical limits for harvesting entropy from sources

of randomness. As an illustration of our recommendations, we evaluate three com-

mon optical entropy sources: single photon time-of-arrival detection, chaotic lasers,

and amplified spontaneous emission.
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They believed that prediction was just a function of

keeping track of things. If you knew enough, you

could predict anything. That’s been cherished

scientific belief since Newton.

And?

Chaos theory throws it right out the window.

Jurassic Park

Michael Crichton

Chapter 1: Introduction

The idea that long-term prediction could be impossible even for truly deter-

ministic systems was perhaps first understood by Henri Poincaré when he noticed

that “small differences in the initial conditions [can] produce very great ones in the

final phenomena” [1]. This sensitive dependence on initial conditions turned out not

to be unique to the three-body problem Poincaré was studying in the early 1900s. It

appeared again and again, in van der Pol’s electronic circuits [2,3], Lorenz’s simpli-

fied convection model [4], May’s population models [5], Haken’s unstable lasers [6],

and so on. Eventually, this behavior came to be called chaos [7, 8].

It turns out that in chaotic systems, trajectories that start with nearby initial
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conditions diverge exponentially quickly. This rate of exponential convergence or

divergence of nearby initial conditions can be quantified by Lyapunov exponents. In

order to display the extreme sensitivity to initial conditions necessary for chaos, a

system must have at least one positive Lyapunov exponent. For detailed descriptions

of Lyapunov exponents in particular and chaotic systems in general, see the texts

by Strogatz [9] and Ott [10].

One thing that may be surprising about chaotic systems is that two simi-

lar chaotic systems, started from different initial conditions, can synchronize when

they are coupled together. While the Lyapunov exponents of the individual chaotic

systems typically remain the same, the systems will synchronize if all of the Lya-

punov exponents associated with the difference dynamics are negative. Physically,

this means that the coupled chaotic systems as a set are still extremely sensitive to

initial conditions, but a perturbation away from synchrony will damp out exponen-

tially quickly. The synchronization of chaotic systems was discovered by at least

three independent groups, in Japan [11], the Soviet Union [12], and the U.S. [13].

For a thorough presentation of synchronization, see the book by Pikovsky, Rosen-

blum, and Kurths [14]. A discussion of the synchronization of two Lorenz systems

can be found in the book by Strogatz [9].

One thing that may be less surprising about chaotic systems is that they are

difficult to predict. This has led to the idea of using chaotic systems to gener-

ate random numbers, which are useful for gambling, Monte Carlo simulations, and

particularly data encryption. While this idea is not new – pseudo-random number

generators have been based on chaotic maps since at least 1947 [15] and chaotic elec-
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tronic circuits were shown to generate random bits at a rate of 1 Mbit/s in 2001 [16] –

in 2008 it was demonstrated that chaotic lasers could produce random bits at rates

that were previously unobtainable (greater than 1 Gbit/s) [17]. Chaotic random

number generation is perhaps the most successful and potentially useful application

of experimental chaos developed so far.

1.1 Network patterns of synchronization

Given that two chaotic systems can synchronize, it may not be surprising that

networks containing more than two chaotic systems can synchronize. It may be

surprising, however, that in a network of many coupled chaotic systems, some sets

of nodes can synchronize while others do not. This is called cluster synchronization

or a chimera state, depending on the details.

A “chimera state” is a dynamical pattern that occurs in a network of coupled

identical oscillators when the symmetry of the oscillator population spontaneously

breaks up into coherent and incoherent regions. Cluster synchronization occurs

when one or more subsets of nodes in a network synchronize.

In this thesis, we observe cluster synchronization and chimera states in two

different opto-electronic network experiments. The first experiment is a traditional

network of four opto-electronic oscillators coupled by optical fibers. In fact, this is

the smallest possible network in which a chimera state can be observed. Further,

we show that the stability of the observed chimera state can be determined using

the same group-theoretical techniques recently developed for the study of cluster
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synchrony. There are three novel results: (i) chimera states can be experimentally

observed in small networks, (ii) chimera states can be stable, and (iii) at least some

types of chimera states (those in which the coherent region is identically synchro-

nized) are closely related to cluster synchronization.

This method of creating experimental networks – namely, physically coupling

nominally identical oscillators – has some limitations. First, the oscillators can

never be identical. Second, changing the network topology is difficult because the

physical connections typically have to be changed. Most important, however, is that

the traditional approach of interconnecting a large number of independent oscillators

is not scalable to larger networks. Not only is building many individual oscillators

costly and time-consuming, but the number of physical connections between N

oscillators scales as N(N − 1) so reconfiguring the network becomes challenging.

In order to overcome these limitations, we developed a new opto-electronic

experiment that utilizes the space-time representation of time-delayed systems [18]

to realize networks of truly identical oscillators. Our experiment consists of a single

opto-electronic oscillator with a long time delay and digital filtering. The nodes

of the network are distributed along the delay line, and the coupling topology is

implemented by means of a digital filter. Because all oscillators that comprise

the system sequentially traverse the same physical device, all the nodes are truly

identical. Because the coupling is implemented by a digital filter, the network can

have arbitrary topology and can be easily reconfigured. The price we pay is that

the network update rate scales as N−1 because the network nodes update serially.

Similar set-ups that use time-invariant analog filtering have been used to ob-
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serve chimera states [19, 20] and to perform reservoir computing [21, 22]. These

experiments were limited to circularly symmetric (ring) networks because of the

symmetry imposed by the time-invariant filter. Our use of a digital time-dependent

filter gives us the flexibility of implementing arbitrary networks.

We use this flexibility to study chimera and cluster states in a variety of

networks. First, we experimentally verify our 2016 prediction [23] that chimeras

can also be observed in globally-coupled networks of more than four nodes. Then

we show how to apply techniques from group theory to determine the stability of

non-symmetric synchronous clusters in non-Laplacian networks and confirm these

stability calculations with the first experimental observation of such cluster states.

Finally, we present theoretical arguments for and experimental confirmation of a sur-

prising phenomenon: In order to optimize the sychronizability of a given symmetry

cluster of a Laplacian network, one must break the cluster’s internal symmetry.

1.2 Physical random number generation

Physical random number generation has been the basis of gambling since pre-

historic times. Even today, physical random number generation forms the basis

for just about all of the classic casino games: Roulette, craps, and card games all

rely on unpredictable (although not chaotic) physical processes. Newer electronic

gaming machines rely on pseudo-random number generators because they are cheap,

fast, and reliable. The only problem is that they are deterministic, and, in theory,

predictable if an attacker knows how they work and their internal state (or “seed”).
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This theory was “experimentally verified” by Russian players in 2017, who obtained

slot machines from defunct casinos, opened them up and learned how they worked,

then used this knowledge to win what is thought to be millions of dollars [24]. An

official statement of the slot machine’s manufacturer said only that their machines

“are built to and approved against rigid regulatory technical standards” [24].

Similar pseudo-random number generators underlie many of the encryption

techniques we use for secure communications, including financial transactions. In

order to improve security, digital information systems have begun to utilize physical

sources to generate high-speed unpredictable signals. This has also necessitated

an evolution of the methods for evaluating random number generators. The U.S.

National Institute for Standards and Technology (NIST) has recognized this and

just this year released a new set of standards for evaluating physical random number

generators [25].

In this thesis, we review the state of the art in the evaluation of physical ran-

dom number generation and recommend a new paradigm: quantifying the rate of

entropy generation and understanding the limits of harvesting entropy from physical

sources of randomness. We advocate for the separation of the physical entropy source

from deterministic post-processing in the evaluation of random number generators

and for the explicit consideration of the impact of the measurement and digitiza-

tion process on the rate of entropy production. We present the Cohen-Procaccia

estimate of the entropy rate h(ε,τ) as one way to do this. As an illustration of our

recommendations, we apply the Cohen-Procaccia estimate as well as the entropy

estimates from the 2016 NIST draft standards [26] for physical random number
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generators to evaluate and compare three common optical entropy sources: single

photon time-of-arrival detection, chaotic lasers, and amplified spontaneous emission.

1.3 Organization of the thesis

Chapter 2 describes the traditional network of four opto-electronic oscillators.

Some history of the development and use of opto-electronic oscillators is provided.

Our experimental implementation is described, and both continuous- and discrete-

time models are presented.

Chapter 3 describes the experimental observation of chimera states and cluster

synchronization in a four-node globally-coupled network of opto-electronic oscilla-

tors. We use group theory-based arguments to explain what patterns of synchro-

nization might be expected, and we show experimental time series that demonstrate

the observation of all possible patterns. We perform stability calculations for all

chimera and cluster states; the results are found to be in good agreement with our

experimental measurements. This chapter demonstrates that chimeras can be ob-

served in small networks, that they can be stable, and that they can be understood

using the theory of cluster synchronization.

Chapter 4 describes our second opto-electronic experiment, which utilizes the

space-time representation of time-delayed systems to realize networks of truly iden-

tical oscillators. We review previous works that use the space-time representation

to realize ring networks in a single delay system with a time-invariant analog filter

for applications to reservoir computing and for the observation of chimera states.
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We show that networks with arbitrary topology can be realized in delay systems

by replacing the time-invariant filter with a time-dependent digital filter, and we

describe in detail our opto-electronic implementation of such a network.

Chapter 5 presents a series of experimental results using our opto-electronic

delay network. We first study the dynamics of a single node and two bidirectionally-

coupled nodes. We then report a chimera in a five-node globally-coupled network,

confirming our predictions from Chapter 3 that chimeras should be present in larger

globally-coupled networks as well. We show how to extend the stability analysis

for symmetry clusters to synchronized clusters that are not symmetry clusters, and

we use our experimental network to verify these stability calculations. We then

report the first experimental confirmation of Asymmetry-Induced Synchronization

(AISync) of symmetry clusters, a counter-intuitive phenomenon in which the syn-

chronizability of a symmetry cluster can, in general, be improved by breaking the

cluster’s internal symmetry. Our experimental results, each interesting on their own,

combine to show the versatility of our new approach to realizing networks in the

lab.

Chapter 6 describes our work on the analysis of entropy sources for physical

random number generation. We explain the difference between pseudo-random num-

ber generators and physical random number generators, and we review the state of

the art in the evaluation of physical random number generators. We provide some

recommendations for how to improve the most-commonly used evaluation proce-

dures, including emphasizing the physical origins of the randomness and the role

that the measurement process plays in the extraction of entropy from a physical
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source. We present the Cohen-Procaccia estimate of the entropy rate h(ε,τ) as one

way to do this. In order to provide an illustration of our recommendations, we

apply the Cohen-Procaccia estimate as well as the entropy estimates from the 2016

NIST draft standards for physical random number generators to evaluate and com-

pare three common optical entropy sources: single photon time-of-arrival detection,

chaotic lasers, and amplified spontaneous emission.

Chapter 7 considers the impact of our work and poses some questions that

came up during our research that might be interesting to pursue in the future.
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Chapter 2: Opto-electronic oscillators

2.1 Overview

Chapters 3-5 of this thesis concern experiments on opto-electronic oscillators.

Our opto-electronic oscillators are fiber-based nonlinear feedback loops made of

standard telecommunications components; the combination of the nonlinearity and

time-delayed feedback allows the system to exhibit a wide variety of dynamical

behaviors. This chapter presents relevant historical, experimental, and modeling

background on opto-electronic oscillators. Much of the information in this chapter

was developed and presented in greater detail in prior Ph.D. theses, in particular

those of Yanne Chembo Kouomou [27] at Universitat de les Illes Balears, and Adam

Cohen [28], Bhargava Ravoori [29], and Caitlin Williams [30] at the University of

Maryland, College Park.

Section 2.2 presents some historical context surrounding time delayed systems

in general and opto-electronic oscillators in particular. Our experimental implemen-

tation of a single opto-electronic oscillator is described in Section 2.3. In Section 2.4

both continuous- and discrete-time models are developed and the variety of dynam-

ics that can be displayed by an opto-electronic oscillator are discussed. The idea of

coupling two (or more) oscillators with the intent of studying their synchronization
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properties is introduced in Section 2.5. The experimental details of our coupling

scheme are described in Section 2.5.1. A brief general theoretical description of net-

works of coupled oscillators followed by both continuous- and discrete-time models

of our network of four opto-electronic oscillators are presented in Section 2.5.2.

2.2 Background

2.2.1 Delay systems

Time delays often arise when the intrinsic dynamics of a system are fast enough

that the finite propagation velocity of signals must be taken into account. For

example, in a semiconductor laser with time delayed feedback through an external

mirror, the photon lifetime is significantly shorter than the feedback time, which can

cause the laser intensity to oscillate chaotically [31]. From an experimental point of

view, delay systems are particularly attractive for two reasons: 1) a small number

of variables (often only one) needs to be measured to obtain the full state of the

system and 2) the dimensionality of the dynamics often increases linearly with the

delay [32,33], which is typically easy to control. This is in contrast to, for example,

spatially extended systems, another type of high-dimensional system in which the

variable of interest must be measured in many different locations simultaneously.

The basic form of a delayed feedback system is depicted by the block diagram

in Fig. 2.1a. The output of a nonlinearity F (·) is amplified, filtered, and delayed

before being fed back as the input to the nonlinearity. Even if filtering is not

intentionally implemented, the bandwidth limitations of the system itself will cause
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some filtering. In many delay systems, the filtering can be modeled as a simple

low-pass filter:

τLẋ(t) + x(t) = F
(
x(t− τD)

)
, (2.1)

where x is the dynamical variable of interest, F (x) is a nonlinear function of x, τL

is the intrinsic time scale of the system, and τD is the time delay. Equation 2.1

has been used to model systems from many different areas of science [34], including

physiology [35], population dynamics [36], and laser physics [37]. Systems described

by Eq. 2.1 have been shown to display a wide variety of interesting behaviors,

including square waves [38, 39], new types of chaos (in the case that τD varies in

time) [40], and spatiotemporal phenomena [41].

Indeed, research over the last 25 years has shown that a wide variety of spatio-

temporal phenomena can be observed in temporal systems with a long delayed

feedback. The interpretation of dynamics in delayed systems as spatio-temporal

phenomena is enabled by the space-time representation, in which a spatial coordi-

nate is mapped into a temporal time-slot [18]. Some of the theoretically predicted

and experimentally observed spatio-temporal phenomena include defect-mediated

turbulence [42, 43], coarsening [44, 45], domain nucleation [46], spatial coherence

resonance [47], and phase transitions [48]. As mentioned previously, the ability to

study these spatio-temporal phenomena in a delay system is great benefit to experi-

mentalists because delay systems are often easier to measure and control. We pursue

the link between delay systems and spatio-temporal systems further in Chapter 4.
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Figure 2.1: Nonlinear delayed feedback system. (a) Block diagram of
a delay system. y(t) = βF (x(t − τD)) is the input to the linear filter
described by the impulse response h(t), and x(t) is the filter output.
(b) Experimental setup of an opto-electronic oscillator delayed feedback
system. The filtering is performed either by the component with the
narrowest bandwidth (usually the photodiode) or by a stand-alone filter
(not shown). The oscillator can be a discrete-time map (when powered
by a pulsed laser) or a continuous-time system (when powered by a CW
laser).
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2.2.2 Brief history of opto-electronic oscillators

The delay system under study for most of this thesis is the opto-electronic os-

cillator. The opto-electronic oscillator was originally studied in bulk optics [49] and

soon after implemented using standard telecommunications components [50]. These

systems have been found to be extremely rich in their dynamics, in part because they

can span an enormous range of time scales [27,51]. The fact that such an interesting

dynamical system can be created with cheap, commercially available components

makes the opto-electronic oscillator a particularly attractive system for experimen-

talists. Opto-electronic oscillators have been used to study chaotic breathers [52],

broadband chaos [53], network dynamics [23, 54–57], and the transition from noise

to chaos [58]. Additionally, opto-electronic oscillators are useful for a variety of ap-

plications, including the generation of high spectral purity microwaves [59], chaos

communications [60, 61], and reservoir computing [22, 62]. For a recent review of

opto-electronic oscillators, see Ref. [63].

An illustration of the type of opto-electronic oscillator studied here is shown

in Fig. 2.1b. Constant intensity light from a fiber-coupled CW laser passes through

an integrated electro-optic Mach-Zehnder intensity modulator, which provides the

nonlinearity F (x) = sin2(x+φ0). The quantity x(t) represents the normalized volt-

age applied to the intensity modulator, the function F (·) represents the normalized

optical power transmitted by the modulator, and φ0 is the normalized DC bias volt-

age. The time delay is implemented by an optical or electronic delay line. The

filtering is performed either by the photodiode (the component with the narrowest
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bandwidth) or a stand-alone analog [59] or digital [64] filter (not shown).

The original opto-electronic oscillators could be modeled by Eq. 2.1. How-

ever, in order to operate the oscillators at higher frequencies, high-speed microwave

amplifiers, which rarely go down to DC, were used. Novel dynamics that cannot be

explained by Eq. 2.1 were observed in these systems [20,52]. In order to model the

oscillator with band-pass filter (rather than a low pass filter), an integral term must

be added to Eq. 2.1:

τLẋ(t) +
(
1 +

τL
τH

)
x(t) +

1

τH

t∫

−∞

x(s)ds = βF
(
x(t− τD)

)
(2.2)

where τD is the time delay, τL = 1/2πfL is the low pass filter response time, and

τH = 1/2πfH is the high pass filter response time. By considering the limit τH →∞

(i.e., the case of a low pass instead of a band pass filter), the integral term vanishes

and Eq. 2.2 reduces to Eq. 2.1.

Alternatively, the system can be turned into a discrete-time map by pulsing

the laser at a repetition rate fr = N/τD [65]. In this case, the system can be modeled

as

x[k] = β
k∑

m=−∞

h[k −m]F (x[m−N ]) (2.3)

where x[k] is the height of the kth electrical pulse applied to the modulator, h is the

impulse response [66] of the filter sampled at the repetition rate fr. An equivalent

discrete-time system can be created by using a CW laser, digitally sampling the

electronic signal using an analog-to-digital converter (ADC) clocked at rate fr, and

driving the modulator with a digital-to-analog converter (DAC) clocked at fr, as
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is often done to implement a variable time delay via a digital delay line [64]. We

take this approach in Chapter 4. As the repetition rate fr → ∞, time becomes

continuous, the sum becomes a convolution integral, and we obtain

x(t) = h(t) ∗ βF (x(t− τD)) = β

∞∫

−∞

h(t− t′)F
(
x(t′ − τD)

)
dt′ (2.4)

= β

t∫

−∞

h(t− t′)F
(
x(t′ − τD)

)
dt′ (2.5)

where in the last step we use the property that h(t) is causal. Therefore, this

system allows for the study of the transition from discrete to continuous time in

chaotic systems [65,67].

The convolution integral Eq. 2.4 is a general model for a continuous-time single

variable delay system (including opto-electronic oscillators). Eqs. 2.1 and 2.2 are

special cases of Eq. 2.4 for specific filter impulse responses. This convolution integral

formalism is particularly useful when combined with the space-time interpretation of

delay systems [18] to realize networks of coupled maps from a single continuous-time

opto-electronic oscillator, as will be discussed in detail in Chapter 4.

2.3 Experimental implementation

In this section, we outline the details of the opto-electronic oscillators that were

used to perform the experiments that will be discussed in Chapter 3. This same

apparatus was used to perform the measurements in Refs. [54–57] and is described

in full detail (circuit diagrams, etc.) in Refs. [29, 30]. The main advantage of this

system over other opto-electronic oscillators is that the time delay and filtering are
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performed digitally; here this is done on a digital signal processing (DSP) board,

while in Chapters 4 and 5 we will use a field-programmable gate array (FPGA).

Both methods allow the time delay to be controlled digitally rather than by carefully

measuring and splicing delay lines made of optical fiber. This is especially useful for

our experiments in Chapter 3, where we perform extensive parameter sweeps of the

time delay. Similarly, having a digital filter allows us to experiment with different

kinds of filtering, which we do extensively in Chapters 4 and 5. Here, we use the

digital filtering to slow the system down to audio frequencies, which allows us to

use low-cost electronic components.

An illustration of the apparatus of a single opto-electronic oscillator is shown

in Fig. 2.2a. A 1550nm fiber-coupled distributed feedback laser diode (Bookham)

serves as the optical power source. The light passes through a Lucent 2623NA

electro-optic intensity modulator. In the modulator, the light is split into two arms,

each of which passes through a LiNO3 electro-optic crystal. The voltage applied

to the modulator creates an electric field, changing the index of refraction of the

crystals. The electric fields are in opposite directions, so that the resulting changes in

refractive index of the two arms are opposite in sign. When the two arms recombine

at the output of the modulator, there is interference between the two optical waves.

Therefore, the output of the modulator can be modeled as Pout = Pmax sin2(x(t)+φ0)

where Pmax is the maximum optical power through the modulator and (x(t) +φ0) is

the normalized voltage applied to the modulator. The normalized time-dependent

voltage is given by x(t) = πv(t)/2Vπ, where the half-wave voltage is given by Vπ =

3.4 V. The normalized DC bias φ0 is added to v(t) with an adder circuit.
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The light that passes through the modulator is detected by a photoreceiver

circuit, the diagram of which can be found in Ref. [30]. The circuit is a photodiode

(to convert the light to a photocurrent) followed by a transimpedance amplifier (to

convert the current to an amplified voltage) with a gain of 1000 V/A. This voltage is

read by the analog-to-digital converter (ADC) of the DSP board (Texas Instruments

TMS320C6713 TSK), time delayed and digitally filtered on the board. The digital

filter we use for the experiments in Chapter 3 is a first order Butterworth band-pass

filter with cut-on frequency fH = 100 Hz and cut-off frequency fL = 2.5 kHz. The

DSP sampling frequency is 24 kSamples per second. The filter output is turned into

a voltage by the DAC of the DSP board then amplified by an inverting amplifier

with a gain of Vout/Vin=-20. The output of this amplifier is the time-varying voltage

v(t) applied to the modulator, closing the feedback loop.

2.4 Modeling opto-electronic oscillators

In this section, we describe two models for the opto-electronic oscillator de-

scribed in Section 2.3: a continuous-time model and a discrete-time model. We

lump all the gains and losses into a single round-trip gain β that can be measured

experimentally with a network analyzer. Therefore, the input to the filter y(t) in

terms of the filter output x(t) is

y(t) = −β sin2
(
x(t− τD) + φ0

)
, (2.6)

where the minus sign comes from the fact that we use an inverting amplifier.

As mentioned in Section 2.2.2, Eq. 2.2 is a good model for opto-electronic
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Figure 2.3: Dynamical behavior of the opto-electronic oscillator. The
complexity of the oscillator dynamics generally increases with β. a)
Experimentally measured time series. b) Time series from numerical
simulations. Figure from Ref. [29].
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oscillators when there is band-pass filtering. Therefore, using the modulator’s non-

linearity F (x) = β sin2(x+ φ0), we have

τLẋ(t) +
(
1 +

τL
τH

)
x(t) +

1

τH

t∫

−∞

x(s)ds = −β sin2
(
x(t− τD) + φ0

)
. (2.7)

Because the integral can be cumbersome for both analytical and numerical

exploration of these systems, Eq. 2.7 is often written as

ẋ(t) = −(ωL + ωH)x(t)− ωLz(t)− ωLβ sin2
(
x(t− τD) + φ0

)
(2.8)

ż(t) = ωHx(t),

where ωH = 2πfH and ωL = 2πfL. Physically, x(t) is the normalized voltage

applied to the modulator and z(t) represents an unobserved filter state variable.

For a detailed analysis of Eq. 2.8, see Ref. [27]. Eq. 2.8 is sometimes written more

succinctly in filter notation as [64]

u̇(t) = Eu(t)− Fβ sin2(x(t) + φ0), (2.9)

x(t) = G
(
u(t− τD)

)
(2.10)

where

E =



−(ωL + ωH) −ωL

ωH 0


 , F =



ωL

0


 , and G =

[
1 0

]
.

Again, x is the normalized voltage applied to the modulator, and u(t) describes the

state of the filter.
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These continuous-time models do provide an accurate model of our opto-

electronic oscillators. However, because of the complex dynamics exhibited by these

systems, Eq. 2.8 typically needs to be solved numerically. Furthermore, because

we use a DSP board in our feedback loop, our opto-electronic oscillators are fun-

damentally discrete-time systems. Instead of discretizing Eq. 2.8 directly, we use

a discrete-time model taken directly from the discrete-time filter equations imple-

mented on the DSP board.

Our DSP board implements a first order (two-pole) Butterworth band-pass

filter:

x[n] = −a1x[n− 1]− a2x[n− 2] + b0y[n] + b1y[n− 1] + b2y[n− 2], (2.11)

where x[n] is the filter output at discrete time n and y[n] is the filter input at discrete

time n. The filter coefficients are given by an and bn and depend on the filter type,

the cut-on and cut-off frequencies, and the sampling rate. Simplifying Eq. 2.11

leads to the discrete-time model of our opto-electronic oscillator

x[n] = −a1x[n− 1]− a2x[n− 2] + b0(y[n]− y[n− 2]), (2.12)

where y[n] = −β sin2
(
x[n− kD] +φ0

)
(the discretized version of Eq. 2.6), where kD

is the number of digital filter time steps per time delay. This is the model we use

for the numerics in all of our direct simulations and stability calculations.

Comparison of experimentally measured and numerically computed time series

are shown in Fig. 2.3. The complexity of the dynamics generally increase with the

round trip gain β, from fixed point (not shown) to periodic dynamics and finally
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chaotic dynamics. The simulations agree well with the experiment, validating the

model.

2.5 Coupled opto-electronic oscillators and synchronization

Synchronization is a phenomenon in which two (or more) oscillating dynam-

ical systems adjust their rhythms due to an interaction (or “coupling”) between

them [14]. When thinking of synchronization, people often think of isochronal syn-

chronization, in which two (or more) oscillators exhibit exactly the same dynamical

behavior, at exactly the same time. Of course, due to the heterogeneities, time

delays, noise, and other imperfections inherent in experiments, we have to relax the

“exactly” and replace it with “approximately.”

Synchronization between periodic oscillators has been studied since Huygens’

observation of the anti-phase synchronization of pendulum clocks coupled through

the wall [68]. Synchronization of periodic oscillators is used every day in radio

communications, in which the receiver synchronizes with the transmitter. Once

it was understood how two periodic oscillators could synchronize, people began to

wonder how many (not necessarily identical) limit cycle oscillators could synchronize.

These questions were motived by, for example, the synchronized blinking of fireflies

in Thailand [69] and the synchronized beating of heart cells [70]. A magnificent

theoretical advance in this area came with the development of Kuramoto’s model

of weakly coupled limit cycle oscillators [71], through which Kuramoto was able to

show analytically that oscillators whose natural frequencies were not too different
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could all synchronize. The Kuramoto model has been so successful because it is

an analytically tractable model that displays a wide variety of complex dynamical

behaviors including complete [71,72] and partial synchronization [73,74] and phase

transitions [72].

However, many real world networks are not composed of weakly coupled

limit cycle oscillators. The synchronization of two chaotic oscillators was first

demonstrated in the 1980s and early 1990s by several different groups indepen-

dently [11–13,75–77]. Soon after, work began on global synchronization in networks

of coupled chaotic oscillators, culminating in the development of the master sta-

bility function approach [78], which theoretically solved the problem of the global

synchronization of networks of coupled identical oscillators by showing that the syn-

chronizability of a network of coupled oscillators depends on only the eigenvalues

of the network adjacency matrix (described in the next section) rather than on the

full details of the network topology.

Despite these theoretical advances, network experiments lagged behind be-

cause it is typically difficult and expensive to build many nonlinear oscillators that

have tunable parameters and can be coupled together in a reconfigurable manner.

Some of the first experimental networks were made with electronic circuits [79] and

free space lasers with optical coupling [80]; these were constrained to networks of

three oscillators.

Our system is an attractive solution for studying small networks of optoelec-

tronic oscillators. Our oscillators are made of low-cost, highly reliable standard

telecommunications components. All of the light is contained in fiber, which allows

24



us to avoid tedious optical alignments. And the DSP boards simplify the tuning of

parameters such as delay time, round trip gain, and coupling strength.

One of the great benefits of our opto-electronic oscillators is that, because

they are made of standard telecommunications components, they are low-cost and

relatively easy to build. Two (or more) of these oscillators can be built and allowed to

communicate with one another in order to experimentally study coupled dynamical

systems.

In this section, we first describe how we couple together up to four of our

opto-electronic oscillators in a network with arbitrary topology. Then we briefly

define the network adjacency matrix and present a model of our network of coupled

opto-electronic oscillators.

2.5.1 Experimental implementation

We have built four nominally identical opto-electronic oscillators as described

in Section 2.3. We couple them together optically as shown in Fig. 2.2b. The light

that passes through the intensity modulator is split using a 1×4 optical splitter. One

of these four signals is detected by the feedback photoreceiver and the other three are

sent out as coupling signals, one to each of the other three nodes. There is a variable

optical attenuator on the fiber containing each coupling signal, allowing for control

of the coupling strengths and topology. The coupling inputs from the other three

nodes are summed using an optical combiner and detected all at once by the coupling

photoreceiver (Note: the optical signals add incoherently because the differences
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in optical frequencies are much greater than the bandwidth of the photoreceiver).

Each DSP board thus receives two input electrical signals: one feedback signal and

one coupling signal. The feedback and coupling signals are delayed and filtered on

the DSP board. They are then combined on the DSP board, which also controls

the feedback and overall coupling strength. Finally, the combined signal is output

through the DAC, amplified, and applied to the modulator, as before. A photograph

of our experimental apparatus is shown in Fig. 2.4.

2.5.2 Modeling networks of coupled opto-electronic oscillators

In this section we will first formalize what we mean by networks of oscillators

using the concept of an adjacency matrix. We will discuss two different types of

coupling. Finally, we will present both continuous- and discrete-time models of our

network of opto-electronic oscillators.

The topology of a network of N coupled oscillators can be described by an

adjacency matrix. An adjacency matrix is an N ×N matrix Aij such that Aij = 1

if a signal from node j is coupled into node i; otherwise, Aij = 0. A weighted

adjacency matrix has elements Wij 6= 0 if a signal from node j is coupled into node

i; otherwise, Wij = 0. Often, the equations of motion of a network of coupled

oscillators can be written in the form

u̇i(t) = F(ui(t)) + σ
∑

j

AijH(uj(t)), (2.13)

where ui is a vector describing the state of the ith oscillator in the network, and σ
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Figure 2.4: Photograph of our 4-node network of opto-electronic oscillators.
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is the coupling strength.

In general, Eq. 2.13 does not permit a globally synchronized solution. Lapla-

cian coupling is often implemented to create a network that allows for the possibility

of global synchronization. The coupling is called Laplacian because the adjacency

matrix in Eq. 2.13 is replaced with a Laplacian matrix. In order to obtain the

Laplacian matrix from the corresponding adjacency matrix, one simply adjusts the

diagonal such that the sum along each row is zero (Note: this is actually a negative

Laplacian matrix, but we use it here for notational consistency with the adjacency

matrix). In other words, Lii = −∑j Aij, and Lij = Aij if i 6= j. For a Laplacian

network, the equations of motion are

u̇i(t) =F(ui(t)) + σ
∑

j

LijH(uj(t)) (2.14)

=F(ui(t)) + σ
∑

j

AijH(uj(t))−H(ui(t)) (2.15)

We say Laplacian coupling allows global synchronization because when all the

oscillators in the network are initialized with the same initial condition (ui = uj for

all i,j), the coupling term vanishes and so all the oscillators stay synchronized for

all time in the absence of any perturbations.

Our network of opto-electronic oscillators is capable of implementing either

adjacency matrix or Laplacian coupling because the DSP board is able to distinguish

between feedback and coupling signals. To implement adjacency matrix coupling,

the DSP board simply scales the coupling signal by σ and adds the result to the

feedback signal. Alternatively, to implement Laplacian coupling, the DSP board
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coresponding to the ith oscillator again scales the coupling signal by σ but also

scales the feedback signal by 1− nini ε, where nini is the number of input signals that

are combined to form the coupling signal (nini =
∑

j Aij).

In Chapter 3, we use the Laplacian-like coupling scheme depicted in Fig. 2.2b.

Our network of opto-electronic oscillators can be modeled in continuous time as

ẋi(t) =− (ωL + ωH)xi(t)− ωLzi(t)

− ωLβ
{
I
(
xi(t− τf )

)
+ σ

∑

j

Aij

(
I
(
xj(t− τc)

)
− I
(
xi(t− τf )

))}

(2.16)

żi(t) =ωHxi(t),

where the feedback delay τf and the coupling delay τc are not necessarily equal,

and I(x) = sin2(x + φ0) is the normalized light intensity that passes through the

modulator. We call this Laplacian-like because τf and τc are in general different,

so the coupling term does not cancel and the system does not necessarily admit a

globally synchronized solution (global synchronization is only possible in the case

that all row sums of the coupling matrix are equal). Only in the case that τf = τc

does Eq. 2.16 represent Laplacian coupling.

Because they are linear, we can commute the filtering, delay, amplification,

and coupling. Therefore we can also write this in the filter notation form of Eqs.

2.9 and 2.10

u̇i(t) = Eui(t)− Fβ sin2(xi(t) + φ0) (2.17)
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xi(t) = G
(
ui(t− τf ) + σ

∑

j

Aij
(
uj(t− τc)− ui(t− τf )

))
. (2.18)

Both of these are mathematically equivalent models of our opto-electronic oscillator

network; however, they represent different physical coupling schemes. Equation

2.16 represents optical coupling of the modulator output (which is how the coupling

is actually done), while Eqs. 2.17 and 2.18 represent electronic coupling of the

filter output [64]. We use the models interchangeably depending on which is most

mathematically convenient for the calculation that is being performed.

As mentioned above, for numerical simulations, we often use a discrete model

of our oscillators. The coupling is added to the discrete-time Eq. 2.12 as follows:

xi[n] = −a1xi[n− 1]− a2xi[n− 2]− βb0(ri[n]− ri[n− 2]) (2.19)

ri[n] = sin2
{
xi[n− kf ] + σ

∑

j

Aij
(
xj[n− kc]− xi[n− kf ]

)
+ φ0

}
, (2.20)

where kf and kc are the feedback and coupling delays in units of time steps.

These models have been tested and verified for use in modeling coupled opto-

electronic oscillators for applications in adaptive synchronization [81], prediction of

chaos [28], and network dynamics [54–56]. In Chapter 3, we use these models to

predict the stability of chimera states and patterns of cluster synchrony in our four

node network of opto-electronic oscillators. There, too, we find that the models

predictions are verified by our experimental measurements.
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Chapter 3: Patterns of synchrony in a 4 node globally coupled net-

work of optoelectronic oscillators

This section is based on work from the following publication:

Joseph D Hart, Kanika Bansal, Thomas E Murphy, & Rajarshi Roy. “Experimental

observation of chimera and cluster states in a minimal globally coupled network.”

Chaos, 26(9), 094801 (2015).

3.1 Overview

A “chimera state” is a dynamical pattern that occurs in a network of identi-

cal oscillators coupled in a homogeneous way when the symmetry of the oscillator

population is broken into synchronous and asynchronous parts. “Cluster synchrony”

occurs when a network can be divided into different sets of oscillators such that oscil-

lators in the same set are synchronized. In this chapter, we report the experimental

observation of chimera and cluster synchronous states in a network of four globally

coupled chaotic opto-electronic oscillators. This is the minimal network that can

support chimera states, and our study provides new insight into the fundamental

mechanisms underlying their formation. Cluster synchronization has thus far been
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studied independently of chimera states; however, we use a unified approach to de-

termine the stability of all the observed patterns of synchronization, highlighting

the close relationship between chimera and cluster states.

We obtain two important results: A) we provide a first experimental demon-

stration that chimeras can appear in small networks, contrary to the conventional

assumption that a large network with non-local coupling is necessary [82], and B)

we show that both cluster states and chimera states can be regarded as special

cases of the more general phenomenon of partial synchronization. Our methods

apply to networks of different size and topology, opening up potential applications

to chimeras and other patterns of synchronization in real world networks such as

power grids.

First, we provide a brief description of previous work on chimera states and

cluster synchronization in Sections 3.2.1 and 3.2.2, respectively. Section 3.3 describes

the theory of cluster synchronization, including when clusters can form (Section

3.3.1) and how to determine their linear stability (Section 3.3.2).

In Section 3.2.2 we show how these ideas can be applied to chimera states

in a network of four globally coupled opto-electronic oscillators with time delays

in the feedback and coupling. In particular, we show that chimera states emerge

from partial (or subgroup) symmetries in the network topology, and we calculate

their linear stability using the methods presented in Section 3.3, highlighting that

chimera and cluster states are closely related patterns of partial synchrony.

The results of our experiments and stability calculations are compared in Sec-

tion 3.5. We conclude with a discussion of the importance of multistability of par-

32



tially synchronous states for the existence of chimera states in Section 3.6.

3.2 Background

3.2.1 Chimera states

Since their original discovery [73,74], there has been a great deal of discussion

about the definition of chimera states and the conditions for their existence. One

definition is that a “chimera state” is a spatio-temporal pattern in which a system

of identical oscillators is split into coexisting regions of coherent (phase and fre-

quency locked) and incoherent (drifting) oscillation [82]. It was originally thought

that chimeras could exist only in large networks of non-locally coupled oscillators

and only from special initial conditions [82]. These assumptions were reflected in the

decade-long gap between their theoretical discovery [73] and the first experimental

realization of chimeras in a spatial light modulator feedback system [83] and chem-

ical oscillator system [84]. However, recent studies have shown that chimeras can

actually appear in a much wider variety of networks: chimeras have now been ob-

served experimentally in a mechanical system of metronomes [85], optical frequency

combs [86], electrochemical systems [87], Lorenz oscillators [88], and electronic and

opto-electronic delay systems [19,20,89]. This suggests that chimeras may exist more

widely than at first expected. Indeed, recent numerical and experimental work has

found chimeras in small networks [88, 90], from random initial conditions [91, 92],

and with global coupling [91,93–95]. Additionally, chimera-like states with one large

cluster and many small ones have long been observed in numerical simulations from
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random initial conditions [96] and for global coupling [97]. These are well beyond

the conditions initially assumed necessary for the existence of chimera states.

While chimeras can exist in many different systems, one common character-

istic seems to be that chimeras often appear in regions of multistability with other

synchronous patterns [20, 84, 85, 97, 98]. Recently, Böhm et al. proposed a network

of four globally coupled lasers in which chimera states can emerge from random

initial conditions and have linked the emergence of chimeras to a multistable region

of parameter space [99].

We find it useful to classify chimera states into two different classes. We call

one class “coherent chimeras” because the oscillators in the coherent region are

phase-locked but not perfectly synchronized. The chimeras originally discovered by

Kuramoto [73] are of this type. We call the second class “synchronized chimeras” be-

cause the coherent region consists of identically synchronized oscillators. While this

distinction is not often made in the literature, it is important here: The analytical

techniques we use work for only synchronized chimeras.

3.2.2 Patterns of synchronization

When we talk about “patterns of synchronization,” we mean a dynamical

state of a network of coupled oscillators in which some fraction of the oscillators

are synchronized. As used here, “patterns of synchronization” include global syn-

chronization of networks, cluster synchronization on networks, and chimera states.

“Cluster” is the term used to describe a set of nodes that synchronize. Global syn-
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chronization occurs when all nodes in a network synchronize identically (i.e., when

there is only one cluster). Cluster synchronization occurs when nodes within a clus-

ter synchronize with each other but not with nodes in other clusters. In this sense,

synchronized chimeras can be considered to be cluster synchronous states.

We are especially concerned with three questions related to patterns of syn-

chronization:

1. What sets of nodes can synchronize with each other? In other words, what

patterns of synchronization are permitted to exist by the equations of motion?

2. Given a pattern of synchronization that is permitted, does it synchronize?

And does it remain synchronized in the presence of small perturbations? This

is a question of the stability of the pattern of synchronization.

3. Given a stable cluster synchronous state, what do the dynamics look like?

How well do the clusters synchronize?

Global synchronization

Global synchronization is permitted by the equations of motion of a network (Eq.

2.13) when all nodes of the network have the same number of inputs (i.e., when the

sum of the entries in a row of the adjacency matrix is the same for each row). The

most common such network is a Laplacian network, in which the row sums are all

zero.

The problem of the stability of global synchronization in Laplacian networks

was solved by the development of the Master Stability Function [78]. The Master
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Stability Function determines the stability of global synchronization and depends

only on the eigenvalues of the Laplacian coupling matrix and the dynamics of a

single node. It is straightforward to extend the Master Stability Function to the

case when all row sums are equal but not zero [100]. The phenomenon of global

synchronization has been well studied in the literature (e.g., the review in Ref. [101])

and will not be discussed further here.

Cluster synchronization

The general phenomenon of cluster synchrony encompasses several partial synchrony

phenomena including group synchronization [55, 102] and remote synchronization

[103–105]. Cluster synchrony has been found in networks of chaotic oscillators [55,

102,106], of Kuramoto oscillators [104], and with time delay in the coupling [107]. All

of these studies of cluster synchronization focused on specific networks in which there

is obvious symmetry in the network structure or for particular oscillator dynamics

that invite cluster synchronization.

The appearance of cluster synchronization in such a variety of systems mo-

tivates the need for a general theory of cluster synchronization and its stability.

Section 3.3.1 will be dedicated to the theory of the formation of cluster synchroniza-

tion. The stability of cluster synchronization will be discussed in Section 3.3.2.

In the following, we consider only model independent cluster synchronization;

that is, patterns of synchronization that are allowed by the network architecture

independent of the individual node dynamics. While our discussions are equally valid

for networks of discrete-time oscillators, for simplicity we will consider continuous-
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time networks that can be modeled by Eq. 2.13.

3.3 Theory of cluster synchronization

3.3.1 Existence of synchronous clusters

The question of the existence of synchronous clusters was thoroughly inves-

tigated by the group of Ian Stewart and Martin Golubitsky using abstract math

techniques from the theory of symmetry groupoids [108, 109]. They showed that

the cluster states that are permitted by the network equation Eq. 2.13 can be re-

vealed by finding “equivalence relations that are balanced” (in graph theory, these

are sometimes called balanced colorings or equitable partitions). In other words, a

particular pattern of synchronization is allowed when all the nodes of each cluster

receive the same number of inputs from all other clusters.

Pecora et al. showed that many of the allowed patterns of cluster synchroniza-

tion can be revealed by an analysis of the symmetries of the network topology. This

method of identifying the allowed patterns of cluster synchronization is particularly

useful because it allows one to take advantage of extremely efficient algorithms from

computational group theory [110,111]; however, there are some equitable partitions

that are not revealed by a symmetry analysis [112]. Pecora et al. also showed that

the symmetry analysis was helpful in determining the stability of the symmetric

cluster synchronous states [113], as we will discuss in Section 3.3.2.

We now present a few definitions that will be useful for discussing cluster syn-

chronization. These definitions will be related to methods of partitioning a network
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of coupled oscillators into disjoint sets of nodes. Two methods of partitioning net-

works are especially useful for the study of cluster synchronization: orbital partitions

and equitable partitions.

Orbital partitions

An orbital partition is a partition of a network according to the orbits of its sym-

metry group. The permutation symmetries of a network are the set of relabelings

of network nodes that do not change the network topology and leave the equations

of motion invariant. These symmetry operations form a mathematical group. The

orbits of the symmetry group are the disjoint sets of nodes that are permuted among

one another by the symmetry operations. For example, consider the network in Fig.

3.1. Nodes 1, 2, and 3 can be permuted by rotations about node 0 (or by reflec-

tions); but no symmetry operation can permute node 0 with any of the other nodes.

Therefore, the orbits of this star network are {0} and {1,2,3}. This example was

taken from Ref. [114]. Through the rest of this thesis, we use the term “symmetry

cluster” to refer to a set of nodes in the orbital partition of a network. When we refer

to “the orbital partition,” we mean the coarsest of all possible orbital partitions.

Equitable partitions

An equitable partition is a partitioning of a network into disjoint sets of nodes such

that each node in a set has the same total input from each of the other sets. Stated

more precisely, in an equitable partition, any node xk in set Si has exactly Nij

inputs from nodes in set Sj for all j regardless of the choice of k. We use the term
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“input cluster” to refer to a set of nodes that forms a set of the equitable partition

of a network. When we refer to “the equitable partition,” we are talking about the

coarsest of all possible equitable partitions. A scalable algorithm for finding the

equitable partition of a network can be found in Ref. [115].

In order to illustrate the idea of an equitable partition, consider again the

network in Fig. 3.1a. All nodes are identical in this network; the color is used only

to identify which equitable partition set each node is in. Each of the yellow nodes

receives one input from the magenta node and no inputs from other yellow nodes.

Similarly, the magenta node receives inputs from all three of the yellow nodes and

no inputs from other magenta nodes.

All orbital partitions are equitable partitions, but not all equitable partitions

are orbital partitions [112]. When an equitable partition is not also an orbital

partition, more care must be taken when deriving the variational equations for

stability calculations. This case will be considered in detail in Section 5.5.

Relation to cluster synchronization

As stated previously, the clusters that are allowed to synchronize are given by the

equitable partitions [112]. It is easy to see why: Nodes in the same input cluster

have the exact same equations of motion when the entire network is in the cluster

synchronous state represented by the equitable partition. Therefore, if the network

is started in that cluster synchronous state, it will remain there in the absence of

any external perturbations.

This says nothing about the cluster state’s stability, which determines if the

40



dynamical state is robust to the small perturbations that will occur in any real-world

experiments. The symmetries – in particular, the irreducible representations (IRRs)

of the symmetry group – are essential for determining the stability of the clusters,

even if the clusters are not symmetry clusters. This will be discussed further in

Section 3.3.2.

3.3.2 Stability analysis for patterns of synchronization

In this section, we describe how to perform the stability analysis for orbital

clusters. It closely follows the procedure developed in Ref. [113]. The extension of

the stability analysis to input clusters is presented in Section 5.5.2.

The outline of the stability analysis is as follows:

1. Find the dynamical solution of the desired pattern of synchronization using

the equations of motion of the quotient network. This can be done by forcing

the equations of motion into the desired pattern of synchronization using a

“quotient network.”

2. Linearize about the cluster synchronous solution to obtain the variational

equations.

3. Change coordinates of the variational equations from the “node coordinate

space” to the “IRR coordinate space” associated with the cluster synchronous

state. This transformation separates out the cluster synchronization manifold

and the transverse directions, similar to what is done in the Master Stability

Function approach [78].
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4. Use standard numerical algorithms to calculate the Lyapunov exponents of the

transformed variational equations. The Lyapunov exponents corresponding

to the direction(s) transverse to a given synchronized cluster determine the

stability of that cluster.

Step 1: Quotient networks

The cluster synchronous solution is determined by forcing a desired pattern of syn-

chronization upon the equations of motion and then solving them, typically numer-

ically. One way of forcing a desired pattern of synchronization upon the equations

of motion is to use the concept of a quotient network.

Consider a pattern of cluster synchronization with M clusters. A quotient

network is a reduction of the full network into an M -node network, where the

connectivity between the M nodes in the quotient network corresponds to the inter-

cluster connectivity in the true network. The adjacency matrix Q that describes

the quotient network can be determined from the true network adjacency matrix A

according to

Qµν =
∑

j∈Sν

Aµj, (3.1)

where where µ labels the cluster and Sν is the set of nodes corresponding to the νth

cluster. The quotient network for the full network in the triplet-singlet cluster state

shown in Fig. 3.1a is shown in Fig. 3.1b. Once the quotient network is obtained,

the cluster synchronous solution can be determined by solving
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d

dt
sµ(t) = F(sµ(t)) + σ

∑

ν

QµνH(sν(t)), (3.2)

where µ labels the cluster and x
(s)
µ is the cluster synchronous solution of the µth

cluster. For the same full network, different patterns of synchronization will have

different quotient networks.

Step 2: Linearize about the cluster synchronous solution

In order to determine the stability of the cluster synchronous state calculated in

the previous step, we need to study the behavior of small perturbations away from

the synchronized trajectory. Consider an infinitesimally small perturbation δui to

each node in Eq. 2.13. In order to obtain the equation describing the behavior of

this perturbation, we make the change ui → ui + δui and linearize to obtain the

variational equation

d

dt
δui(t) = DF(sµi(t))δui(t) + σ

∑

j

AijDH(sνj(t))δuj(t), (3.3)

where sµi(t) is the cluster synchronous solution corresponding to the cluster µ to

which node i belongs. DF and DH are Jacobian functions.

Step 3: Transform to IRR coordinate space

Equation 3.3 describes how a small perturbation to a single node evolves in time.

However, we are not concerned with all perturbations; we are concerned with only

those perturbations that disturb the cluster synchrony. In other words, we need to

separate out the perturbations along the synchronization manifold (which do not
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affect the stability of cluster synchrony) from the perturbations transverse to the

synchronization manifold (the evolution of which determines the stability of cluster

synchronization). This is facilitated by changing coordinates from “node coordinate

space” to “IRR coordinate space,” where this separation is easily done.

The transformation matrix T for symmetry clusters can be calculated using

the irreducible representations (IRRs) of the symmetry group. A software imple-

mentation of the technique developed in Ref. [113] can be found in Ref. [116].

When we transform to the IRR coordinate space by performing the change

of variables δya =
∑

b Tabδub and then left matrix-multiplying both sides by T, we

obtain

d

dt
δya(t) = DF(sµa(t))δya + σ

∑

b

BabDH(sµb(t))δyb(t), (3.4)

where sµa(t) is the cluster synchronous solution corresponding to the cluster µ to

which node a belongs and B = TAT−1.

The rows of T can be arranged such that B is block diagonal. The block

diagonal form of B partially decouples the variational equations. For a pattern of

cluster synchronization with M clusters, if the first M rows of T are chosen so that

they correspond to perturbations along the synchronization manifold, B will have

an M ×M block in the upper-left corner that couples together the perturbations

along the synchronization manifold. This block is not used for stability calculations.

The remaining blocks are called transverse blocks, and the Lyapunov exponents

of Eq. 3.4 that correspond to those blocks determine the stability of the cluster
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synchronization: if all these transverse Lyapunov exponents are negative, the cluster

synchronous state is stable.

As an example, we return to the network in Fig. 3.1. The transformation

matrix T for this network is

T =




1 0 0 0

0 1 1 1

0 1 0 −1

0 1 −2 1




. (3.5)

The first two rows of T correspond to perturbations along the synchronization man-

ifold: the first row represents a perturbation of the magenta cluster, and the second

row represents a perturbation that affects of all nodes of the yellow cluster in ex-

actly the same way. These perturbations cannot disturb the triplet-singlet cluster

synchronization. The last two rows correspond to perturbations transverse to the

synchronization manifold; they represent different ways that the yellow cluster can

desynchronize.

The corresponding B is

B =




0 1 0 0

3 0 0 0

0 0 0 0

0 0 0 0




. (3.6)

B is block diagonal. The upper 2 × 2 block corresponds to the dynamics of

the variational equation (Eq. 3.4) in the synchronization manifold, which does not
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impact the stability of the cluster synchronization. The lower two rows have “1× 1

blocks” (with value 0) on the diagonal that represent perturbations transverse to

the synchronization manifold; the Lyapunov exponents of Eq. 3.15 corresponding

to these two rows determine the stability of cluster synchronization because they

determine the growth or decay rates of small perturbations that disturb the syn-

chronization of the yellow cluster.

The transformation to “IRR space” serves two purposes. Its main purpose is

to separate out the transverse perturbations (which matter for the stability analysis)

from the perturbations along the synchronization manifold (which do not matter for

the stability analysis). It also partially (in the four-node example given, fully) de-

couples the the transverse perturbations from each other, which make the Lyapunov

exponent calculations simpler.

Step 4: Calculate the maximal Lyapunov exponents

The Lyapunov exponents of the decoupled variational equations 3.4 determine the

stability of the cluster synchronous state for which they are calculated. We calculate

Lyapunov exponents using the standard QR-based algorithm [117].
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3.4 Partial synchronization in an small globally coupled opto-electronic

network

3.4.1 Allowed patterns of synchrony in a globally coupled network

As mentioned above, the orbits of the full permutation symmetry group of the

adjacency matrix make up the full symmetry clusters. The orbits of the subgroups

of the symmetry group determine the subgroup symmetry clusters that can emerge

via symmetry-breaking.

We now show that these ideas can be applied to chimeras in globally coupled

networks of identical oscillators. For a globally coupled network of N nodes, the

nodes are indistinguishable, so the group of permutation symmetries of the adjacency

matrix is the symmetric group SN (the group of all the permutations that can be

performed on N nodes). Since any node can be permuted with any other node, the

orbit of the symmetric group is all of the nodes, and the maximal symmetry case is

global synchrony. To understand the allowed partial symmetry cases, the subgroups

of the symmetry group must be considered. The orbits of the subgroups of SN are

such that any partition of the N oscillators is allowed to synchronize. In particular,

a chimera state (that is, a state of one large synchronized cluster of Ns oscillators

and N − Ns singlet “clusters”) is permitted by the equations of motion. Whether

these chimera states should be observable in practice is determined by the linear

stability analysis.
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3.4.2 Experiments

The apparatus used in this experiment is described in detail in Section 2.3.

The DSP board implements the filter described by Eq. 2.12 with a clock rate of 24

kHz. The digital filter coefficients used in Eq. 2.12 are given by a1 = −1.49617,

a2 = 0.50953, b0 = −b2 = 0.24524, and b1 = 0. Thus, the DSP implements a two-

pole Butterworth bandpass filter with a cut-on frequency of 100 Hz and a cut-off

frequency of 2.5 kHz. The opto-electronic oscillators are configured in a globally

coupled network, depicted in Fig. 3.2.

For each trial of the experiment, the nodes are initialized from noise by record-

ing the random electrical signal into the digital signal processing (DSP) board for 50

ms. Then feedback is turned on without coupling for 500 ms in order for transients

to die out. At the end of this period, the coupling is turned on for 1450 ms. We use

the last 400 ms of recording to determine which synchronous state is exhibited by

the network.

For a network of four globally coupled nodes, the five possible patterns of

synchrony are (Fig. 2): (a) the globally synchronized state, (b) the doublet-doublet

state, (c) the triplet-singlet state, (d) the doublet-singlet-singlet (DSS) state, and the

desynchronized state (not shown). We refer to doublet-doublet and triplet-singlet

as “cluster states” and DSS as a “chimera state.”

We observe all possible patterns of synchrony in the experiment, as shown in

Fig. 2(a-d), including chimera states that persist for many delay times and appear to

be stable. We find similar time series in simulations without noise. For realizations
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Figure 3.2: Sketch of our globally coupled network. Each node has a
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other node with coupling time delay τc.
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from different initial conditions, nodes appear in different clusters, confirming that

the partially synchronous patterns are not a result of parameter mismatch between

the oscillators. As far as we are aware, this is the first time a chimera state has

been experimentally observed in such a small network. In fact, this is the minimal

network of globally coupled oscillators that can support a chimera state [90, 99].

We call this the minimal chimera because we believe there should be at least two

oscillators in each region (the coherent region and the incoherent region). Others

have suggested that a three-node network in which two of the nodes are synchronized

should also be considered a chimera [118].

3.4.3 Stability analysis

While we perform the stability analysis for all possible patterns of synchro-

nization for the four node network described in Section 2.5.1 with global coupling,

we explicitly derive the variational equation for only the case of the chimera state

(doublet-singlet-singlet cluster state). The derivation of the other patterns of syn-

chrony were performed similarly.

The equations of motion of the chimera state are determined by enforcing the

quotient network upon Eq. 2.17:

d

dt
sµ(t) = Esµ(t)− Fβ sin2(x(s)

µ (t) + φ0) (3.7)

x(s)
µi

(t) = G

[(
1− σ

∑

ν

Qµν

)
sµ(t− τf ) + σ

∑

ν

Qµνsν(t− τc)
]
, (3.8)
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Figure 3.3: Experimentally observed patterns of synchrony. Illustra-
tion and typical experimental time series of all synchronous states for
a globally coupled network of four nodes: (a) global synchrony, (b)
doublet-doublet synchrony, (c) triplet-singlet synchrony, (d) doublet-
singlet-singlet synchrony (chimera). Nodes of the same color are part
of the same cluster. All measurements were performed with β = 3.8 and
φ0 = −π/4. This global state was observed with σ = 0.13 and τc = 1.8
ms, the doublet-doublet and triplet-singlet states with σ = 0.15 and and
τc = 1.8 ms, and the chimera state with σ = 0.13 and τc = 2.3 ms.
Numerical simulation of equations (2.9) and (2.10) gives similar time
series.
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where

Q =




1 1 1

2 0 1

2 1 0



. (3.9)

The first row of Q corresponds to the doublet cluster, and the other two rows

correspond to the two singlet clusters.

The variational equations are determined by considering the time evolution of

a small perturbation δu to the synchronous state and are given by

d

dt
δui(t) = Eδui(t) + Fβ sin(2x(s)

µi
(t) + 2φ0)δxi(t) (3.10)

δxi(t) = G

[
(1− 3σ)δui(t− τf ) + σ

∑

j

Aijδuj(t− τc)
]
, (3.11)

where xi(t) is the behavior of node i in the desired partially synchronous state and

we have used the fact that the network contains four globally coupled nodes.

In order to decouple the variational equations corresponding to perturbations

transverse to the synchronization manifold from those corresponding to perturba-

tions along the synchronization manifold, we now transform to the IRR coordinate

system. The transformation matrix for the (DSS) chimera state is

T =




1 1 0 0

0 0 1 0

0 0 0 1

1 −1 0 0




, (3.12)

where the three upper rows correspond to the synchronization manifold and the
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bottom row corresponds to the direction transverse to the synchronization manifold.

In order to determine the stability of the chimera state, we need to consider only

perturbations along directions transverse to the synchronization manifold. If we

define IRR basis vectors δvi(t) ≡ Tijδui(t), then δv4(t) is the only IRR basis vector

corresponding to perturbations transverse to the synchronization manifold. Thus in

the following we consider only δv⊥(t) ≡ δv4(t). Left-multiplying by T to transform

the variational equations to the IRR coordinate system, we obtain

d

dt
δv⊥(t) = Eδv⊥(t) + Fβ sin(2x

(s)
d (t) + 2φ0)δx⊥(t) (3.13)

δx⊥(t) = G
[
(1− 3σ)δv⊥(t− τf ) + σ

∑

j

Bij∆vj(t− τc)
]

(3.14)

where x
(s)
d (t) is the behavior of one node in the doublet cluster (computed

from Eqs. 3.7 and 3.8) and

B = TAT−1 =




1
√

2
√

2 0

√
2 0 1 0

√
2 1 0 0

0 0 0 −1




(3.15)

is the adjacency matrix transformed to the IRR coordinates. Explicitly performing

the sum in equation (3.14), we obtain

∆x⊥(t) = G
[
(1− 3σ)∆v⊥(t− τf )− σ∆v⊥(t− τc)

]
. (3.16)

To determine the stability, we calculated the largest Lyapunov exponent (LLE)

of equations (3.13) and (3.16), which indicates how infinitesimal perturbations trans-
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verse to the synchronization manifold grow or decay in time. If the LLE is negative,

perturbations decay exponentially to zero, indicating that the state is stable. For

our calculations we used discrete-time versions of the equations presented above,

which are more suitable for the experimental conditions. Calculations were aver-

aged over a period of at least 500,000 times larger than the coupling delay. A similar

procedure was followed to obtain the stability for the other patterns of synchrony.

The results of the stability calculations are presented in Section 3.5.1.

3.5 Results

3.5.1 Stability calculation results

In Fig. 3.4, we compare the results of experiments and stability calculations

in the parameter space of coupling strength (σ) and coupling delay (τc) for all

the patterns of synchrony that the system displays. Experiments were performed

by selecting regularly spaced points in the parameter space. A minimum of 20

experimental trials from different random initial conditions were performed for each

point in parameter space. In principle, one can experimentally observe any state in

the parameter space that theoretically shows stable solutions; however, in practice

it can be difficult to observe states with small basins of attraction. As discussed in

Ref. [119], the size of the basin of attraction is of great practical interest, and in

future work it may be interesting to investigate whether symmetries in the network

topology can help to shed light on so-called basin stability. For all four patterns of

synchrony, agreement between experimentally observed states and their calculated
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Figure 3.4: Comparison of experimental results and stability calcula-
tions. (a)-(d) Region of stability for different synchronous states. The
shaded regions are stable; that is, the LLE of the variational equations
is negative. The markers represent experimental results. Dots indicate
that the state has been observed in experiments; crosses indicate that
the state was not observed in experiments. At least 20 trials from dif-
ferent random initial conditions were performed for each experimental
data point. For both experiments and simulations, the round-trip gain
β = 3.8, the feedback time delay τf = 1.4 ms, and φ0 = −π/4.
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stability is quite good. However, it is not surprising that there is slight disagreement

near the boundary where the stability behavior is quite fragmented. This slight

disagreement can be attributed to the finite number of random initial conditions that

were used for the calculations and experiments, as well as slight mismatch between

the actual experimental parameters and the parameter values used in simulation

and stability calculations.

The procedure for stability calculations described in Section 3.4.3 can in prin-

ciple be used to determine the stability of partially synchronous states (clusters and

chimeras) in networks of any size. While our experiment is restricted to four nodes,

we have performed the same type of stability analysis for a chimera state in a 10-

node network consisting of one cluster of 5 and 5 singlet clusters and found that it

agrees with direct simulations of equations (2.9) and (2.10), as shown in Fig. 3.5.

3.5.2 Chimera states and multistability

Recently, the existence of chimeras has been theoretically associated with mul-

tistability in the system [99]. Our observations support this idea.

In Fig. 3.6 we show a direct connection between multistability and chimeras

in our network of four oscillators. From the stability calculations we identified

the regions where at least two of the globally synchronized, doublet-doublet, and

triplet-singlet states are stable. In Fig. 3.6a such regions are marked as multistable.

Calculated stable chimera solutions coincide well with these multistable regions. In

experiments, we also observe this multistability for the parameter values that exhibit
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chimera states, as shown in Fig. 3.6b.

In addition to the multistability between different partially synchronous pat-

terns, we also observe multistability within a single pattern. For example, while

the dynamics of the globally synchronized state in Fig. 3.3a appear chaotic, there

are other globally synchronized states which appear to be quasiperiodic. We do not

distinguish between different dynamical behaviors of the same partially synchronous

state; for example, in Fig. 3.4a if any of the possible dynamical realizations of global

synchrony is stable, we consider the globally synchronized pattern to be stable.

As discussed previously, partial synchronization patterns (doublet-doublet,

triplet-singlet, and (DSS) chimera states in this case) emerge from the partial (sub-

group) symmetries in the network [113, 114]. In systems like ours this can be pre-

dicted by a detailed inspection of all the subgroup symmetries of the network by

analyzing the adjacency matrix. Still, what mechanism breaks the maximal sym-

metry is an interesting question. For our particular system, it is the presence of

two different time delays in the system introduced by the mismatch between the

coupling delay and the feedback delay. When these two time delays exactly match

(the Laplacian coupling case), we observe only global synchrony. This observation

is consistent with previous work on these opto-electronic oscillator networks [55].

We understand that the dependence of the resulting synchronous state on

initial conditions leads to complicated fragmented regions of stability. As the ini-

tial conditions change, the high degree of multistability (both within a single syn-

chronous pattern as well as between different synchronous patterns) of parameter
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space allows different stable states (depending upon their basins of attraction) in-

cluding global synchrony and complete desynchrony. Thus, rather than observing

a smooth boundary between synchronized and desynchronized regions we observe

fragmented regions of stability, as can be seen in Figs. 3.4 and 3.6.

Hence, the multistability or the possibility of various partially synchronous

solutions in the system can be seen as a requirement for chimeras in any system,

but the physical mechanism that generates such multistability can be different for

different systems. It is well-known that time-delay in the coupling can induce mul-

tistability between synchronous states (e.g., the review in ref. [120]). This is the

case in our system, while in the laser system described in ref. [99], amplitude-phase

coupling induces the multistability necessary for the appearance of chimera states.

3.6 Discussion

Our results are fundamentally important in the context of chimeras. This is

a small system without any breaking of symmetry in the network topology, yet we

experimentally observe chimera states starting from random initial conditions. Our

system violates most of the conditions previously believed to be necessary for the

formation of chimera states: it is a small network, it is initialized from random

initial conditions, and it is globally coupled. Importantly, our stability calculations

show that the observed chimeras are not long transients but stable physical states

that persist in experiments.

The mechanism that allows the patterns of synchrony to form in our system
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is a general phenomenon called isolated desynchronization in which some clusters

separate out from the synchronized state without destroying the synchrony com-

pletely [113]. This is possible due to the partial (subgroup) symmetries of the

network. The subgroup structure guarantees that all the nodes in one cluster re-

ceive the same effective coupling signal from nodes in other clusters. Hence even if

one cluster is desynchronized, the others can remain in identical synchrony. For ex-

ample, in the case of our DSS chimera, each of the oscillators in the doublet cluster

receives the same total signal from the two desynchronized singlets, allowing them

to remain synchronized even though the two singlet oscillators behave incoherently.

The idea that the chimeras and clusters in our system arise from the same mecha-

nism of isolated desynchronization and that their stability can be calculated in the

same manner highlights the close relationship between chimera and cluster states

as partial synchronization patterns. We emphasize that the analysis we have pre-

sented here is not restricted to globally coupled networks of oscillators. The group

theoretical analysis and mechanism of isolated desynchronization extend to any net-

work with cluster states or synchronized chimera states, such as those found in the

non-locally coupled systems in refs. [84, 85,121] and the star network in ref. [88].

While in the simulations and stability analysis we consider identical oscil-

lators with identical coupling, some heterogeneity and noise are inevitable in ex-

periments. Despite the small heterogeneities in our experiment, we still observe

persistent chimera and cluster states, in agreement with the simulations and sta-

bility calculations. Determining the amount of heterogeneity for which the group

theoretical analysis and stability calculations remain valid is an important question
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that has recently been studied [122].

We have observed all possible patterns of synchrony, including a chimera state,

in our experimental network of four globally coupled chaotic opto-electronic oscilla-

tors. We used group theoretical methods recently developed for cluster synchrony

to calculate the linear stability of these states and found excellent agreement with

our experiments. These methods are quite general in that they extend to large net-

works and can be used to analyze the stability of any synchronized chimera state,

suggesting that such chimeras and cluster states are closely related. Our results

indicate that multistability of different synchronous patterns seems to be important

for the existence of stable chimera states and can be determined by analyzing the

symmetries of a given network topology; however, the mechanism that generates the

multistablility can be different in different systems. For our case we identify it to be

the breaking of the symmetry present in Laplacian coupling by having two different

time delays in the network.

We mentioned in Section 3.4.1 that these synchronized chimeras might be ob-

servable in globally coupled networks of any size, and we supported this by showing

in Section 3.5.1 that we calculate them to be stable in a 10-node model of our opto-

electronic network. However, our network of opto-electronic oscillators is limited

to small networks of four nodes or fewer. In principle, we could build additional

opto-electronic oscillators and couple them together, but this would be expensive

and difficult to manage (the 4-node network is already complex as shown in Fig.

2.4) as the number of fiber feedback and coupling links grows as N2 where N is the

number of nodes in the network. In order to study larger networks, we had to find a
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more suitable experimental system. This system is described in Chapter 4, and the

different network experiments we have performed using this apparatus (including

chimeras in a globally-coupled network of five nodes) are reported in Chapter 5.
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We are not going in circles, we are

going upwards. The path is a spiral; we

have already climbed many steps.

Siddhartha

Hermann Hesse

Chapter 4: Using a single nonlinear node with delayed feedback to

realize networks of coupled oscillators

This chapter is based on work from the following publications:

Joseph D Hart, Don C Schmadel, Thomas E Murphy, and Rajarshi
Roy. “Experiments with arbitrary networks in time-multiplexed delay
systems.” Chaos: 27(12), 121103 (2017).

Joseph D Hart, Laurent Larger, Thomas E Murphy, and Rajarshi Roy.
“Delayed Dynamical Systems: Networks, Chimeras and Reservoir Com-
puting.” arXiv preprint arXiv:1808.04596 (2018).

4.1 Overview

Our focus in this chapter is on the implementation of networks of truly iden-

tical coupled oscillators through the use of a single nonlinear delayed feedback sys-

tem. These networks can consist of a large number of nodes and have arbitrary
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topology. This is made possible through the same space-time representation that

enabled the observation of other spatio-temporal phenomena in delay systems. Orig-

inally invented for the implementation of neural networks for reservoir computing

in hardware [21, 22], this technique for implementing networks has subsequently

been adapted for basic research, such as the study of chimera states in ring net-

works [19, 20] and cluster synchronization in arbitrary networks [123, 124]. This

framework for implementing networks is particularly attractive because it allows for

experiments on large networks without building a large number of separate physical

oscillators and it allows for experiments on truly identical oscillators. We focus on

opto-electronic implementations, which are popular due to their speed, cost, and

ease of implementation; however, the techniques described are applicable to other

delay systems as well.

Section 4.2 describes some of the research that made possible the idea of view-

ing a single delay system as a network of connected nodes. In Section 4.2.1 we recall

the mathematical description from filter theory that employs a convolution integral

of the feedback signal with the impulse response that describes the bandwidth limi-

tations of the system. This description is less commonly used than, but equivalent,

to the delay differential equation formalism used in Chapters 2 and 3. This second

formalism, when viewed in the space-time representation, gives insight into how

networks of oscillators can be realized with a single nonlinear system with delayed

feedback. The space-time representation of delay systems is presented in Section

4.2.2. The space-time representation relies on the separation of time scales – fast

dynamics and a long delay – to parameterize time as a time-like integer number that
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counts the number of round-trip times and a continuous, space-like variable that de-

notes the position within each delay. This analogy between feedback systems with a

long time delay and spatio-temporal systems has allowed for a deeper understanding

of many complex phenomena observed in delay systems, including defect-mediated

turbulence [42, 43], coarsening [44, 45], domain nucleation [46], spatial coherence

resonance [47], phase transitions [48] and now, network dynamics.

Section 4.3 describes in detail how the space-time representation allows for

the implementation of networks of truly identical coupled oscillators using only a

single delayed feedback system. Traditional networks are spatially multiplexed: all

nodes are updated simultaneously in parallel depending on their previous states.

Delay feedback networks replace the spatial multiplexing of traditional networks

with temporal multiplexing, in which the single nonlinear element serially updates

the nodes, which are distributed across the delay line (interleaved in time). The

nodes are coupled together by the “inertia,” or non-instantaneous response time,

of the system, which can arise from the bandwidth limitations of the components.

When this filtering is time-invariant, the resulting network has cyclic symmetry.

The use of delay networks for hardware implementations of reservoir computers

is discussed in Section 4.3.1. Reservoir computing – alternatively echo state networks

[125] or nonlinear transient computing [62] – is a type of neural network in which

only the output connections are trained (the input and internal connections are

fixed). Reservoir computers are particularly attractive because they can be trained

by simple linear regression and because they are well-suited for implementation in

specialized hardware. Delay networks have proven to be particularly well-suited for
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reservoir computing.

Chimera states are an unexpected coexistence of spatial domains of coherence

and incoherence in a system of identical oscillators with symmetric coupling [73,74].

Chimera states were particularly difficult to observe in experiments because they

typically (but not always [23, 99, 126]) occur in large networks, which are difficult

to experimentally implement. Initially observed in 2012 [83,84] a decade after their

prediction, they were soon after observed in electronic [19] and opto-electronic [20]

delay systems, as presented in Section 4.3.2.

A recently developed technique that allows a network with any topology to be

implemented in a delay system is described in Section 4.4. This technique replaces

the time-invariant filters used in the original delay network implementations with

a time-dependent filter. The time-dependent filter, implemented digitally with a

field-programmable gate array (FPGA), extends the range of networks that can be

realized from only networks with rotational symmetry to networks with completely

arbitrary topology, including networks with time-varying topologies and adaptive

coupling schemes.
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4.2 Background

4.2.1 Filter impulse response description of delay dynamical systems

In Section 2.2.2, we stated that a general model of delayed feedback systems

is given by the convolution integral:

x(t) = h(t)∗βF (x(t−τD)) = β

∞∫

−∞

h(t−t′)F
(
x(t′−τD)

)
dt′ = β

t∫

−∞

h(t−t′)F
(
x(t′−τD)

)
dt′

(4.1)

where in the last step we use the property that h(t) is causal. In Eq. 4.1, x(t) is

the filter output, β is the round trip gain, and τD is the time delay. While this

formulation of the model is mathematically equivalent to the more commonly used

integro-differential equation given by Eq. 2.2, the convolution integral provides

insight that is essential to the interpretation of a single nonlinear delayed feedback

system as a network of truly identical coupled oscillators.

4.2.2 Space-time representation of delay systems

The space-time representation of delay systems was originally motivated by the

numerical treatment of delay differential equations [32]. The time variable is split

up into a continuous variable σ bounded between 0 and τD, and an independent

discrete variable n that counts the number of delays since the origin. Ikeda and

Matsumoto [127] were the first to consider σ to be a “spatial” variable in their

modeling of optical turbulence. The space-time representation was formalized and

first used on experimental data by Arecchi et al. in 1992 [18] in order to study long-
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time correlations on the order of one delay in a CO2 laser with delayed feedback.

Since then, the relationship between delay systems and spatio-temporal systems has

been investigated thoroughly [19,20,42,48], and in many cases, equivalence has been

rigorously established [43,128–130]. For a recent review, see Ref. [41].

The space-time representation of delay systems is particularly meaningful

when the delay τD is long compared to the time scale tc of the temporal dynamics of

the system, as measured by the width of the zeroth peak in the autocorrelation [41].

In this case, there is a separation of time scales, and so it is natural to parameterize

time as

t = nτD + σ, (4.2)

where n is an integer that counts the number of delay times since the origin, and σ is

a continuous variable between 0 and τD that gives the position along the delay. As a

result, n is often considered to be a discrete time and σ a continuous pseudo-spatial

variable. We note that tc is a property of the dynamics and therefore depends on β

and F (x) in addition to the time scales τL and τH in Eq. 2.2; in practice, however,

it is often the case that that tc ≈ τL [41].

When working with delay systems, one often obtains a long time series x(t)

such as the one shown in Fig. 4.1(a). It seems that there are (and indeed one expects

there to be) correlations on the order of one time delay τD. Plotting the time series

in the space-time representation in Fig. 4.1(b) shows long time correlations (on the

order of several τD) as spatial structures that evolve in discrete time.
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Figure 4.1: Illustration of the space-time representation. (a) Time series
of the delayed system in Eq. 2.2. (b) Space-time representation of the
time series shown in (a), where σ ∈ [0, τD]. (c) Autocorrelation of the
time series shown in (a) The distance to the first autocorrelation peak
is τD + δ. Here τD = 4 ms and δ = 250µs. Inset. Zoom in on central
autocorrelation peak. The width of this peak is tc. (d) Space-time
representation with drift correction (σ ∈ [0, τD + δ]). These figures were
made from a numerical simulation of Eq. 2.2 with β = −5, τL = 400 µs,
τH = 10 ms, τD = 4 ms, and F (x) = sin2(x(t) − π/4), which describes
the opto-electronic oscillator shown in Fig. 2.1b.
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While Fig. 4.1(b) does reveal long-time correlations as spatio-temporal struc-

tures, it is clear that as n increases the structures are drifting to the right in σ-space.

In other words, the long-time correlations occur over a time slightly larger than τD.

This can be seen by looking at the autocorrelation of the time series, shown in Fig.

4.1(c). The autocorrelation begins to increase near a lag of τD, but only reaches

its peak at τD + δ due to the non-instantaneous response time of the system [41].

Therefore δ is related to the widths of the zeroth autocorrelation peak tc as well as

the width of the first autocorrelation peak. Previous works have extensively studied

this drift and its relation to co-moving Lyapunov exponents [44,128].

The drift is a reflection of the fact that the system is causal. The delayed term

x(t − τD) cannot affect the dynamics before, or even at, the time t. Therefore, in

Fig. 4.1(d), we use

t = nT + σ (4.3)

to create space-time representations, where T = τD + δ is the recurrence time and

now σ ∈ [0, T ]. When the space-time representation is done in this way, the struc-

tures are stabilized in space (i.e., they have a nearly stationary average spatial

position). Indeed, it has been shown that this is often the correct moving frame in

which to view the spatio-temporal behavior of time-delayed systems [41].
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4.3 A single delay system as a ring network

Recently, the space-time representation has been used to interpret a single

nonlinear node with delayed feedback as a network of coupled oscillators. These

experiments replace the spatial multiplexing of a traditional network (in which all

nodes are updated simultaneously in parallel) with time multiplexing, in which the

single nonlinear element serially updates each of the nodes, which are distributed

across the delay line. There are two major benefits to this network implementation:

this is the only way to create a network of truly identical nodes, and it allows

one to implement a large network without building a large number of separate

physical nodes. While originally used for a hardware implementation of reservoir

computing [21, 22, 62, 131–133], these types of delay systems have since been used

to study chimera states in cyclic networks [19, 20] and cluster synchronization in

arbitrary networks [123,124].

Because delay systems require a continuous function to describe their initial

conditions, they are considered infinite dimensional systems. However, it was noticed

early on that chaotic attractors of delay systems have finite dimension in practice

[32]. In trying to explain this finite dimensionality, Le Berre et al. conjectured

that the dimension of the attractor is equal to τD/tc, where tc is the width of the

zeroth peak of the autocorrelation of the chaotic time series [33]. In other words,

in practice, only τD/tc values are needed to specify a point on the attractor [134].

Even more, it was suggested that a delay can be thought of as a set of τD/tc roughly

independent time slots, such that the kth time slot in one delay is correlated with
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only the kth time slot in the following delay, as confirmed by the secondary peaks in

the autocorrelation function (e.g. Fig. 4.1c). If each of these independent time slots

is considered to be a “node,” one can think of the delay system as consisting of a

set of τD/tc independent, discrete time nonlinear systems. Clearly, this reasoning is

similar to the reasoning that led to the development of the space-time representation

and is particularly useful in the same types of situations, i.e., when τD � tc.

Networks in a discrete-time delay system

Temporal discretization arises naturally in many experimental implementations of

delay systems. The electro-optic feedback system with a pulsed laser described in

Section 2.2.2 is one such example [65,67]. Further, many experimental delay systems

implement the delay line with a digital shift register because of the ability to easily

vary the delay [20, 21, 23, 56, 62, 64, 123]. In these implementations, the digital shift

register discretizes time into steps of size ∆t = τD/N , where N is an integer. These

digital shift registers apply a constant feedback for one time step ∆t, then sample

the system at the end of the time step. Because of the discretization, the use of

the co-moving frame T = τD + δ discussed in Section 4.2.2 is not always necessary,

and we can simply use a discretized version of original space-time representation

Eq. 4.2.

In order to reveal the link between these systems and networks, we explicitly

discretize time into time steps of length ∆t, and we call each time slot a network

node. If ∆t is chosen to be slightly less than tc, the nodes (which span an interval

∆t) are no longer roughly independent, but are now coupled through the “inertia”
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due to the non-instantaneous response time of the system to which delayed feedback

is applied. This non-instantaneous response time can be described by a filter impulse

response. In this way we have a network of coupled nodes, where the strength and

topology of the coupling are determined by the shape of the filter impulse response.

The temporal discretization ∆t is chosen depending on the application, and can

have an important impact on the dynamics and coupling, as we discuss at the end

of this section.

In order to show explicitly how the network structure arises in these cases, we

consider the discretized space-time representation

k = nN + i, (4.4)

where k is the original discrete time, n is an integer that counts the number of delays

that have passed, N = τD/∆t is the number of time steps in a delay, and i is the

discrete spatial variable. In our network interpretation, n will be the network time

and i will be the node index. We impose this discrete space-time representation

(Eq. 4.4) upon the discrete time delayed Eq. 2.3:

xi[n] = β
nN+i∑

m=−∞

h[nN + i−m]F (x[m−N ]), (4.5)

where N = τD/∆t is the number of nodes in the network, n is the network time,

and i is the node index. We can then split up this summation as follows:
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xi[n] = Si[n] + Ci[n] (4.6)

Si[n] = β

(n−1)N+i∑

m=−∞

h[nN + i−m]F (x[m−N ]) (4.7)

Ci[n] = β
nN+i∑

m=(n−1)N+i+1

h[nN + i−m]F (x[m−N ]). (4.8)

Further insight into the meaning of Si[n] can be provided by a concrete ex-

ample. For concreteness we consider a single-pole low pass filter described by

h(t) = τ−1
L e−t/τLu(t), where u(t) is the Heaviside step function, as depicted in Fig.

4.2a. In this case Eq. 4.7 becomes

Si[n] = βe−τD/τLxi[n− 1]. (4.9)

Eq. 4.9 shows that Si[n] is a self-feedback term with a weight wh that depends on

the form of h(t). In general when the delay is long relative to the filter time scales,

wh → 0, as is clear from Eq. 4.9 for the particular case of a low pass filter where

wh = e−τD/τL .

In order to interpret Ci[n], we perform a simple change of variables p = m−nN

in Eq. 4.8 to obtain

Ci[n] = β
i∑

p=i+1−N

h[i− p]F (xp[n− 1]). (4.10)

Therefore Ci[n] is a coupling term: the summation “couples” the values of

xp[n− 1] (weighted by h) to the value of xi[n− 1] to determine xi[n].

Equation 4.6 along with Eqs. 4.9 and 4.10 now resembles a network equation:

75



h(t)

time

0

0 τL τH

h(t)

time
0 τL

(a)

(b)

0

Figure 4.2: Impulse response for (a) single-pole low pass filter and (b)
two-pole band pass filter. The poles are real in both cases.
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Figure 4.3: Illustration of the coupling term in the space-time represen-
tation of delay systems (second term in Eq. 4.6) (a) when τD ≈ τL and
(b) when τD � τL when the coupling is implemented by a band pass
filter. The coloring indicates the strength of the coupling h[k] from the
shaded nodes (xp[n− 1]) to the node represented by the black rectangle
(xi[n]). Red shading represents positive coupling, blue negative coupling,
and white no coupling. In (a), the coupling spans two full time steps
(n−1 and n−2), and so this should not be considered a network. In (b),
however, the coupling is significant over only a small range (from p− k∆

to p) and so for almost all nodes i the coupling comes from nodes only
at time step n− 1. Therefore, this can be considered to be a network.
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each node i is coupled to all the other nodes through the coupling weights h. How-

ever, this should not yet be considered a network. We recall that the superscript on

x denotes a node index and must be in the range [0,N-1]; however, in Eq. 4.10 p runs

from i+ 1−N to i, which can include negative values. Physically, this means that

the coupling summation runs over some x values at time n− 2 in addition to those

from time n− 1. This is illustrated in Fig. 4.3a, where the black rectangle denotes

xi[n] and the shaded region denotes the x values that are coupled to xi[n − 1] by

Ci[n] to determine xi[n].

In cases where the delay τD = N∆t is long (relative to the filter time scales),

the filter impulse response is significant for only a small range, from i − k∆ to i,

where k∆ � N is a small number of time steps (determined by the form of h[k])

above which h[k∆] is negligible. For long delays, we can approximate Eq. 4.6 as

xi[n] = whxi[n− 1] + β
i∑

p=i−k∆

h[i− p]F (xp[n− 1]), (4.11)

where the superscript denotes the node number and the number in square brackets

denotes the discrete network time.

Equation 4.11 is now an exact correspondence with the standard network

equation

xi[n] = G(xi[n− 1]) +
N∑

j=1

AijF (xj[n− 1]), (4.12)

where G(x) is a function that describes the self-feedback and Aij is the weighted

network adjacency matrix. By comparing Eqs. 4.11 and 4.12, G(x)=whx. The filter

impulse response h(t) is the equivalent of the adjacency matrix; it determines the

78



j

i

0
0 N-1

N-1

0

coupling strength h 

j

i

0
0 N-1

N-1

0

coupling strength h 
(a)

(b)

Figure 4.4: Illustration of the adjacency matrices for (a) low pass filter
and (b) band pass filter. The adjacency matrix is cyclically symmetric
due to the time invariance of the filter.
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strength and topology of the coupling.

For concreteness in demonstration, we now present the adjacency matrices

induced by two simple but common impulse responses: the low pass filter and the

band pass filter. The single pole low pass filter response is given by [66]

hLP (t) = τ−1
L e−t/τLu(t), (4.13)

where τL is the filter time constant, and u(t) is the Heaviside step function. This

is the impulse response that one would use, for example, when solving the Ikeda

equation, Eq. 2.1. The adjacency matrix that corresponds with this low pass filter

is given by

ALPij = β
∆t

τL





e−(i−j)∆t/τL if 0 ≤ i− j ≤ kR

0 otherwise

. (4.14)

A depiction of this adjacency matrix is shown in Fig. 4.4a. We note that all

couplings are positive and that the network is a directed ring. Another common

type of filtering is the two-pole band pass filter, which has impulse response [66]

hBP (t) =
1
τL
e−t/τL − 1

τH
e−t/τH

1− τL/τH
u(t), (4.15)

where τH is the high pass filter time constant and τL is again the low pass filter time

constant, depicted in Fig. 4.2a. This impulse response corresponds to the filtering

in Eq. 2.2. The corresponding adjacency matrix is
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ABPij = β
∆t

1− τL/τH





τ−1
L e−(i−j)∆t/τL − τ−1

H e−(i−j)∆t/τH if 0 ≤ i− j ≤ kR

0 otherwise

. (4.16)

A depiction of this adjacency matrix is shown in Fig. 4.4b. We note that the network

is again a directed ring; however some of the couplings are now negative. Time-

invariant filters, such as the two discussed above, will lead to ring networks, and the

ring is directed due to causality. However, networks with arbitrary topologies can

be created by the introduction of a time dependent filter, as we discuss in Section

4.4.

Here we make a note about the design of these network experiments and the

choice of ∆t relative to the time scales τL and τD. If ∆t < τL, the (time invariant)

filter impulse response will couple the nodes in a cyclically symmetric adjacency

matrix, with the coupling radius and coupling strength determined by the form of

the impulse response. If ∆t� τL, no coupling will be induced by the filtering, and

the system will consist of completely independent but identical nodes. Further, the

quantity τD/τL should be large for the network interpretation to hold in general. If

τD/τL is not large, then for a significant fraction of nodes the Ci[n] includes terms

from both time n− 1 and time n− 2 as shown in Fig. 4.3a. The fraction of nodes

for which this is the case tends to zero as τD/τL →∞.

Extension to continuous-time delay systems

Networks can also be realized using the space-time representation in the case of fully

analog delay lines, such as those that rely on the finite propagation speed of light.
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Such a system can also be well-approximated by the discrete time systems discussed

in Section 4.3 by taking the limit that ∆t/τD → 0 [19,20]. In these situations, time

is continuous, so we return to the space-time representation given by Eq. 4.3. This

allows us to think of a continuum of nodes that are labeled by their position σ and

evolve in discrete time n.

The realization of a network follows very much along the lines of Section 4.3,

but in continuous time rather than discrete. Therefore, the summations will be

replaced by integrals, and we will have to account for the drift δ in the space-time

representation. What follows is an elaboration of the presentation contained in

Ref. [20]. First, we note that the solution to Eq. 2.2 is given by the convolution of

the filter input v(t) = F (x(t− τD)) with the filter impulse response h(t):

x(t) = h(t) ∗ F (x(t− τD)) =

t∫

−∞

h(t− t′)F
(
x(t′ − τD)

)
dt′. (4.17)

For systems with linear filters such as the low pass filter described by Eq. 2.1 or the

band pass filter described by Eq. 2.2, the form of h(t) can be found analytically.

We now analyze this solution from the perspective of the space-time repre-

sentation by setting t = nT + σ where n is an integer that counts the number of

drift-corrected delays T = τD + δ that have passed since the origin, and σ ∈ [0, T ] is

the node’s position in pseudo-space. Re-writing Eq. 4.1 with this change of variables

results in

xσ[n] =

nT+σ∫

−∞

h(nT + σ − t′)F
(
x(t′ − τD)

)
dt′. (4.18)

82



We can then separate the integral into two domains as follows:

xσ[n] = Sσ[n] + Cσ[n] (4.19)

Sσ[n] =

(n−1)T+σ∫

−∞

h(nT + σ − t′)F
(
x(t′ − τD)

)
dt′ (4.20)

Cσ[n] =

nT+σ∫

(n−1)T+σ

h(nT + σ − t′)F
(
x(t′ − τD)

)
dt′. (4.21)

Further insight into the meaning of Sσ[n] can be provided by a concrete ex-

ample, so that we can evaluate the integral. Here we consider the simplest filter, a

single pole low pass filter described by h(t) = τ−1
L e−t/τLu(t) (Eq. 4.13). In this case

Eq. 4.20 becomes

Sσ[n] = e−T/τLxσ[n− 1]. (4.22)

The meaning of Sσ[n] is now clear: it is a self-feedback term (from the state x at

the spatial position σ at discrete time n− 1 to the state at the spatial position σ at

discrete time n) with a strength determined by the form of h(t).

In order to interpret Cσ[n], we make a change of variables t′′ = t′ + δ − nT :

Cσ[n] =

σ+δ∫

σ−τD

h(σ + δ − t′′)F
(
xt′′ [n− 1]

)
dt′′. (4.23)

Therefore Cσ[n] is a coupling term: the integral “couples” the values of xt′′ [n − 1]

to the value of xσ[n− 1] to determine xσ[n].

When the delay τD is long (relative to the filter time scale), the filter impulse

response is significant for only a small range, from σ −∆ to σ + δ, where ∆ � τD

is a short time (determined by the form of h(t)) above which h(t) is negligible. For

long delays, we can approximate Eq. 4.23 as
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Cσ[n] ≈
σ+δ∫

σ−∆

h(σ + δ − t′′)F
(
xt′′ [n− 1]

)
dt′′. (4.24)

Eqs. 4.23 and 4.24 reveal the network structure that results from viewing the

system with long delay through the space-time representation. The system can be

interpreted as a continuum of discrete-time nodes whose position (node index) is

given by σ. Each node is coupled to its neighbors within a distance ∆ on the left

and δ on the right through the system’s impulse response h(t), as shown in Fig. 4.3.

Importantly, the coupling term in Eq. 4.24 includes only nodes from time step n−1

for almost all nodes σ since ∆ � τD. Indeed, in the limit τL/τD → 0, the fraction

of nodes whose input coupling spans two time steps vanishes. It is clear from Eq.

4.24 that h(t) determines both the coupling strength and the coupling width. The

particular form of h(t) plays a crucial role in the types of dynamics that the system

can exhibit.

4.3.1 Applications to reservoir computing

Acknowledgment: Laurent Larger performed the experiments and contributed

the figures and much of the text for Section 4.3.1.

Reservoir computing is a recently proposed brain-inspired processing tech-

nique, corresponding to a simplified version of conventional recurrent neural network

(RNN) concepts. It was independently proposed in the machine learning commu-

nity under the naming Echo State Network (ESN) [135] and in the brain cognitive

research community as Liquid State Machine [136]. It was later unified with the

84



now adopted name, Reservoir Computing (RC) [137,138]. The generic architecture

of a RC system is thus rather conventional (see Fig. 4.5), consisting of:

• An input layer aimed at expanding the input information to be RC-processed

onto each node of the RNN;

• An internal network having a recurrent connectivity thus potentially possess-

ing a complex internal dynamics depending on the spectral radius of its con-

nectivity matrix;

• And an output layer intended to extract the computed result from the global

observation of the network response, typically performing a linear combination

of the different internal state variables of the network.

The most important difference of RC compared to conventional RNN consists

in the restriction of the learning process (i.e. finding the optimal synaptic weights

for the nodes and layer connectivity) to the output layer only. The input layer

and the internal network connecting weights are usually set at random and remain

fixed during training and operation. This is a linear regression problem, making the

learning phase of RC computationally efficient compared to traditional multi-layer

neural networks, which typically require gradient descent algorithms for training

[135]. In many situations, the effective computational power of RC has been found

comparable, or in some cases even better than, their standard RNN counterpart.

One major technological challenge of neuromorphic computing is designing a

physical hardware that implements its specific concepts, instead of translating them
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xi[n]
xi[n]

ui[n]

Figure 4.5: Graphical comparison between two reservoir computing im-
plementations: A classical RNN architecture (left), and a delay dynamics
based reservoir.
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into algorithms to be programmed in standard, however structurally unmatched,

digital processors. The generally recognized poor energy efficiency of artificial intel-

ligence (AI) is related to the fact that neuromorphic computing concepts have to be

adapted into Turing von Neumann machines, whose architecture and principles of

operation are very far from what we have learned from the brain. Up to now, there

is essentially no other easily available and dedicated computing platform capable of

efficiently running artificial intelligence techniques. Turing von Neumann machines

are practically the only effectively working solution today for investigating AI.

An essential problem when one wants to design a dedicated hardware im-

plementation of neural network processing concepts is the difficulty to physically

fabricate a well controlled three dimensional dynamical network, as nature easily

does with any brain. Based on the assumption that what matter are the dynamical

complexity and the high phase space dimension, but not the internal structure itself

of the reservoir network, the EU project PHOCUS (PHOtonic liquid state machine

based on delay CoUpled Systems) started in 2010 with the objective to demonstrate

the RC implementation suitability of nonlinear delay dynamics. Delay dynamics

have thus been proposed as a way to replace a neural network architecture in the

implementation of the RC concepts, with a first successful demonstration through

an electronic delay system mimicking the Mackey-Glass dynamics [21]. To do so,

extensive use of the space-time analogy of delay dynamics was made in order to

properly adapt the RC processing rules previously used in networks of dynamical

nodes (and effectively always programmed or simulated with digital processors).

Figure 4.5 shows on the left a standard network-based RC processing (ESN),
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whereas the right figure displays its analogue based on nonlinear delayed feedback

dynamics for the reservoir. The experimental setup first proposed for photonic RC

is precisely the one depicted in Fig.2.1b, in which an external signal is superimposed

at the rf input port of the Mach-Zehnder.

Input layer

The input information in standard RNN is expanded into the network according

to spatial multiplexing: The coordinates of the original input vector v[n] ∈ RQ

is expanded through the multiplication with the input connectivity matrix W I ∈

RN × RQ. Each node i = 0...N − 1 of the network is thus receiving an input signal

ui[n]:

ui[n] =

Q∑

q=1

wIiq vq[n] (4.25)

When one is making use of a delay dynamics instead of network of nodes, time

division multiplexing is naturally adopted to address the virtual nodes i distributed

in time all along the recurrence time T . The required temporal waveform which will

need to be injected into the delay dynamics, reads as follows:

u(t) =
N−1∑

i=0

[
Q∑

q=1

wIiq vq[n]

]
p∆t(t− nT − i∆t), (4.26)

where p∆t(t) is a staircase function with p∆t(t) = 1 from time t = 0 to t = ∆t and

zero otherwise. The duration ∆t is the sampling period, or differently speaking, also

the temporal spacing between two virtual nodes in the recurrence time interval T .
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The scalar signal u(t) is practically programmed in an arbitrary waveform generator,

it has the shape of a piecewise constant signal for each sample i = 0...N − 1 of each

time slot of duration ∆t. When dividing u(t) into sequences of N samples, and

stacking horizontally these vectors of length N for each consecutive discrete time n,

one obtains the space-time representation of the input signal, as depicted in Fig.4.1c.

Reservoir layer

A transient dynamic is then triggered in the reservoir due to the injection of the

information signal u(i)[n] or u(t). For the ESN, this transient is ruled by the following

discrete time update rule, from time (n− 1) to time n:

xi[n] = F

[
N∑

j=1

wRij xj[n− 1] + ρ · ui[n]

]
, (4.27)

where WR ∈ RN ×RN is the internal connectivity matrix of the reservoir. F [·] is a

nonlinear function (usually a sigmod, e.g. a hyperbolic tangent, in classical ESN),

and ρ is a scaling factor weighting the input signal defined in Eq. 4.25.

In the case of a delay reservoir, the update rule is similar to Eq. 4.1, except the

delay dynamics is now non-autonomous. The input waveform defined in Eq. 4.26 is

superposed on to the delayed feedback. It is thus contributing directly to a nonlinear

transient in the delay dynamics phase space, with a contributing weight ρ:

x(t) = h(t) ∗F (x(t− τD) + ρ · u(t)) =

t∫

−∞

h(t− t′)F
[
x(t′− τD) + ρ · u(t)

]
dt′. (4.28)

The delay reservoir, unlike the discrete time ESN, is continuous in time. The defini-

tion of virtual spatial nodes, and their discretization, is experimentally introduced
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through the sampling period ∆t from Eq. 4.26. The adjacency matrices represented

in Figs. 4.4a and 4.4b then correspond to the internal connectivity matrix WR used

for the ESN.

The time scale ∆t is very important, as it has to be properly tuned with respect

to the internal short time τL of the delay dynamics. Optimal processing efficiency

of the delay reservoir is empirically found for ∆t ' τL/5 [21]. This highlights a

compromise between:

• ∆t should not be too short, otherwise adjacent nodes will display nearly iden-

tical dynamics because they are too strongly coupled through the delay dy-

namics inertia (the reservoir response to the input data would also be too

small in amplitude, since it would be strongly filtered; this has detrimental

signal-to-noise ratio impacts in the RC processing);

• the adjacent nodes could be too decoupled when ∆t is too large; If they would

be too far one from each other, they would allow each stepwise transition of the

input information to reach an asymptotic state independently of the farther

past.

Output layer

The last processing operation in RC concerns the read-out layer, consisting of a

linear combination of the reservoir internal states xi[n]. This step aims to provide

the expected computational result. The read-out operation generates an output

vector y[n] ∈ RM , which is a linear superposition of the internal states:
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ym[n] =
N−1∑

i=0

wOmi xi[n]. (4.29)

The same equation holds in the case of a delay reservoir, where however the node

state xi[n] corresponds to the extraction of a virtual node state in the delay reservoir,

through the sampling of x(t). The signal defined by Eq. 4.28, is sampled to provide

x(tk), with tk = k ·∆t, k being defined as in Eq. 4.4.

The coefficients of the linear combination (i.e. the elements wOmi of the read-

out matrix WO ∈ RM × RN) are determined by a learning task. In the case of

supervised learning, one simply applies a ridge regression to an ill-posed problem

for a set of known data couples, {(reservoir response l = Al, target read-out l =

B̃l), l = 1...L}. This corresponds to a training set of L couples of temporal data

(evolution of the discrete time n), each having a duration Nl. Al ∈ RN × RNl

is thus the concatenation of the reservoir state vector {xi[n] | i = 0...N − 1, n =

1...Nl}, and B̃l ∈ RM ×RNl is the same concatenation for the corresponding target

vectors ỹ[n]. The learning requires one to consider all reservoir responses Al for

the different elements of the training set, which are gathered into a matrix A (of

dimension N × (
∑
Nl)). The RC outputs WOA are expected to provide the correct

corresponding answers B̃ (of dimension M × (
∑
Nl), where B̃ is the concatenation

of the target matrices B̃l): B̃ = WOA. Ridge regression can be applied to solve

this ill-posed problem through the following formula giving the optimal read-out

matrix: WO
opt = B̃ AT (AAT − λI)−1, where λ is the small regression parameter, I

is the N ×N identity matrix, and the matrix inversion can be calculated through a
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Figure 4.6: Graphical illustration of the RC processing steps in the
case of a speech recognition task, performed with an optoelectronic de-
lay oscillator used as a Reservoir with 400 virtual nodes. Each input
cochleagram consists of 86 frequency components which energy content
(color encoded) are evolving over the duration of the spoken digit (this
duration Nl amounts here to 88 steps in n).
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Moore-Penrose algorithm.

Reservoir Computing has already achieved much success, revealing its compu-

tational potential both in ESN numerical simulations [139,140], and also in physical

hardware implementation. Successful physical hardware implementations have been

based on delayed dynamical systems [21, 22, 131, 141–143], but also more recently

they have employed real spatially extended photonic systems [144,145].

Figure 4.6 illustrates the previously described RC processing steps, in the case

the processing of a classification problem (speech recognition), as performed with

an optoelectronic delay dynamics [22]. It makes an extensive use of the space-time

representation for delay dynamical systems.

4.3.2 Observation of chimera states

Acknowledgment: Laurent Larger performed the experiments and contributed

the figures and much of the text for Section 4.3.2.

Chimeras and reservoir computing surprisingly share a temporal and a spatial

coincidence. They were “temporally” discovered and invented respectively in the

early 2000s [73,135,136], and they were “geographically” connected to delay dynam-

ics during the Delay Complex System conference DCS’12, a decade later. Since delay

dynamics had demonstrated the ability to emulate a virtual network of neurons in

RC applications, a straightforward next step was to confirm the relevance of this

network emulation for the experimental observation of chimera patterns. Moreover,

chimeras had just been experimentally discovered in 2012, in setups modeled by
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spatio-temporal equations [83, 84]. A chimera state in a delayed dynamical system

was first observed in 2013 [63], illustrating that networks of dynamical nodes can

indeed be emulated by a delayed dynamical system.

One of the models used to numerically explore chimera solutions is the network

of continuously distributed coupled Kuramoto oscillators, defined as follows:

∂φ

∂t
= ω0 +

∫
G(x− ξ) · sin[α + φ(t, x)− φ(t, x− ξ)] dξ. (4.30)

This governs the dynamics of the phases φ(t, x) of the oscillators that are contin-

uously distributed in space, ω0 being their natural angular frequency. Oscillators

have coupled phases according to a sine nonlinear dependency of the coupling (with

an important coupling offset α), depending on the relative phase difference between

the two coupled oscillators at position x and x− ξ. Each phase coupling is weighted

by a distance-dependent factor G(x− ξ), which is typically vanishing beyond a cer-

tain coupling distance (sometimes referred as to the coupling radius) defined by the

shape of G(·). The phase dynamics is thus ruled by the contribution of the coupling

with all the other oscillators, as the integral term in Eq. 4.30 covers the entire

space of the network. Chimera solutions of such an equation typically consist of

clusters, in which oscillators are synchronized with the same phase in a cluster, and

in other clusters, oscillators are completely desynchronized with chaotically fluctu-

ating phases.

It is then interesting to compare qualitatively the integral term in Eq. 4.30, with the

one derived in Eq. 4.24. As previously discussed and as it can be also inferred from
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the comparison with the network of Kuramoto oscillators, one can clearly identify

the specific role of h(t), when it is considered in the space-time representation of

the delay dynamical variable xσ[n] as derived in Eqs. 4.19 to 4.23. The impulse

response h(t) is clearly ruling the coupling strength and the coupling distance within

the virtual network of dynamical nodes. The nonlinear function F (x) plays the role

of the nonlinear coupling between the amplitudes of the virtual nodes.

Figure 4.7 reports typical chimera patterns obtained experimentally with non-

linear delay dynamics. It shows both the temporal waveform during growth and sta-

bilization of the pattern, as well as the space-time representation in the (σ, n)−plane,

with color encoding of the waveform amplitude. The space-time picture clearly

shows the sustained chimera pattern along the horizontal virtual space domain. It

consists of a flat plateau (blue color) surrounded by a chaotic sea (red and orange

colors), with which it coexists, filling in a balanced and stable way the shared spatial

domain. The figure also shows two possible solutions (single-headed and two-headed

chimera), obtained with the same parameter conditions, but produced from different

noisy initial conditions. Depending on the temporal parameters (hence the proper-

ties of the coupling function h(t) as depicted in Fig. 4.2b, e.g. the actual values of

τL and τH relatively to τD), one can obtain a highly multistable dynamics of chimera

patterns [20].

To comment more on the details under which conditions chimera solutions can

be obtained in delay dynamics, it is worth mentioning that h(t) requires a bandpass

profile. There are many different arguments to explain this requirement. The first is

related to the carrier waveform of a chimera pattern over the virtual spatial domain

95



Figure 4.7: Experimental record of single- and two- headed chimera
solutions generated in delay dynamics. The two central plots show the
space-time representation of the chimeras, as they grow and then sta-
bilize. The side plots, left and right, are temporal waveforms showing
parts of the chimera, during the initial transient (the lower time-traces,
which cover a few hundreds of time recurrences in the delayed feedback
loop), and during the stabilized part at the end of the full record (upper
time-traces, which cover approximately two recurrent times T = τD+δ).
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[n(τD + δ); (n + 1)(τD + δ)], which is necessarily a stable period-1(delay) carrier

waveform, and not a period-2 carrier waveform as usually concerned in the period-

doubling bifurcation cascade typically known for delay dynamics. To allow for such a

stable period-1 carrier waveform, the bandpass character for h(t) is necessary (stable

period-1 pattern have been analyzed e.g. in [146]), since the low-pass one is known

to lead to unstable period-1 pattern, as was reported in [44] about the “coarsening”

of any forced initial pattern in the virtual spatial domain. Last but not least, one

could also mention that with a fixed τL, the impulse response with τH (bandpass)

necessarily exhibits a broader width than without the presence of τH (low-pass).

This remark is in line with the known fact that chimera states are favored when

the coupling range is extended (i.e., beyond the classical case of nearest neighbor

coupling only, which does not allow for chimera states).

From the point of view of the nonlinear coupling function between virtual

nodes (as the function is involved in Eq. 4.24), there are also specific requirements

on F (x) for obtaining chimera solutions. This is illustrated in Fig. 4.8, where both

the nonlinear function profile is represented, and next to it, with the same vertical

scaling, the temporal chimera waveform. From the standard fixed point analysis for

a nonlinear map defined by the same function F (x), one can notice the following:

• The nonlinear function operates around an average value centered along a

positive slope of F (x), between two extrema, where an unstable fixed point

for the map is located (middle black circle);

• The high amplitude chaotic part of the chimera waveform corresponds to the
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Figure 4.8: Features of the nonlinear coupling function for obtaining
chimera patterns in delay dynamics. Left: nonlinear function profile F (x),
with a dotted first bisector line highlighting the fixed points for a map
xn+1 = F (xn). Right: amplitude correspondence in the temporal chimera
waveform x(t).
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sharp maximum of F (x), and it develops a chaotic motion along this maximum,

essentially on the negative slope side and centered around an unstable fixed

point (upper-right black circle);

• The low amplitude plateau of the chimera waveform corresponds to a stable

fixed point (lower-left black disk) of the map, along a weak negative slope,

thanks to the presence of a broad minimum.

This remark points out the important requirement on F (x) about its necessary

asymmetric shape resulting in a sharp maximum and a broad minimum. This was

experimentally obtained in [20] with the Airy function provided by a low finesse

Fabry-Pérot resonator, which is providing a non linear transformation of the wave-

length of a dynamically tunable laser diode, into the output optical intensity of the

Fabry-Pérot.

Space-time representation was recently found not to be restricted to a single

virtual space dimension. Adding a second delay much larger than the first one,

enabled 2D chimeras to be obtained in delay systems. Among various solutions

observed in this two-delay system, one could observe chaotic islands surrounded by

a calm sea, or its contrary, a flat plateau island in the middle of a chaotic sea [147].
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4.4 Arbitrary networks in a single delay system

4.4.1 Theoretical description

Section 4.3 described the realization of circularly symmetric networks in a

single nonlinear system with delayed feedback. In these experiments, the network

nodes were time slots of length ∆t, where ∆t� τD, and the coupling between nodes

was due to the inherent bandwidth of the electronics. This inherent bandwidth was

described using a time-invariant infinite impulse response filter; the time invariance

results in a circularly symmetric network. However, Eq. 4.5 does not require the

impulse response to be time-invariant. In this section, we describe recent work

that uses a digital filter with a time-varying impulse response to realize arbitrary

networks in an experimental delay system [123].

There are two modifications of previous systems necessary in order to obtain

a network with arbitrary topology. (a) the inherent circularly symmetric coupling

due to the (time-invariant) bandwidth limitations of the system must be removed.

(b) the desired coupling must be implemented by an appropriately designed filter

with a time-dependent impulse.

Removing the inherent coupling

There are two convenient options for removing the inherent circularly symmetric

coupling due to the time-invariant bandwidth limitations of the system.

(I) Perhaps the most straightforward way to remove the coupling due to the

bandwidth limitations of the system is to extend the ∆t described in Section 4.3.
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This can be done in the pulsed laser system described by Eq. 2.3 by choosing the

pulse repetition rate fr = N/τD � 1/τL. In this case, the filter response decays

before the next pulse arrives, and so the system reduces to the N -dimensional map:

x[k] = βF
(
x[k −N ]

)
, (4.31)

where k is the discrete time. This map equation requires the specification of N

different initial conditions, but the trajectory of each initial condition is completely

independent of the trajectories of the others. Therefore, 4.31 can be thought of as a

set of N completely independent but truly identical oscillators using the space-time

representation:

xi[n] = βF
(
xi[n− 1]

)
, (4.32)

where i = k mod N is the oscillator number and n is the network time.

(II) An easier-to-implement experiment that displays the same map dynamics

is obtained by using a CW laser and sample-and-hold electronics that are clocked at

a rate fr. Synchronously clocked shift registers have long been used to implement

digital delays in experimental set-ups because of the ease of varying the delay [20,

21,23,49,56,62,64,123]. Such a system can also be described by Eq. 2.3. However,

in previous experiments, the clock rates have typically been chosen so that the

discrete-time nature of the digital delay line minimally impact the dynamics; that

is, the sampling time ∆t = 1/fr has typically been much smaller than any other

dynamical time scale, and so the digital delay line is a good approximation of an

analog delay. In these cases, the experiment is well-described by Eq. 4.1. Here, we
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intentionally choose a sampling time that is much longer than the other dynamical

time scales in the system, but still shorter than the time delay τD = N∆t. With

this choice of clock rate, the dynamics of the system is well-described by Eq. 4.32.

Implementing an arbitrary coupling topology

The systems described in the last few paragraphs create N identical, uncoupled

nodes using a single delayed dynamical system. In order to couple the nodes together

in a network, we must implement a filter that can be described by a time-varying

impulse response. This is easiest to do with a digital filter, since in this case we are

not restricted by what can be easily implemented by analog components.

It is convenient to implement both the delay and the digital filter on a single

device such as a field-programmable gate array (FPGA). In this case, the filter can

be acausal in the sense that we can implement the following

x[k] =

(k+N−i−1)∑

m=−∞

h[k −m; k]F
(
x[m−N ]

)
, (4.33)

where the impulse response h is explicitly written as a function of the discrete time

k to denote that it is varying in time. The acausality of the filter is necessary in

order to permit couplings to node i from nodes j > i.

The impulse response of the digital filter necessary to implement a given net-

work is determined by the adjacency matrix Aij that describes the network as fol-

lows:
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h[m; k] =





β if m = k

σAij if m 6= k and m = k − i+ j

0 otherwise

, (4.34)

where i = k mod N and j is an integer between 0 and N − 1.

When the digital filter described by the impulse response in Eq. 4.34 is im-

plemented and Eq. 4.33 is written in the space-time representation, we obtain

xi[n] = βF
(
xi[n−1]

)
+σ

∑

j

AijF
(
xj[n−1]

)
= βIi[n−1]+σ

∑

j

AijIj[n−1], (4.35)

where Ii[n] is the normalized light intensity associated with the ith node at

network time n. Equation 4.35 describes a network of discrete-time oscillators that

are coupled by the arbitrary adjacency matrix Aij.

There are two adjustments, then, that need to be made to the systems de-

scribed in Section 4.3 in order to realize an arbitrary network of coupled oscillators

in a single delay system:

1. Time must be discretized in such a way as to break the nearest-neighbor

coupling that would otherwise be induced by the bandwidth limitations of the

system.

2. A filter with a time-dependent impulse response must be used in order to

obtain a network topology that is not cyclically symmetric. This filter must

also be acausal to allow for the construction of all possible networks (e.g. to

couple node N − 1 to node 0).
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Note about terminology: In this section, we use the terms “time-dependent”

or “time-varying” and “acausal” to describe filters in ways that differ from their

usual meaning in signal processing contexts. This is done in order to contextualize

our work implementing arbitrary networks in a single time-delayed system within

the formalism developed to describe the implementation of ring networks in a single

time-delayed system. In this section, we say that our FPGA implements a filter

with a time-varying impulse response; those in the signal processing community

might classify this as an N-dimensional linear time-invariant filter with temporally

interleaved outputs. Similarly, we say that our filter is “acausal” in the sense that

node N − 1 can be coupled to node 0. This “acausality” is only possible because

both the time delay and the digital filter are implemented on the same FPGA. In

Section 4.4.2, we present an equivalent formalism using multiple time delays and

temporal multiplexing that does not use any “time-varying” or “acausal” filters.

4.4.2 Alternative interpretation

There is an alternative (but equivalent) way to view the technique used to

create arbitrary networks that does not involve acausal or time-varying filtering.

This perspective is described in detail in Ref. [123]. Here, the acausal, time-varying

filter is replaced by multiple delays that are switched on and off as a function of

time in order to implement the desired network. The idea of using multiple time

delays to create a more interesting network was pioneered for the purpose of reservoir

computing [62]; however, in this case each delay was always switched on, resulting
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again in a circularly symmetric network (albeit with longer range connections than

with a single delay). Switching the additional delays on and off in time breaks

the time-invariance (and therefore circular symmetry of the network) and allows an

arbitrary network topology. The time-dependent switching is determined according

to the following recipe:

• The time delay of length N/fs is always switched ON. This is the feedback

time delay and is multiplied by β. This delay is modeled by the first term in

Eq. 4.35.

• Time delays of length (N + i− j)/fs are switched ON if Aij = 1, where i = k

mod N is the active node. These time delays determine the coupling and are

summed then multiplied by σ. This is modeled by the second term in Eq.

4.35.

• All other time delays are switched OFF.

Time delays and switches are easily implemented in FPGA, making this a particu-

larly powerful implementation because the networks are easy to reconfigure.

4.4.3 Experimental implementation

The techniques described in Section 4.4.1 and 4.4.2 have been used to imple-

ment arbitrary networks in an optoelectronic feedback loop [123]. Illustrations of

these (equivalent) experiments are shown in Figs. 4.9 and 4.10, respectively. Light

(850 nm) of constant intensity is emitted from a fiber-coupled CW laser (Thorlabs
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DBR852P). The light passes through an integrated electro-optic intensity modula-

tor (EOSpace AZ-0K5-10-PFA-SFA-850-UL), which provides a nonlinearity that is

well-modeled by F (x) = sin2(x+φ0), where x = πvRF/2Vπ,RF is the normalized RF

voltage applied to the modulator and φ0 = πvDC/2Vπ,DC is a constant DC bias. A

measurement of the modulator’s nonlinearity is shown in Fig. 4.11. The half-wave

voltages Vπ,DC = 3.0 V and Vπ,RF = 2.40 V for our modulator. A variable DC power

supply (Sorensen XDL 35-5T) is used to set the DC bias voltage vDC . The light is

converted to an electrical signal by a photoreceiver (New Focus 1811) and sampled

at a frequency fr by an analog to digital converter (ADC). The FPGA (Altera Cy-

clone V GT) implements the delay and the time-dependent digital filtering described

in Section 4.4.1 (or, equivalently, the multiple time delays and temporal multiplex-

ing described in Section Section 4.4.2), and outputs the feedback electrical signal

through a digital to analog converter (DAC). This electrical signal is amplified and

fed back to the RF input of the intensity modulator, completing the feedback loop.

Both the normalized intensity I = I/Imax measured by the photoreceiver and ADC

and the normalized voltage x output by the DAC are streamed from the FPGA to

a personal computer (PC) via PCIe using the Xillybus IP core for storage. Xillybus

is freely available online for use in academic research. Further details regarding the

experimental implementation can be found in Appendix A.
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Figure 4.9: Experimental apparatus for realizing arbitrary networks us-
ing a single nonlinearity with time multiplexing through a single delay
and time-dependent filtering.
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Figure 4.10: Experimental apparatus for realizing arbitrary networks
using a single nonlinearity with time multiplexing through multiple time-
delays that are switched on and off in time.
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Figure 4.11: Nonlinearity of the integrated lithium niobate Mach-
Zehnder intensity modulator. The solid blue curve shows the experi-
mental measurement, and the black dotted curve shows the best fit to
A sin2(πv/2Vπ + φ0). As determined by the fit, A = 0.52 V, Vπ = 2.40
V, and φ0 = 0.78. The RMS error of the fit is 0.018.
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4.5 Discussion

The realization of networks of coupled oscillators is a challenging experimental

task because of the difficulty and expense of obtaining, coupling, and measuring a

large number of identical oscillators. In this section, we have reviewed recently

developed techniques that overcome these obstacles by implementing the network

in a single nonlinear delay system through temporal multiplexing. They offer the

additional benefit, impossible in other network implementations, that the oscillators

are truly identical since they are all implemented in the same physical hardware.

These delay networks were first developed for their vast potential as a physical

implementation of reservoir computing. In addition to these important information

processing applications, delay networks are also opening up entirely new avenues of

research in basic experimental science, as exemplified by the observation of novel

1 and 2 dimensional chimera states and cluster synchronization. These techniques,

first conceived only in 2011, are still in their infancy and continue to stimulate basic

and applied research.

Future work might explore the use of experimental arbitrary networks for

hardware-based reservoir computing, where a time-dependent filter impulse response

might allow for faster or more accurate information processing. This technique

can also be used for the experimental study of a variety of fundamental questions

of network dynamics, including the impact of targeted perturbations on network

dynamics [119,148], the effect of heterogeneities on network dynamics [122,149], the

control of network dynamics [150], and the impact of noise on network dynamics.
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While the delay systems themselves are often continuous time systems, the

space-time representation causes delay networks to be discrete in time. Research is

currently under way to allow the realization of continuous-time networks in a single

delay by adopting the multiple time delay implementation of arbitrary networks.

Importantly, this technique is not reliant on opto-electronics: one could replace the

optics with any system of interest. This might be useful for building prototypes

for large networks of coupled oscillators when the oscillators are expensive, such as

in the case of power grids. It may also allow for the experimental study of large

networks of truly identical oscillators in situations where the oscillators are rarely

identical in practice (e.g. biological systems such as neurons). This permits the

study of the impact of heterogeneity on the network dynamics.

111



If it disagrees with experiment, it’s wrong.

Thats all there is to it.

Richard Feynman

Chapter 5: Experimental observation of patterns of synchronization

using a single nonlinear node as a network

5.1 Overview

This chapter presents the results of a series of experiments to study the dynam-

ics of networks of couped oscillators that were performed using the single nonlinear

node with time-delayed feedback described in Chapter 4. We begin by exploring the

dynamics of a single, discrete-time nonlinear oscillator in Section 5.2. We experi-

mentally measure the bifurcation diagram of a single node, and find that our system

can display fixed point, periodic, or chaotic behavior, depending on the system pa-

rameters. We compare the experimental bifurcation diagram with one determined

by numerical simulation of a mathematical model and find good agreement.

In Section 5.3 we investigate the synchronization of two identical nodes that

are bidirectionally coupled. We present an illustration of the experimental imple-
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mentation using the multiple delays and time-multiplexing interpretation described

in the general case in Section 4.4.2. We then experimentally measure synchroniza-

tion error as a function of the coupling strength, and we compare it with numerical

simulations both with and without noise. We find excellent agreement when the

appropriate noise level is used.

We then revisit the patterns of synchronization in globally-coupled networks

from Chapter 3. The experimental apparatus used in Chapter 3 was limited to net-

works of up to four nodes; however, it was predicted that chimera and cluster states

should be allowed to form in globally-coupled networks of any size. In Section 5.4 we

describe the experimental observation of chimera states in a globally-coupled net-

work of five nodes. We further show that these triplet-singlet-singlet chimera states

arise from a symmetry breaking bifurcation called “isolated desynchronization” in

which the cluster of two in a triplet-doublet cluster state becomes unstable.

We provide the first experimental observation of the cluster synchronization

of the equitable partition of a network in Section 5.5. In 2014 it was shown how to

determine the stability of a pattern of synchronization corresponding to the orbital

partition of a network [113]; however, it was recently pointed out that there may

be some additional partitions that can also synchronize, even though they are not

associated with a symmetry [112]. We observe the synchronization of these so-

called “input-clusters,” and discuss how the machinery developed for determining

the stability of symmetry-clusters can be used to calculate the stability of input-

clusters as well.

In Section 5.6 we shift from studying what patterns of synchronization exist
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and whether they are stable to the question of how to optimize the stability of a

pattern of synchronization. We find that, in almost all Laplacian networks, the

region of parameter space in which a given pattern of synchronization is stable can

be extended by removing links to break or reduce the topological symmetry of the

network. We term this phenomenon structural Asymmetry-Induced Synchroniza-

tion, or AISync. We describe the theory underlying this general phenomenon and

provide experimental verification by using our set-up to implement three different

networks, two of 16 nodes and one of 17 nodes.

5.2 Dynamics of a single nonlinear map

This section is based on work from the following publication:

Joseph D Hart, Don C Schmadel, Thomas E Murphy, and Rajarshi Roy. “Experi-

ments with arbitrary networks in time-multiplexed delay systems.” Chaos: 27(12),

121103 (2017).

We first discuss the simplest version of the experiment: operation as a single non-

linear map. Figure 5.1 shows an illustration of the experiment. The details of the

experimental apparatus are the same as those described in Section 4.4.3. Light from

an 850 nm continuous-wave, fiber-coupled distributed feedback laser passes through

an integrated LiNO3 electro-optic intensity modulator and is converted into an elec-

trical signal by a photoreceiver. A sample-and-hold operation is performed on the

electrical signal at a rate of Fs = 20 kHz. This is implemented on an FPGA (which

controls a DAC and ADC), and the delay caused by the clocked sample-and-hold is
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much longer than the optical delay. This makes time discrete and decouples consec-

utive time steps. The electronic output of the DAC is amplified then applied to the

RF port of the modulator. The modulator provides the nonlinearity. An indepen-

dent power supply controls the DC bias of the electro-optic modulator. There is no

digital filtering in the implementation of a single node.

This experiment can be described by the following nonlinear map:

x[k + 1] = βI(x[k]), (5.1)

where x = πv/2Vπ,RF is the normalized voltage applied to the modulator at discrete

time k, and β is the normalized round-trip gain. The normalized intensity of the light

passing through the electro-optic modulator can be modeled as I(x) = sin2(x+φ0),

where φ0 ≡ πVDC/2Vπ,DC is the DC bias point of the electro-optic modulator. The

sine-squared nonlinearity is intrinsic to all wave-interference devices, including our

intensity modulator. With this experimental system, one could obtain any desired

nonlinearity I(x) by performing a nonlinear operation on x in the FPGA. Alter-

natively, one could introduce a different nonlinearity by using different, sufficiently

fast nonlinear optical or electronic components.

Figure 5.2a shows an experimentally measured bifurcation diagram of the sin-

gle nonlinear map with φ0 = π/4. Our experimental map can exhibit fixed point,

periodic, and chaotic behaviors. A bifurcation diagram numerically simulated from

Eq. 5.1 and shown in Fig. 5.2b, agrees well with the experiment and suggests that

Eq. 5.1 is an accurate model.
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Figure 5.1: Illustration of the setup for a single nonlinear map. In our
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ear oscillator depicted in Fig. 1. The DC bias φ0 was set to π/4. b)
Numerically simulated bifurcation diagram of the single nonlinear map
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5.3 Synchronization of two coupled maps

This section is based on work from the following publication:

Joseph D Hart, Don C Schmadel, Thomas E Murphy, and Rajarshi Roy. “Experi-

ments with arbitrary networks in time-multiplexed delay systems.” Chaos: 27(12),

121103 (2017).

The simplest example of a network of coupled oscillators is perhaps a bi-directionally

coupled pair of maps. Such a network can be modeled as

x0[n+ 1] = βI(x0[n]) + σI(x1[n])

x1[n+ 1] = βI(x1[n]) + σI(x0[n]),

(5.2)

where σ is the coupling strength. We implement this simple network as a first

example of the implementation of a network of coupled maps using a single nonlinear

element with time-delayed feedback and time multiplexing, using the interpretation

presented in Section 4.4.2.

The experimental implementation for a 2-node, bidirectionally coupled net-

work is shown explicitly in Fig. 5.3. In this setup, the single oscillator with time-

delays and a multiplexer (MUX) functions as two individual nonlinear maps coupled

together. Every even time step k of the full system is interpreted as an iteration of

node 0, and every odd time step k of the full system is interpreted as an iteration

of node 1. This system can also be modeled by Eq. 5.2, but requires the assembly

of only one experimental apparatus. Further, each of the two nodes are identical,

since they utilize the same electronic and optical components. The individual maps
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Figure 5.3: Illustration of a time-delayed implementation of two coupled
oscillators. The standard time k updates at a rate of 10 kHz, while the
network time n updates at a rate of 5 kHz. MUX denotes a multiplexer
that outputs I[k] on when k is even and I[k − 2] when k is odd. τ1 = 1
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now update at half the rate since the measurement of I is performed serially.

In practice, the sample-and-hold, time delays, time multiplexing, multiplica-

tion by β and σ, and addition of the self-feedback and coupling components are all

implemented on an FPGA. This allows for a compact and flexible implementation

of the experiment: The experiment can be switched between the single nonlinear

map described in section 5.2 and the coupled map system simply by reconfiguring

the FPGA.

Figure 5.4 shows the measured and simulated root-mean-square (RMS) syn-

chronization error of the coupled map system depicted in Fig. 5.3 and described by

Eq. 5.2. We define the RMS synchronization error as

θ ≡
(〈(x0[n])− x1[n])2〉
〈x0[n]2 + x1[n]2〉

)1/2

, (5.3)

where 〈·〉 denotes an average over time. θ is zero in the case of a completely

synchronized solution and approaches 1 in the limit that the x0 and x1 are uncorre-

lated.

One can determine the stability of the synchronized state by linearizing about

the synchronized solution xs[n] ≡ x0 = x1 and calculating the Lyapunov exponent

of the variational equation for the perturbations transverse to the synchronization

manifold. The variational equation is

∆x⊥[n+ 1] = (β − σ) sin
(
2(xs[n] + φ0)

)
∆x⊥[n], (5.4)

where ∆x⊥ is a perturbation transverse to the synchronization manifold. We have

calculated the Lyapunov exponent of Eq. 5.4 as a function of σ for fixed β = 3.5;
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the results are shown in Fig. 5.4. The values of σ with negative Lyapunov exponent

correspond exactly to the values where we observe synchronization in the simulations

without noise. Further, all of the σ values where we observe synchronization in the

experiment correspond to σ with negative Lyapunov exponent; however there are

some narrow regions of σ with negative Lyapunov exponent where we do not observe

synchronization in the experiment. This is due to noise in the experiment. Noise

in the experiment comes from a variety of sources, including discretization noise in

the ADC and DAC, electronic noise in the DAC amplifier, and Johnson noise in the

photoreceiver.

We model all of these sources of noise by applying additive white Gaussian

noise with standard deviation 0.001 to each normalized intensity Ii at each time

step:

x0[n+ 1] = β
(
I(x0[n]) + aR0[n]

)
+ σ
(
I(x1[n]) + aR0[n]

)

x1[n+ 1] = β
(
I(x1[n]) + aR1[n]

)
+ σ
(
I(x0[n]) + aR0[n]

) (5.5)

where Ri[n] are independent, identically distributed random variables taken from a

Gaussian distribution with zero mean and unit variance. The synchronization error

from the simulation with a = 0.001, shown in red in Fig. 5.4, shows good agreement

with the experimentally measured result.
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5.4 Chimera states in a five-node globally-coupled network

This section is based on work from the following publication:

Joseph D Hart, Don C Schmadel, Thomas E Murphy, and Rajarshi Roy. “Experi-

ments with arbitrary networks in time-multiplexed delay systems.” Chaos: 27(12),

121103 (2017).

Experimental observations and stability analysis of chimera states in small networks

of four globally-coupled continuous time oscillators have been studied in Chapter

3. It was predicted that similar chimera states should exist for larger globally cou-

pled networks, and that it should be possible to determine their stability using the

analysis techniques described in Ref. [23, 113, 114] and in Chapter 3. However, due

to experimental limitations on the number of nodes and links, chimeras in larger

networks of globally coupled oscillators have not been experimentally observed in

opto-electronic networks.

We now investigate chimera states in a network of five globally-coupled nodes

in our experimental system. The chimera state we consider here is a dynamical

state in which three of the nodes are synchronized, and the other two nodes are

desynchronized both from the cluster of three and from each other. The group

theoretical arguments from Section 3.4.1 suggest that such chimera states can exist

in globally coupled networks [23].

By implementing the digital filtering prodecures described in Sec. 4.4.3, we can

modify our set-up to realize a globally coupled network of 5 nodes. As in Ref. [23]
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the node from a that is represented by that time step. The coloring of
the horizontal bar indicates the synchronous cluster to which that node
belongs. The vertical black dotted lines indicate a full network time step
n. c) Stability of chimera state and triplet-doublet cluster state. The
red arrow indicates the value of σ used to obtain the experimental time
series in b.
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and Chapter 3, we added a coupling time delay to observe chimera states in our

globally-coupled network. This is straightforward to do with the FPGA hardware

via shift registers. The network can be modeled as

xi[n+ 1] = βI(xi[n]) + σ
∑

j

AijI(xj[n− τc]), (5.6)

where I(x) = sin2(x+φ0) as before and τc is the coupling delay. For this experiment,

we take τc = 1 iteration.

Figure 5.5b shows a typical time series from a chimera in the experiment. The

parameter values are β = 2.3, σ = 0.25, and φ0 = π/4. As one can see from Fig.

5.2, an uncoupled oscillator is chaotic with these parameters. In this chimera, nodes

0, 2, and 3 are in the synchronous (coherent) region, and nodes 1 and 4 are in the

desynchronized (incoherent) region. When we start from different initial conditions,

different nodes end up in the coherent and incoherent regions. This is expected

because all of our nodes are identical.

In order to investigate the stability of these chimera states, we performed a

stability analysis according to the methods described in Chapter 3. We linearize

about the chimera state to obtain the variational equations for the network, then

use the group theory-based techniques presented in Chapter 3 to pick out the per-

turbation directions transverse to the synchronization manifold. The stability of

the chimera state is determined by the largest Lyapunov exponent (LLE) of these

transverse variational equations: if the LLE is negative, the chimera state is stable.

The result of this calculation for β = 2.3 and φ0 = π/4 is shown in Fig. 5.5c. We
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see that the chimera state is stable in the region from σ = 0.17 to σ = 0.25.

We were not able to calculate the Lyapunov exponent in the transverse di-

rection for some values of σ. In regions where the chimera state is unstable and a

more symmetric state (such as the globally synchronized state or the triplet-doublet

state) is stable, the trajectory of the chimera state cannot be determined. Therefore,

one cannot linearize about the chimera state and calculate the transverse Lyapunov

exponents in the usual way.

We also calculate the stability of the triplet-doublet cluster synchronous state

in order to show how the chimera state forms. The results of this calculation are also

shown in Fig. 5.5c. For lower values of σ, the triplet-doublet cluster state is stable.

As σ increases, the doublet cluster undergoes isolated desynchronization [113] and

becomes unstable; however, the triplet cluster remains stable. This results in a

triplet-singlet-singlet state, which we call a chimera state.

5.5 Synchronization of input-clusters

This section is based on work from the following publication:

Abu Bakar Siddique, Louis Pecora, Joseph D Hart, and Francesco Sorrentino. “Symmetry-

and input-cluster synchronization in networks.” Phys. Rev. E: 97(4), 042217

(2018).
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5.5.1 Motivation

In Chapter 3 we showed how to determine the stability of symmetry clusters by

using the IRRs of the permutation symmetry group of the adjacency matrix to create

a matrix T, and using T to transform coordinates into the “IRR space,” in which

the stability calculations can be performed. However, this procedure (originally

described in Ref. [113]) works only when the clusters are symmetry clusters. There

can be input clusters that are not directly related to network symmetries. An

example of an input cluster that is not a symmetry cluster in shown in Fig. 5.6a.

Shortly after the original paper on the stability of symmetry clusters, it was

recognized that in the case in which there is Laplacian coupling, symmetry clusters

can sometimes combine to form synchronous clusters whose nodes are not related

by a network symmetry. Sorrentino et al. extended the stability analysis based on

symmetries to include so-called Laplacian clusters [114].

Subsequently, it was pointed out that it may be possible for a synchronous

cluster that is not related to any network symmetry to form even in non-Laplacian

network topologies [112]. In this section, we show how to determine the stability

of input-cluster states by adapting the symmetry-based techniques from Ref. [113],

and we confirm our stability calculations with the first experimental observation of

a non-symmetric synchronous cluster in a non-Laplacian network.
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Figure 5.6: a) The coarsest equitable partition of a 10-node network.
The network is partitioned into two sets: magenta and green. b) The
coarsest orbital partition of the same 10-node network. The orbits par-
tition the network into three sets: magenta, blue, and yellow. Note that
there is no network symmetry that permutes any blue nodes with any
yellow nodes. c) Quotient network for the equitable partition. d) Quo-
tient network for the orbital partition. All link strengths for a-b are 1;
link strengths for c-d are as indicated.
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5.5.2 Stability analysis for input clusters

In this section, we describe how to perform the stability analysis for input

clusters that are not symmetry clusters. As in Chapter 3, we use the term “input

cluster” to refer to a set of nodes that forms a set of the equitable partition of a

network. In particular, we will consider the network and input cluster state depicted

in Fig. 5.6a, and we will use the discrete-time oscillators described in Section 4.4.

The stability analysis closely follows the procedures developed in Refs. [113,114].

The outline of the stability analysis is as follows:

1. Choose the pattern of input cluster synchronization for which we want to de-

termine the stability. Force the equations of motion into this pattern of cluster

synchronization using a “quotient network.” Find the cluster synchronous so-

lution using the equation of motion of the quotient network.

2. Linearize about the cluster synchronous solution.

3. Change coordinates of the equations of motion from the “node coordinate

space” to the “modified-IRR coordinate space” associated with the cluster

synchronous state. This transformation separates out the cluster synchroniza-

tion manifold and the transverse directions, similar to what is done in the

Master Stability Function approach [78]. Implicit in this step is the deter-

mination of the transformation matrix (T-matrix). The determination of the

T-matrix for input clusters that are not symmetry clusters is slightly more

complicated and is the main difference from the symmetry cluster case.
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4. Use standard numerical algorithms to calculate the Lyapunov exponents of

the transformed equations of motion. The Lyapunov exponents corresponding

to the direction(s) transverse to a given synchronized cluster give the stability

of that cluster.

Step 1: Quotient networks

The pattern of cluster synchronization determines the cluster synchronous solution.

The cluster synchronous solution is determined by forcing that cluster pattern upon

the equations of motion and then solving them, analytically if possible, but most

often numerically. As discussed in Chapter 3, this can be done using a quotient

network.

The quotient networks for the full networks shown in Fig. 5.6a-b are shown in

Fig. 5.6c-d. Once the quotient network is obtained, the cluster synchronous solution

can be determined by solving

x(s)
µ [n] = F (x(s)

µ [n− 1]) + σ
∑

ν

QµνH(x(s)
ν [n− 1]), (5.7)

where µ labels the cluster and x
(s)
µ is the cluster synchronous solution of the µth

cluster. Eq. 5.7 is typically solved numerically.

Step 2: Linearize about the cluster synchronous solution

In order to determine the stability of the cluster synchronous state calculated in

the previous step, we need to study the behavior of small perturbations away from

the synchronized trajectory. Consider an infinitesimally small perturbation δxi to
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each node in Eq. 4.35. In order to obtain the equation describing the behavior of

this perturbation, we make the change xi → xi + δxi and linearize to obtain the

variational equation

δxi[n] =
∂F

∂x
(x(s)

µi
[n− 1])δxi[n− 1] + σ

∑

j

Aij
∂H

∂x
(x(s)

µj
[n− 1])δxj[n− 1], (5.8)

where x
(s)
µi [n− 1] is the cluster synchronous solution corresponding to the cluster µ

to which node i belongs.

Step 3: Transform to IRR coordinate space

Equation 5.8 describes how a small perturbation to a single node evolves in time.

However, we are not concerned with all perturbations; we are concerned with only

those perturbations that disturb the cluster synchrony. In other words, we need to

separate out the perturbations along the synchronization manifold (which do not

affect the stability of cluster synchrony) from the perturbations transverse to the

synchronization manifold (which determine the stability of cluster synchronization).

This is facilitated by changing coordinates from “node coordinate space” to “IRR

coordinate space,” where this separation is easily done.

The transformation matrix T for symmetry clusters can be calculated using

a software implementation [116] of the technique developed in Ref. [113]. The T

matrix for an input cluster requires an extra step. First, one computes Tsym, the

transformation matrix for the orbital partition one level “finer” (i.e., with more

clusters) than the desired equitable partition. Then, one merges two (or more) sym-

metry clusters to form the desired input cluster according to the method originally
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developed for Laplacian clusters in Ref. [114]. This results in one synchronous vector

(that corresponds to a perturbation in the plane of the synchronization manifold of

the input cluster) and one (or more) vectors that are transverse to the synchronous

vector. All these vectors lie in the plane defined by the merged symmetry clusters.

An example of this procedure will be provided in the following section.

When we transform to the IRR coordinate space by performing the change of

variables δya =
∑

b Tabδxb and then multiplying through by T, we obtain

δya[n] =
∂F

∂x
(x(s)

µa [n− 1])δya[n− 1] + σ
∑

b

Bab
∂H

∂x
(x(s)

µb
[n− 1])δyb[n− 1], (5.9)

where x
(s)
µa [n− 1] is the cluster synchronous solution corresponding to the cluster µ

to which node a belongs, as before.

The rows of T can be arranged such that B is block diagonal. The block

diagonal form of B decouples the variational equations. For a pattern of cluster

synchronization with M clusters, if the M rows of T corresponding to perturba-

tions along the synchronization manifold are on top, B will have an M×M block in

the upper-left corner that corresponds to the synchronization manifold. This block

is not used for stability calculations. The remaining blocks are called transverse

blocks, and the Lyapunov exponents of Eq. 5.9 that correspond to those blocks de-

termine the stability of the cluster synchronization: if all these transverse Lyapunov

exponents are negative, the cluster synchronous state is stable.

Step 4: Calculate the maximal Lyapunov exponents
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Figure 5.7: a)T and B matrices for the equitable partition of the network
shown in Fig. 5.6a. b) T and B matrices for the orbital partition of the
network shown in Fig. 5.6b. The shadings correspond with the colors
in Fig. 5.6 and indicate which cluster the entries correspond to. Grey
shading indicates the synchronization manifold, the Lyapunov exponents
of which do not help determine the stability of the clusters.
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The Lyapunov exponents of the decoupled variational equations 5.9 determine

the stability of the cluster synchronous state for which they are calculated.

5.5.3 Stability calculation results

We now explicitly perform the stability calculation for the input cluster syn-

chronous state depicted in Fig. 5.6a. In order to proceed, we must use the explicit

forms of the feedback function F (x) = β sin2(x + φ0) and the coupling function

H(x) = sin2(x+ φ0) with β = 3.5 and φ0 = π/4.

The cluster synchronous dynamics about which we will linearize are deter-

mined by the equation of motion of the quotient network:

x(s)
µ [n] = β sin2(x(s)

µ [n− 1] + φ0) + σ
∑

ν

Qµν sin2(x(s)
ν [n− 1] + φ0), (5.10)

where µ labels the cluster and x
(s)
µ is the cluster synchronous solution of the µth

cluster. Eq. 5.10 is typically solved numerically.

The variational equation in IRR coordinates is given by

δyi[n] = β sin
(
2(x(s)

µi
[n−1]+φ0)

)
δyi[n−1]+σ

∑

j

Bij sin
(
2(x(s)

µj
[n−1]+φ0)

)
δyj[n−1],

(5.11)

where x
(s)
µi [n− 1] is the cluster synchronous solution corresponding to the cluster µ

to which node i belongs.

Equitable partition

We now consider the stability problem applied to the equitable partition. The quo-

tient network for the equitable partition is shown in Fig. 5.6c. Equation 5.10 along
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Figure 5.8: Comparison of experimental measurements with stability
calculations for the equitable partition of the network shown in Fig.
5.6a. The experiment exhibits input-cluster synchronization in the re-
gions where the largest transverse Lyapunov exponent is negative.
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with this quotient network can be used to numerically determine the synchronous

dynamics.

By following the method in [114], we can now construct a new transformation

matrix T ′ that corresponds to the network equitable partition. Namely, we merge the

yellow and blue clusters (Fig. 5.6b) to generate a new synchronous vector (describing

perturbations along the synchronization manifold)

[
0 0 0 0 1 1 1 1 1 1

]

and an orthogonal vector
[
0 0 0 0 1 1 1 1 −2 −2

]
in the plane determined by the first and third

vectors/rows of the matrix T . In Fig. 5.7a we present the new transformation matrix

T and the corresponding matrix B = TAT−1. As can be seen, when the clusters

are merged, the dimension of the parallel block decreases by 1. A new transverse

block is generated with associated MLE λ′1.

Now that B is known, the transverse MLEs (i.e., λ1, λ′1, λ2,λ3, and λ4) of the

variational equation 5.11 are calculated and used to determine the stability. The

calculated transverse MLE is shown in Fig. 5.8 for β = 3.5 and φ0 = π/4 as σ is

varied.

5.5.4 Experimental results

We use the experiment described in Chapter 4 to implement the network shown

in Fig. 5.6. We fix β = 3.5 and φ0 = π/4, and we sweep σ. The comparison of the ex-

perimentally measured synchronization error with the stability calculations is shown

in Fig. 5.8. The synchronization error is defined as ∆ =
√∑

1≤i≤N ‖xi − x̄‖2/N ,
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where ‖ ‖ is the shortest distance between two points on a circle, and the mean x̄

on a circle can be found as the phase of
∑

1≤j≤N eixj . This definition of distance is

necessary because xi is defined modulo 2π (i.e., on a circle), as described in Chap-

ter 4. Our experimental observation of input-cluster synchronization in the places

where the largest transverse Lyapunov exponent is negative confirm the accuracy

of our calculations. Therefore our approach of using symmetry-based techniques to

perform the stability calculations for non-symmetric input-clusters is validated.

We find an interesting correspondence between the stability of input cluster

synchronization and the complexity of the dynamics of the oscillators in the network.

For all the parameter sets for which input cluster synchronization is observed, the

dynamics of the oscillators are periodic, even though in the absence of any coupling,

the oscillators behave chaotically for these parameters. Whether this is simply anec-

dotal or a more general phenomenon is an interesting question for future research.

5.6 Asymmetry-induced synchronization of symmetry clusters

This section is based on work from the following publication:

Joseph D Hart, Yuanzhao Zhang, Rajarshi Roy, and Adilson E Motter. “Topological

control of synchronization patterns: Trading symmetry for stability.” Submitted

(2018).

Acknowledgment: The work described in Section 5.6 was done in conjunc-

tion with Yuanzhao Zhang and Adilson E Motter from Northwestern University.

YZ and AEM contributed the theoretical work and numerical calculations. JDH
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performed the experiments. All authors contributed to the figures and text. JDH

and YZ contributed equally to this work.

5.6.1 Motivation

In the previous section, we considered the problem of whether or not a cluster

synchronous state is stable for a given network topology. In this section, we study

how to make a desired pattern of cluster synchrony more stable by altering the

network topology.

We investigate the relation between symmetry and synchronization in the gen-

eral contexts of global and cluster synchronization. In both cases we show that, in

order to improve the synchronizability of a cluster, one often has to break the under-

lying structural symmetry. This counterintuitive result holds for the general class of

networks of Laplacian coupled identical oscillators with bounded stability regions,

and follows rigorously from our demonstration that almost all networks (or subnet-

works) exhibiting optimal synchronizability are necessarily asymmetric. In partic-

ular, the synchronizability of almost any non-intertwined symmetry cluster can be

enhanced precisely by breaking the internal structural symmetry of the cluster. This

is demonstrated for arbitrary networks and also for the special case in which the en-

tire network consists of a single symmetry cluster. These findings add an important

new dimension to the recent discovery of parametric asymmetry-induced synchro-

nization [151–153], a scenario in which the synchronization of identically coupled

oscillators is enhanced by setting making the oscillators themselves non-identical.
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Here, we show that synchronization of identically coupled identical oscilla-

tors is enhanced by changing the connection patterns of the oscillators to be non-

identical. We refer to this effect as structural asymmetry-induced synchronization

(AISync). We confirm that this behavior is robust against noise and can be found in

real systems by providing the first experimental demonstration of structural AISync

using networks of coupled optoelectronic oscillators. In excellent agreement with

theory, the experiments show unequivocally that networks can be optimized for

both global and cluster synchronization by reducing structural symmetry.

5.6.2 Theoretical considerations

We consider a network of N Laplacian-coupled identical oscillators,

ẋi = F(xi) + σ
N∑

j=1

LijH(xj), (5.12)

where xi is the state of the i-th oscillator, F is the vector field governing the un-

coupled dynamics of each oscillator, L = {Lij} is the (negative) Laplacian matrix

describing the structure of an arbitrary unweighed network, H is the interaction

function, and σ > 0 is the coupling strength. We are interested in the dynamics

inside a symmetry cluster.

For simplicity, we assume the cluster to be optimized is non-intertwined [113,

154]; that is, it can synchonize independent of whether other clusters synchronize

or not. The control of the synchronization of intertwined clusters is also important,

and we discuss the extension of our results to this case in Section 5.6.4.

Numbering the oscillators in the cluster to be optimized from 1 to m, we obtain
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the dynamical equation for the cluster:

ẋi = F(xi) + σ
m∑

j=1

LijH(xj) + σ

N∑

j=m+1

AijH(xj)

= F(xi) + σ

m∑

j=1

LijH(xj) + σI
(
{xj}j>m

)
,

(5.13)

where Lij = Aij − δijµi, A = {Aij} is the adjacency matrix of the network, µi =

∑
j Aij, and the equation holds for 1 ≤ i ≤ m. Here, we denote the input term

from the rest of the network
∑N

j=m+1AijH(xj) by I
(
{xj}j>m

)
to emphasize that

this term is independent of i and hence equal for all oscillators 1, . . . ,m. This term

is zero, and m = N , only in the special case in which the entire network consists of

a single symmetry cluster.

For m < N , if we regard the cluster subnetwork consisting of oscillators

1, . . . ,m as a separate network (by ignoring its connections with other clusters),

then the corresponding m × m Laplacian matrix L̃ is closely related to the corre-

sponding block of the N ×N Laplacian matrix L of the full network:

Lij =





L̃ij, 1 ≤ i 6= j ≤ m,

L̃ij + µ̃, 1 ≤ i = j ≤ m,

(5.14)

where µ̃ > 0 is the number of connections each oscillator in the cluster receives

from the rest of the network. It is then clear that there are two differences in

the dynamical equation when the cluster subnetwork is part of a larger network

(i.e., as a symmetry cluster, described by Eq. 5.13) rather than as an isolated

network. First, the Laplacian matrix L̃ in the dynamical equation is replaced by

L̂ = {Lij}1≤i,j≤m = L̃+ µ̃1m; that is, the diagonal entries are uniformly increased by

µ̃. Second, each oscillator now receives a common input σI
(
{xj}j>m

)
produced by
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its coupling with other clusters, which generally alters the synchronization trajectory

sI ≡ x1 = · · · = xm, causing it to be different in general from the ones generated by

the uncoupled dynamics ṡ = F(s). This has to be accounted for in calculating the

maximum Lyapunov exponent transverse to the cluster synchronization manifold to

determine the stability of the cluster synchronous state.

Despite these differences, a diagonalization procedure similar to the one used

in the master stability function approach [78] can still be applied to the variational

equation in order to assess the cluster’s synchronization stability. The variational

equation describing the evolution of the deviation away from sI inside the cluster

can be written as

δẊ =
(
1m ⊗ JF(sI) + σL̂⊗ JH(sI)

)
δX, (5.15)

where δX = (δxᵀ
1, · · · , δxᵀ

m)ᵀ = (xᵀ
1−sᵀI , · · · ,xᵀ

m−sᵀI)ᵀ and ⊗ denotes the Kronecker

product. The rest of the network does not enter the equation explicitly, other than

through its influence on the coupling matrix L̂ and the synchronization trajectory

sI . If L̂ is diagonalizable (as for any undirected network), the decoupling of Eq.

5.15 results in m independent d-dimensional equations corresponding to individual

perturbation modes:

η̇i =
[
JF(sI) + σv̂iJH(sI)

]
ηi, (5.16)

where d is the dimension of node dynamics, J is the Jacobian operator, η =

(ηᵀ1 , · · · , ηᵀm)ᵀ is δX expressed in the new coordinates that diagonalize L̂, and v̂i =

ṽi + µ̃ are the eigenvalues of L̂ in ascending order of their real parts [with {ṽi} =

eig(L̃)]. If L̂ is not diagonalizable [155], the analysis can be carried out by us-
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ing the Jordan canonical form of this matrix to replace diagonalization by block-

diagonalization.

In both cases the cluster synchronous state is stable if Λ(σv̂i) < 0 for i =

2, . . . ,m, where Λ is the largest Lyapunov exponent of Eq. 5.16 and v̂2, · · · , v̂m rep-

resent the transverse modes; the maximum transverse Lyapunov exponent (MTLE)

determining the stability of the synchronous state is maxi Λ(σv̂i). Moreover, for the

large class of oscillator networks for which the stability region is bounded [156,157],

as assumed here, the synchronizability of the symmetry cluster can be quantified in

terms of the eigenratio R = Re(ṽm)/Re(ṽ2): the smaller this ratio, in general the

larger the range of σ over which the cluster synchronous state can be stable 1. The

cluster subnetwork is most synchronizable when v̂2 = · · · = v̂m, which also implies

that all eigenvalues are real and in fact integers if the network is unweighted as

considered here [158]. It is important to notice that the optimality of the cluster

subnetwork and associated properties are conserved in the sense that if ṽ2 = · · · = ṽm

for the isolated cluster, then v̂2 = · · · = v̂m will hold for the cluster as part of a

larger network. This analysis also holds for discrete-time systems, such as the ones

we consider below.

Now we can compare symmetry clusters with optimal clusters and show rig-

orously that almost all optimally synchronizable clusters are asymmetric. Without

loss of generality, we consider an unweighted cluster in isolation and assume it has

1Synchronizability may depend on the imaginary part of the eigenvalues in some specific cases,

but this does not influence our results since we focus on networks that are initially undirected and

the optimization of symmetry clusters necessarily results in real eigenvalues.
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m nodes and ` directed links internal to the cluster. In a symmetry cluster, because

the nodes are structurally identical, the in- and out-degrees of all nodes must be

equal. Thus, ` must be divisible by m if the cluster is symmetric. In an optimal

cluster, because ṽ2 = · · · = ṽm ≡ ṽ and thus tr(L̃) = (m − 1)ṽ, it follows that

ṽ = `/(m − 1). The fact that ṽ is an integer implies that ` must be divisible by

m− 1 if the cluster is optimal. Since ` ≤ m(m− 1), the two divisibility conditions

can be satisfied simultaneously if and only if ` = m(m−1) (i.e., when the network is

a complete graph). But there are numerous optimal networks (and hence clusters)

for ` < m(m−1) [155,158]. Therefore, for any given number m of nodes, all optimal

clusters other than the complete graph are necessarily asymmetric, meaning that

(with the exception of the complete graph) the synchronization stability of any sym-

metry cluster can be improved by breaking its structural symmetry. This general

conclusion forms the basis of structural AISync and holds, in particular, when an

entire network consists of a single symmetry cluster (as illustrated below).

When viewed as isolated subnetworks, symmetry clusters are equivalent to the

vertex-transitive digraphs in algebraic graph theory, defined as directed graphs in

which every pair of nodes is equivalent under some node permutation [159, 160].

Thus, in order to improve the stability of any non-intertwined symmetry cluster

from an arbitrary network, we only need to optimize the corresponding vertex-

transitive digraph by manipulating its (internal) links. In particular, this can always

be done by removing links inside the symmetry cluster [158,161], despite the fact that

sparser networks are usually harder to synchronize. For concreteness, we focus on

clusters that are initially undirected and consider the selective removal of individual
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symmetry

clusters C6 Y6 = K2 × C6 K3,3 K2,2,2 K6

nontrivial

eigenvalues
1,1,3,3,4 2,3,3,5,5 3,3,3,3,6 4,4,4,6,6 6,6,6,6,6

eigenratio 4 2.5 2 1.5 1

optimal

clusters

nontrivial

eigenvalues
1,1,1,1,1 2,2,2,2,2 1,1,1,1,1 3,3,3,3,3 6,6,6,6,6

Table 5.1: Connected symmetry clusters of 6 nodes and optimal clusters
embedded within them. Some symmetry clusters have more than one
embedded optimal network, in which case we show one that can be
obtained through a minimal number of link deletions.
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directional links. As an example, we show in Table 5.1 all connected (undirected)

symmetry clusters of 6 nodes and their embedded optimal networks. Apart from the

complete graph, which is already optimal to begin with, the synchronizability of the

other symmetry clusters as measured by the eigenratio R is significantly improved

in all cases.

Because it can be costly or unnecessary to fully optimize a symmetry cluster,

it is natural to ask whether the synchronizability can be significantly improved by

modifying just a few links. We systematically investigate how many directional links

need to be rewired to reduce the eigenratio gap R− 1 by half. Fig. 5.9 summarizes

results for all undirected symmetry clusters of sizes between m = 8 and 17, where

the rewiring percentage p = h/` is the ratio between the minimal number of link

rewirings h that halves R − 1 and the total number ` of internal directed links of

the cluster. Fig 5.9(a) shows that on average only about 15% of the links need to

be rewired to significantly improve synchronizability of symmetry clusters, and it

is largely size independent. This illustrates the potential of structural AISync as a

mechanism for the topological control of synchronization stability. Simulated an-

nealing code to improve a symmetry cluster’s synchronizability is available at [162].

Fig. 5.9(b) shows the rewiring percentage p as function of the eigenratio R and

link density D = `
m(m−1)

, where each data point represents one symmetry cluster. It

is clear that clusters that are small in both D and R require the highest percentage

of links to be rewired in order to significantly reduce the eigenratio gap. This

confirms the intuition that if a network achieves a small eigenratio with a relatively

small number of links, then its organization is efficient and its synchronizability is
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3

symmetry
clusters

nontrivial
eigenvalues

1,1,3,3,4 2,3,3,5,5 3,3,3,3,6 4,4,4,6,6 6,6,6,6,6

eigenratio 4 2.5 2 1.5 1

optimal
clusters

nontrivial
eigenvalues

1,1,1,1,1 2,2,2,2,2 1,1,1,1,1 3,3,3,3,3 6,6,6,6,6

TABLE I. Connected symmetry clusters of 6 nodes and opti-
mal clusters embedded within them. Some symmetry clusters
have more than one embedded optimal network, in which case
we show one that can be obtained through a minimal number
of link deletions.

` < m(m � 1) [24, 29]. Therefore, for any given number
m of nodes, all optimal clusters other than the complete
graph are necessarily asymmetric, meaning that (with
the exception of the complete graph) the synchroniza-
tion stability of any symmetry cluster can be improved
by breaking its structural symmetry. This general con-
clusion forms the basis of structural AISync and holds,
in particular, when an entire network consists of a single
symmetry cluster (as illustrated below).

When viewed as isolated subnetworks, symmetry clus-
ters are equivalent to the vertex-transitive digraphs in al-
gebraic graph theory, defined as directed graphs in which
every pair of nodes is equivalent under some node per-
mutation [30, 31]. Thus, in order to improve the sta-
bility of any non-intertwined symmetry cluster from an
arbitrary network, we only need to optimize the corre-
sponding vertex-transitive digraph by manipulating its
(internal) links. In particular, this can always be done by
removing links inside the symmetry cluster [29, 32], de-
spite the fact that sparser networks are usually harder to
synchronize. For concreteness, we focus on clusters that
are initially undirected and consider the selective removal
of individual directional links. As an example, we show
in Table I all connected (undirected) symmetry clusters
of 6 nodes and their embedded optimal networks. Apart
from the complete graph, which is already optimal to
begin with, the synchronizability of the other symmetry
clusters as measured by the eigenratio R is significantly
improved in all cases.

It is also informative to consider the e↵ect of rewiring
links, defined by removing an existing link and adding
a di↵erent link not yet present in the cluster. Because
it can be costly or unnecessary to fully optimize a sym-
metry cluster, we systematically investigate how many
directional links need to be rewired to reduce the eigen-
ratio gap R � 1 by half. Figure 1 summarizes results for
all connected symmetry clusters that are undirected of
sizes between m = 8 and 17, where the rewiring percent-

m

p

(a)

p

R

D

(b)

FIG. 1. Improvement of synchronizability by breaking the
cluster symmetry through link rewiring. (a) Percentage of
rewirings, p, needed to reduce the eigenratio gap R � 1 by
half. The violin plots show the distribution of p over all con-
nected undirected symmetry clusters for each cluster size m.
(b) Color-coded p in the diagram of link density D versus
eigenratio R for all symmetry clusters considered in panel
(a), where each cluster corresponds to one data point.

age p = h/` is the ratio between the minimal number of
link rewirings h that halves R � 1 and the total number
` of internal directed links of the cluster. Figure 1(a)
shows that on average only about 15% of the links need
to be rewired to significantly improve synchronizability
of symmetry clusters, and it is largely size independent.
Figure 1(b) shows the rewiring percentage p as function
of the eigenratio R and link density D = `

m(m�1) , where

each data point represents one symmetry cluster. It is
clear that clusters that are small in both D and R require
the highest percentage of links to be rewired in order
to significantly reduce the eigenratio gap. This confirms
the intuition that if a network achieves a small eigenratio
with a relatively small number of links, then its organiza-
tion is e�cient and its synchronizability is relatively hard
to improve. Our simulated annealing code to improve the
cluster’s synchronizability is available at [33].

Having established a theoretical foundation for our
main finding, we now turn to our experimental results.
The experiments are performed using networks of identi-
cal optoelectronic oscillators whose nonlinear component
is a Mach-Zehnder intensity modulator, as schematically
shown in Figure 2. The system can be modeled as

xi(t + 1) = �I[xi(t)] � �

nX

j=1

LijI[xj(t)] mod 2⇡, (6)

where t is now a discrete time, � is the feedback strength,
I(xi) = sin2(xi + �) is the normalized intensity output
of the modulator, xi is the normalized voltage applied
to the modulator, and � is the operating point (set to
⇡/4 in our experiments). Each oscillator consists of a
clocked optoelectronic feedback loop. Light from a 780
nm continuous-wave laser passes through the modula-
tor, which provides the nonlinearity. The light intensity
is converted into an electrical signal by a photoreceiver
and measured by thea field-programmable gate array
(FPGA) via an analog-to-digital converter (ADC). The

Figure 5.9: Improvement of synchronizability by breaking the cluster
symmetry through link rewiring. (a) Percentage of rewirings, p, needed
to reduce the eigenratio gap R − 1 by half. The violin plots show the
distribution of p over all connected undirected symmetry clusters for
each cluster size m. (b) Color-coded p in the diagram of link density
D versus eigenratio R for all symmetry clusters considered in panel (a),
where each cluster corresponds to one data point.

146



relatively hard to improve.

5.6.3 Experimental results

Having established a theoretical foundation, we now turn to our experimen-

tal results. The experiments are performed using the network setup described in

Chapter 4. The system can be modeled as

xi[n] = βI(xi[n]) + σ

n∑

j=1

LijI(xj[n]) mod 2π, (5.17)

where n is discrete time, β is the feedback strength, I(xi) = sin2(xi + φ0) is the

normalized intensity output of the modulator, xi is the normalized voltage applied

to the modulator, and φ0 is the operating point (set to π/4 in our experiments).

We first consider a case in which the full network is symmetric and we seek to

optimize global synchronization. In Fig. 5.10 we study a 16-node symmetric network

and show explicitly through our experiments that it becomes more synchronizable

with less symmetry. In the original network [Fig. 5.10(a)], all nodes play exactly

the same structural role. After seven directional link rewirings [marked in Fig.

5.10(b)], the symmetry of the network is largely broken and almost all nodes are now

structurally different: the original 16-node symmetry cluster is reduced to 14 single-

node clusters and only 2 nodes occupying symmetric positions. The eigenratio,

however, reduces from R = 4.62 to R = 2.80 and thus improves significantly.

The experimental results are presented in Fig. 5.10(c), where we show the

average synchronization error as a function of the coupling strength for both net-

works. For each network, we performed 8 runs of the experiment starting from
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FIG. 2. Schematic illustration of the apparatus used in our
experiments. The diagram shows the components of one op-
toelectronic oscillator (left) and associated coupling scheme
(right), which is implemented using time multiplexing in the
FPGA.

FPGA is clocked at 10 kHz, resulting in the discrete time
map dynamics of the oscillators. The FPGA controls a
digital-to-analog converter (DAC) that drives the modu-
lator with a voltage xi(t+1) = �I[xi(t)], closing the feed-
back loop. These oscillators are coupled together elec-
tronically on the FPGA according to the desired Lapla-
cian matrix, as described in detail in Ref. [34]. Specif-
ically, the experimental system uses time-multiplexing
and time delays to realize a network of coupled oscillators
from a single time-delayed feedback loop.

We first consider a case in which the full network
is symmetric and we seek to optimize global synchro-
nization. In Fig. 3 we study a 16-node symmetric net-
work and show explicitly through our experiments that
it becomes more synchronizable with less symmetry. In
the original network [Fig. 3(a)], all nodes play exactly
the same structural role. After seven directional link
rewirings [marked in Fig. 3(b)], the symmetry of the net-
work is largely broken and almost all nodes are now struc-
turally di↵erent: the original 16-node symmetry cluster is
reduced to 14 single-node clusters and only 2 nodes oc-
cupying symmetric positions. The eigenratio, however,
reduces from R = 4.62 to R = 2.80 and thus improves
significantly.

The experimental results are presented in Fig. 3(c),
where we show the average synchronization error as a
function of the coupling strength for both networks.
For each network, we performed 8 runs of the experi-
ment starting from di↵erent random initial conditions,
and measured the normalized voltages xi for 8196 it-
erations at each fixed coupling strength before increas-
ing � by 0.015. The synchronization error is defined as

� =
qP

1in kxi � x̄k2/n, where k k is the shortest

distance between two points on a circle, and the mean
x̄ on a circle can be found as the phase of

P
1jn eixj .

The data points in Fig. 3(c) correspond to the average
synchronization error h�i, defined as � averaged over
the last 5000 iterations for each � and then further aver-
aged over the 8 runs. The error bars corresponding to the

Nsymm = 128
Ncluster = 1

R = 4.62(a)

Nsymm = 2
Ncluster = 15

R = 2.80
(b)

�

AISynch�
i

M
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E

(c)

FIG. 3. Experimental demonstration of structural AISync in
in global synchronization. (a) Symmetric 16-node network
of coupled optoelectronic oscillators used in the experiment,
which has 128 symmetries, consists of a single (global) symme-
try cluster, and has an eigenratio of R = 4.62. (b) Optimized
network found through simulated annealing, where 7 links are
removed (red) and 7 links are added (blue) to the network in
(a), resulting in a network with only 2 symmetries and 14 sin-
gle-node15 symmetry clusters but an eigenratio of R = 2.80.
(c) Experimentally measured average synchronization error
h�i for in the symmetric and symmetry-broken network in
(a) and (b), respectively, where only the latter can synchro-
nize for a range of � (purple region). The feedback strength
was set to � = 2.8. This experimental result is consistent
with the theoretically computed MTLE (color-coded curves),
which is more negative for the symmetry-broken network.

standard deviation across di↵erent runs are smaller than
the size of the symbols, and are not shown. The exper-
imental data clearly demonstrates that synchronization
is only achieved for the network with reduced symmetry.
The experimental result is consistent with the MTLE de-
termined from numerical calculations of the variational
equation of the model in Eq. (6) [color-coded curves in
Fig. 3(c)]. Indeed, for values of � close to the bound-
ary of linear stability, synchronization is not observed in
experiments due to noise in the ADC [34], but synchro-
nization is consistently observed once the MTLE becomes
su�ciently negative.

Now we consider the case in which the symmetry clus-
ter is a proper subnetwork (i.e., m < n) and the goal is
to optimize synchronization in that cluster. Again us-
ing optoelectronic oscillators, we perform experiments in
the network configuration shown in Fig. 4(a), which is a
complex network with five symmetry clusters. This time
we optimize a symmetry cluster that, when isolated, cor-
responds to a ring network. The MTLE calculation in
Fig. 4(b) predicts AISync to be common in the parameter

Figure 5.10: Experimental demonstration of structural AISync in global
synchronization. (a) Symmetric 16-node network of coupled optoelec-
tronic oscillators used in the experiment, which has 128 symmetries,
consists of a single (global) symmetry cluster, and has an eigenratio
of R = 4.62. (b) Optimized network found through simulated anneal-
ing, where 7 links are removed (red) and 7 links are added (blue) to
the network in (a), resulting in a network with only 2 symmetries and
15 symmetry clusters but an eigenratio of R = 2.80. The adjacency
matrices can be found in Appendix C. (c) Experimentally measured av-
erage synchronization error 〈∆〉 for the symmetric and symmetry-broken
network in (a) and (b), respectively, where only the latter can synchro-
nize for a range of σ (purple region). The feedback strength was set to
β = 2.8. This experimental result is consistent with the theoretically
computed MTLE (color-coded curves), which is more negative for the
symmetry-broken network.
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different random initial conditions, and measured the normalized voltages xi for

8196 iterations at each fixed coupling strength before increasing σ by 0.015. The

synchronization error is defined as ∆ =
√∑

1≤i≤N ‖xi − x̄‖2/N , where ‖ ‖ is the

shortest distance between two points on a circle, and the mean x̄ on a circle can

be found as the phase of
∑

1≤j≤N eixj . The data points in Fig. 5.10(c) correspond

to the average synchronization error 〈∆〉, defined as ∆ averaged over the last 5000

iterations for each σ and then further averaged over the 8 runs. The error bars

corresponding to the standard deviation across different runs are smaller than the

size of the symbols, and are not shown. The experimental data clearly demonstrates

that synchronization is only achieved for the network with reduced symmetry.

The experimental result is consistent with the MTLE determined from numer-

ical calculations of the variational equation of the model in Eq. 5.17 [color-coded

curves in Fig. 5.10(c)]. Indeed, for values of σ close to the boundary of linear

stability, synchronization is not observed in experiments due to noise [123], but syn-

chronization is consistently observed once the MTLE becomes sufficiently negative.

Now we consider the case in which the symmetry cluster is a proper subnet-

work (i.e., m < N) and the goal is to optimize synchronization in that cluster.

Again using optoelectronic oscillators, we perform experiments in the network con-

figuration shown in Fig. 5.11(a), which is a complex network with five symmetry

clusters. This time we optimize a symmetry cluster that, when isolated, corresponds

to a ring network. The MTLE calculation in Fig. 5.11(b) predicts AISync to be

common in the parameter space. Fixing β = 6, the same experimental procedure

as for Fig. 5.10 is performed to find the average synchronization error 〈∆〉 in the
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cluster. As shown in Fig. 5.11(c), AISync is consistently observed over a wide range

of the coupling strength σ, matching the theoretical prediction.

5.6.4 Extension to intertwined clusters

Now we turn to the case of intertwined clusters. When two clusters are inter-

twined, desynchronization in one cluster will in general lead to the loss of synchrony

in the other cluster (an example would be the Red and Green clusters in Fig. 5.6a).

This is because the symmetry group acting on the two clusters does not admit

a geometric decomposition; that is, symmetry permutations cannot be applied to

each cluster independently. As a consequence, a desynchronized cluster sends in-

coherent signals to nodes in the other cluster, causing its intertwined counterpart

to desynchronize as well. The irreducible representation transform introduced in

Ref. [113] enables stability analysis on many cluster synchronization patterns. In

that framework, the presence of intertwined clusters is reflected by nontrivial trans-

verse blocks (i.e., blocks with dimension greater than 1) in the transformed coupling

matrix, whereas non-intertwined clusters only give rise to 1 × 1 transverse blocks.

Unfortunately, the high-dimensional transverse blocks make the effect of topological

perturbation on cluster synchronizability opaque and offer little insight on how to

optimize the clusters to support desired synchronization patterns.

Here, we present a new perspective that gives a simple necessary condition for

the synchronization in intertwined clusters. This in turn points to an easy extension

of the previous optimization strategy for the topological control of synchronization
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FIG. 4. Experimental demonstration of structural AISync in
cluster synchronization. (a) Example network in which a sym-
metry cluster (magenta) is optimized for synchronization by
removing links (red). (b) Predictions based on the theoretical
computation of the MTLE, showing that in the �⇥� parame-
ter space there is an AISync region (purple); the other colors
indicate the regions where both clusters synchronize (blue)
and where neither cluster can synchronize (green). (c) Exper-
imentally measured average synchronization error h�i in the
original (orange) and optimized (blue) cluster for � = 6. The
experimental results are in good agreement with the MTLE
calculations predictions (color-coded curves).

space. Fixing � = 6, the same experimental procedure as
for Fig. 3 is performed to find the average synchronization
error h�i in the cluster. As shown in Fig. 4(c), AISync is
consistently observed over a wide range of the coupling
strength �, matching the theoretical prediction. Similar
results are expected for di↵erent network structure and
oscillator types, as further illustrated in the Supplemen-
tal Material [25].

In summary, we established the role of structural asym-
metry (or structural heterogeneity) in promoting spon-
taneous synchronization through both theory and ex-
periments. Our theory confirmed the generality of the
phenomenon, while our experiments demonstrated its ro-
bustness. Because symmetry clusters arise naturally in
complex networks, our findings are applicable to a wide
range of coupled dynamical systems. In particular, since
identical synchronization in a symmetry cluster is the ba-
sic building block of more complex synchronous patterns,
we argue that our results can be used for the targeted
topological control of cluster synchronization in complex
networks, which echoes the positive e↵ect of structural
asymmetry on input control [35].
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in intertwined clusters.

Consider two intertwined clusters subject to transverse perturbations δX and

δY, respectively. Their variational equation reads





δẊ =
(
1m ⊗ JF(sIX )− σL̂X ⊗ JH(sIX )

)
δX + σC⊗ JH(sIY )δY,

δẎ =
(
1m ⊗ JF(sIY )− σL̂Y ⊗ JH(sIY )

)
δY + σD⊗ JH(sIX )δX.

(5.18)

Here, Cij = 1 if the i-th oscillator in cluster X receives an input from the j-th

oscillator in cluster Y and Cij = 0 otherwise. The inter-cluster coupling matrix D

is similarly defined with the role of two clusters exchanged (D = Cᵀ if the inter-

cluster coupling is undirected). Without the cross-coupling term, Eq. 5.18 reduces

to the non-intertwined case discussed earlier





δẊ =
(
1m ⊗ JF(sIX )− σL̂X ⊗ JH(sIX )

)
δX,

δẎ =
(
1m ⊗ JF(sIY )− σL̂Y ⊗ JH(sIY )

)
δY.

(5.19)

Because of the intertwined nature of the two clusters, they must be considered

concurrently when synchronization is desired in either of them. That is, L̂X and L̂Y

should be optimized to ensure δX and δY are both damped to zero in Eq. 5.18.

It is difficult to establish a synchronizability measure on two clusters based on Eq.

5.18, but we can see the following connection between Eqs. 5.18 and 5.19 2:

If |δX| → 0 and |δY| → 0 in Eq. 5.18, then

|δX| → 0 and |δY| → 0 in Eq. 5.19. (5.20)

2This is easy to see. For example, if δX does not shrink according to Eq. 5.15, then in order

for |δX| → 0 in Eq. 5.18 δY must be significantly away from zero.
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That is, δX and δY must go to zero for the synchronization in intertwined clusters.

This implies that we can optimize the synchronizability of two clusters indepen-

dently, using the same method introduced earlier for non-intertwined clusters. Such

optimization is guaranteed to expand the region in parameter space satisfying con-

dition (5.20). Inside this expanded region, one is likely to observe structural AISync.

We demonstrate this by considering a random network of 17 nodes that con-

tains two intertwined clusters (highlighted in Fig. 5.12(a)). Each cluster is opti-

mized by removing the red dashed links, which breaks its structural symmetry but

improves the eigenratio to 1. The pale orange shade in Fig. 5.12(b) indicates the

region where condition (5.20) is satisfied by the original clusters. This region is

expanded to include the purple area when the clusters are optimized. Not all points

in the expanded region show structural AISync, since the condition is necessary but

not sufficient. Nonetheless, a significant portion of it does, which is verified by direct

simulations and highlighted in dark purple.

We test these predictions in our experiment. We vary β and σ along the

dashed line in Fig. 5.12(b). The experimentally measured synchronization error in

each cluster is shown in Fig. 5.12(c). Our results confirm that AISync can also be

observed in networks with intertwined clusters.

In summary, we established the role of structural asymmetry (or structural

heterogeneity) in promoting spontaneous synchronization through both theory and

experiments. Our theory confirmed the generality of the phenomenon, while our

experiments demonstrated its robustness. Because symmetry clusters arise natu-

rally in complex networks, our findings are applicable to a wide range of coupled
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FIG. S7. Experimental demonstration of structural AISync in cluster synchronization. (a) Example network in which a
symmetry cluster (magenta) is optimized for synchronization by removing links (red). (b) Predictions based on the theoretical
computation of the MTLE, showing that in the �⇥� parameter space there is an AISync region (purple); the other colors indicate
the regions where both clusters synchronize (blue) and where neither cluster can synchronize (green). (c) Experimentally
measured average synchronization error h�i in the original (orange) and optimized (blue) cluster for � = 6. The experimental
results are in good agreement with the MTLE calculations (color-coded curves).
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FIG. S8. Experimental demonstration of Structural AISync in intertwined clusters. (a) Example network in which two
intertwined clusters (magenta) are optimized to induce synchronization by removing red links. (b) The region in the � ⇥ �
parameter space satisfying condition (S3) is expanded from orange shaded area to include purple shaded area when the clusters
are optimized. Dark purple area corresponds to the AISync region determined through direct simulations. (c) Experimentally
measured average synchronization error h�i in the original and optimized clusters when moving through the parameter space
quasi-statically along the dashed line in (b). The blue dots are not seen because h�i are almost identical in the two optimized
clusters.

Figure 5.12: Structural AISync in intertwined clusters. (a) Example
network in which two intertwined clusters (magenta) are optimized to
induce synchronization by removing red links. The adjacency matrices
are included in Appendix C. (b) The region in the σ × β parameter
space satisfying condition (5.20) is expanded from orange shaded area
to include purple shaded area when the clusters are optimized. The dark
purple area corresponds to the AISync region determined through direct
simulations. (c) Experimentally measured synchronization error ∆ in
the original and optimized clusters when moving through the parameter
space along the dashed line in (b).
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dynamical systems. In particular, since identical synchronization in a symmetry

cluster is the basic building block of more complex synchronization patterns, our

results can be used for the targeted topological control of cluster synchronization

in complex networks, which echoes the positive effect of structural asymmetry on

input control [163].

5.7 Discussion

In this chapter, we presented a series of experiments performed on the time-

multiplexed opto-electronic network system described in Chapter 4. We began by

studying the dynamics of a single uncoupled oscillator and comparing it with the

model of a sine-squared map model. We then investigated synchronization in a the

simplest possible “network” of two bidirectionally coupled nodes and found excellent

agreement with our model.

Having validated our simple models, we turned to the implementation of more

interesting networks. First, we observed synchronized chimeras in a network of

five globally-coupled nodes, confirming our predictions from Chapter 3 that these

synchronized chimeras can be observed in larger globally-coupled networks and with

different oscillator dynamics. Interestingly, we again found, as we did in Chapter 3,

that a coupling delay was necessary to find stable synchronized chimeras.

Next, the implementation of a 10-node network allowed us to perform the

first experimental measurements of input-cluster synchronization (as opposed to

symmetry-cluster synchronization) in a non-Laplacian network. Our measurements
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confirmed that the symmetry-based stability analysis for cluster synchronization can

be extended to work for input-clusters.

The stability analysis for cluster synchronization depends on network symme-

tries. However, we used our experiment to study a counter-intuitive phenomenon

termed structural Asymmetry-Induced Synchronization (AISync), in which break-

ing the symmetry within a cluster generally improves the cluster’s synchronizability

in Laplacian networks.

In addition to being interesting studies in their own right, the experiments

presented in this chapter also demonstrate the versatility and utility of our novel

approach for creating arbitrary networks in the lab.
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Entropy isn’t what it used to be.

Bumper sticker

Anyone who considers arithmetical

methods of producing random

digits is, of course, in a state of sin.

John von Neumann [164]

Chapter 6: Evaluating physical random number generators

This chapter is based on work from the following publication:

Joseph D Hart, Yuta Terashima, Atsushi Uchida, Gerald B Baumgartner, Thomas

E Murphy, & Rajarshi Roy. “Recommendations and illustrations for the evaluation

of photonic random number generators”. APL Photonics, 2(9), 090901 (2017).

Random number generation underlies modern cryptographic techniques used

to ensure the privacy of digital communication and storage. In order to improve

security, digital information systems have begun to utilize optical or other phys-
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ical sources to generate high-speed unpredictable signals. However, the methods

most commonly used to evaluate random number generators (RNGs) have not yet

evolved to reflect the increasing importance of physical entropy sources for modern

cryptography.

Historically, random number generation has been dominated by algorithms

that, given a seed, produce a sequence of pseudo-random numbers. However, since

pseudo-random number generators (PRNGs) are deterministic algorithms, if an at-

tacker is able to determine the seed, all security is lost. In order to defend against

such problems, RNG designers are increasingly turning to physical means to either

frequently re-seed or completely replace PRNGs, as evidenced by the commercial-

ization of optical RNGs by companies such as PicoQuant [165], IDQuantique [166],

and Whitewood Encryption [167].

Unlike PRNGs, physical processes can generate true randomness. Classical

stochastic processes such as thermal or electrical noise can be used for entropy gen-

eration [168]. Additionally, boolean chaos [169,170] and timing jitter in ring oscilla-

tors [171,172] have been used to create electronic entropy sources. However, optical

systems are especially well-suited for random number generation due to resistance to

external interference, speed, and access to quantum mechanical processes. There-

fore, even though our analysis and recommendations are relevant for all physical

entropy sources, we focus specifically on optical systems.

The fundamental randomness of quantum mechanics present in many opti-

cal systems can be employed to generate true random numbers. In some optical

entropy sources such as single photon measurements [166, 173–176], optical para-
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metric oscillators [177], and spontaneous Raman scattering [178], the measurements

themselves are quantized. In others, such as those based on amplified sponta-

neous emission [167, 179–185], laser phase noise [186–191], quantum vacuum fluc-

tuations [192–196], and stimulated Raman scattering [197, 198], an unpredictable

analog waveform with quantum mechanical origins is sampled and digitized. In this

chapter, we will provide an in-depth analysis of one of each type: single photon

time-of-arrival measurements and amplified spontaneous emission. Optical RNGs

based on photon detection [165, 166] and spontaneous emission [167] are now com-

mercially available. See Ref. [199] for a review of stochastic RNGs based on these

and other optical systems.

Chaotic systems amplify uncertainties in initial conditions and sources of in-

trinsic noise [200, 201]; only in the last decade has this inherent unpredictabil-

ity been harnessed for random number generation in the form of chaotic lasers

[17,183,202–209]. For a review of chaotic lasers including their applications to RNGs,

see Ref. [210] and [211]. While we know of no commercially available physical RNGs

based on chaotic lasers, new developments in photonic integrated circuits [209] and

real-time, high-speed bit streaming [212] for chaotic laser RNGs lay the groundwork

for commercialization.

Physical sources of randomness and PRNGs are best used in complementary

roles. Physical sources can provide true randomness, but the raw output of a phys-

ical source is typically biased and not uniformly distributed. PRNGs, on the other

hand, can provide a binary sequence that is unbiased and uniformly distributed but

completely deterministic. The most secure RNGs combine the benefits of both meth-
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ods by using physical sources to seed PRNGs or other post-processing algorithms;

such implementations are used by the Intel Secure Key (the RDRAND command),

available in Ivy Bridge processors [168], and in the commercially available optical

RNGs provided by PicoQuant [165], IDQuantique [166], and Whitewood Encryp-

tion [167]. Official guidelines for how to combine a physical entropy source and a

PRNG are currently under development by the U.S. National Institute of Standards

and Technology (NIST) [213].

Due to the increasing importance of the security of digital information and

the wide variety of physical methods used to generate random numbers, a standard

set of evaluation metrics for random number generation is essential. Previous works

have used a variety of methods to estimate the entropy of physical sources of ran-

domness [173–176,184, 188, 190–192, 204–206,208, 209, 214]; however, many of these

techniques assume that there are no inter-sample correlations. As of this writing,

there is no widely accepted technique to estimate the entropy of physical entropy

sources. It is important that evaluation metrics and standards reflect the funda-

mental differences between PRNGs and physical entropy sources; however, common

testing practices do not currently distinguish between the two. We are not the first

to recognize these problems; indeed, NIST is currently developing a new set of stan-

dards and evaluation techniques specifically for physical entropy sources [26]. These

new standards recommend entropy rate as the figure of merit for physical entropy

sources.

In this chapter, we review the current practices in the evaluation of physical

RNGs and call for a renewed emphasis on understanding the origin of and physical

160



and information theoretical limitations on the randomness in the design, testing,

and validation of optical entropy sources. We advocate for the separation of the

physical entropy source from deterministic post-processing in the evaluation process

and for the use of the h(ε, τ) entropy rate analysis [58,215]. The h(ε, τ) entropy rate

analysis emphasizes that the entropy rate is a function of measurement resolution ε

and sampling period τ . While the existing statistical tests used for physical RNG

evaluation offer a simple “pass or fail” evaluation, the h(ε, τ) analysis provides in-

sight that is more relevant for the design of optical RNGs, including information

about the physical origins of randomness and the impact of the digitization pro-

cess on entropy extraction. Finally, we use the h(ε, τ) analysis to compare three

state-of-the-art optical entropy sources: single photon counting, chaotic lasers, and

amplified spontaneous emission noise.

In Section 6.1, we review current physical RNG evaluation practices and

present our recommendations. In particular, Section 6.1.1 describes the current

standards for physical RNG evaluation and some of its shortcomings. In Section

6.1.2 we briefly describe the new NIST draft recommendations for the evaluation of

physical random number generators, and we provide our own recommendations in

Section 6.1.3. In Section 6.2, we review three different methods of optical entropy

generation and present the results of our own measurement and evaluation of these

entropy sources. We provide some concluding thoughts in Section 6.3.

161



6.1 Evaluation of Physical Random Number Generators

Evaluating a PRNG is relatively straightforward: NIST has published specific

guidelines for the design and testing of PRNGs [216]. In contrast, physical RNGs are

much more difficult to evaluate due in part to the wide variety of physical processes

that can be used [26].

6.1.1 State of the art

The most common procedure used to evaluate physical RNGs, depicted in Fig.

6.1a, is the following: collect data from the physical system; perform deterministic

post-processing (such as von Neumann’s method) and/or conditioning (such as least

significant bit extraction [203], exclusive or (XOR) [17], and hashing [173]) on the

data in order to remove bias and whiten the output; and use a suite of statistical

tests (such as the NIST suite [217] or DIEHARD [218]) on the output bit sequence

to determine whether the resulting bitstream has statistical properties that are com-

patible with a truly random sequence. The distinction between post-processing and

conditioning is defined somewhat arbitrarily by NIST [26], as discussed in the next

section. The rate of random bit generation claimed is typically the highest possible

rate such that the output bit sequence can pass the suite of statistical tests. As we

will discuss, this method of evaluating physical RNGs has significant shortcomings.
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Figure 6.1: Methods of optical RNG testing and evaluation. a) Current
practice involves performing statistical tests on the final, post-processed
output bit sequence. b) Our recommendation is to use the raw digitized
data to make an estimate of the rate at which one is entitled to harvest
entropy, then use appropriate post-processing to extract that entropy
from the digitized data. The measurement parameters ε and τ and the
post-processing method should be carefully chosen such that entropy
is extracted from the desired physical entropy source rather than from
measurement noise. The sample time series show an analog signal, a dig-
itized signal with measurement parameters ε and τ , and a post-processed
output bit sequence.
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Figure 6.2 provides a survey of some recently published results using five com-

mon optical techniques for random number generation. The bit rates given are those

claimed by the authors, and the sampling rate is the number of samples per second

measured by the digitizer. In many cases the claimed bit rate is higher than the

sampling rate; this is a result of the digitizer obtaining more than 1 bit per sample

(e.g., by using an 8-bit analog to digital converter).

An information theoretical upper bound on the entropy rate is given by the

Shannon-Hartley limit [219]

hSH = 2BW ·Nε, (6.1)

where Nε is the number of bits per sample that the digitizer measures at a given

measurement resolution ε, and BW is the bandwidth of the signal measured by the

digitizer. BW is limited by the analog bandwidth of the physical entropy source

as well as the detectors and digitizer. Eq. 6.1 gives the maximum rate at which

information can be obtained from the signal by the digitizer [219]. Of course, Eq.

6.1 overestimates the upper bound because the effective bandwidth is often less than

the standard signal bandwidth [220] and the effective number of bits of a digitizer

is often less than the stated number of bits [221].

Figure 6.2 reveals a significant shortcoming in the current practice of quan-

tifying optical random number generation: several of the recently reported RNG

systems, while producing data that passes all of the existing statistical tests, achieve

a rate that exceeds even our overestimate of the Shannon-Hartley limit (horizon-

tal black bars). In most of the violating cases, the sampling rate is higher than the
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Nyquist rate (2BW) of the signal, resulting in strong inter-sample correlations. Post-

processing may obscure these correlations from statistical tests; however, because

post-processing is deterministic it cannot increase the rate of entropy production.

When one considers that many PRNGs pass the statistical tests, it is not

surprising that those statistical tests can be passed by post-processing the output

of a physical system, even if that output is not random. While statistical tests can

provide some assurance of statistical uniformity, they provide no guarantee that

there is no underlying pattern that could later be discovered. Therefore, statistical

tests are perhaps best viewed as a sanity check against blatant errors, rather than

a proof of randomness.

Statistical test suites are also limited to a simple “pass or fail” evaluation

that provides little insight into the physical processes generating the random num-

bers. Choosing a physical process that can be theoretically justified as random and

then showing that the measured entropy is actually coming from that random pro-

cess provides much greater assurance of unpredictability than can simply putting a

sequence of bits through statistical tests that any good PRNG will pass.

While there is nothing wrong with having the sole aim of passing statisti-

cal tests, physical RNGs that do this while violating information theory limits are

perhaps better called physical-based PRNGs, rather than true physical RNGs, as

suggested in refs. [214] and [222].

The upper bound on entropy harvesting provided by Eq. 6.1 assumes that the

probability density function (PDF) is uniform, the maximal entropy distribution.

For small ε (high resolution), one can find a more stringent upper bound on the
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entropy rate by accounting for the fact that PDFs found in physical systems are

generally not uniform [215]:

h0 = min(τ−1, 2BW )
(
Nε −DKL(p(x)||u(x))

)
, (6.2)

where p(x) is the PDF of the physical entropy source, u(x) is the uniform distribution

over the interval of x-values for which p(x) is non-zero, and DKL(p(x)||u(x)) denotes

the relative entropy or Kullback-Leibler divergence [223] of u(x) from p(x), and τ−1

is the sampling rate; according to the Nyquist theorem, one cannot obtain more

entropy by sampling faster than 2BW [219]. Eq. 6.2 simply says that the maximum

obtainable entropy rate is the maximum sampling rate times the average entropy

per sample. For further discussion on the h0 limit, see Appendix D.

We emphasize that Eq. 6.2 is valid only for fine measurement resolution; in the

case of thresholding (Nε=1 bit), one can always obtain h(Nε) = τ−1 bits/s for any

independent, identically distributed (IID) random process by setting the threshold

at the median. The sampling rate for thresholding is also limited by the Nyquist

rate 2BW .

Figure 6.3 illustrates the relationships between these information theoretical

limitations on obtainable entropy rates. The limits in Eq. 6.2 are information

theoretical limits that depend on the specifications of the measurement apparatus

and on the bandwidth and PDF of the physical system; an additional physical limit,

the Kolmogorov-Sinai (metric) entropy rate, exists for dynamical (chaotic) systems.

We discuss the Kolmogorov-Sinai entropy rate in sections 6.1.3.1 and 6.2.2.
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bit of resolution. Most RNG designers want to push the limit of ran-
dom bit generation, so here we show the slope of h0 as the maximum of
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by the Kullback-Leibler divergence of the uniform distribution from the
experimental probability distribution. The h0 limit is only valid for fine
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sampling rate for thresholding is also limited by the Nyquist rate 2BW .
The region of entropy rates that is unobtainable according to the limits
provided by Eqs. 6.1 and 6.2 is indicated by the gray shading.
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6.1.2 2016 NIST Draft Recommendations

The 2016 NIST Draft Recommendation for the Entropy Sources Used for

Random Bit Generation [26] tries to resolve some of these problems by separat-

ing out the algorithmic, pseudo-random parts of random number generation from

the physical entropy source. It also gives recommendations on how to combine the

pseudo-random algorithm and the entropy source once they have been separately

validated [213]. The NIST draft recommendation additionally requires a justifica-

tion of how the entropy source works and why it produces acceptable entropy. While

the draft recommendation has been replaced by the final 2018 NIST Recommenda-

tion for the Entropy Sources Used for Random Bit Generation [25], we discuss it

here in order to place our work (which was published in 2017) in context. For a

discussion of the final 2018 standards, see Section 6.4.

The NIST draft standards are based on an entropy source model similar to the

one shown in Fig. 6.1b; The only difference is that it does allow for some simple post-

processing techniques to be applied to the raw digitized data before estimation of

the entropy rate. NIST distinguishes post-processing (only von Neumann’s method,

linear filtering method, or length-of-runs method) from conditioning (such as some

hash functions), which has fewer restrictions and is not allowed to increase the

entropy estimate.

For entropy sources that are potentially not IID, the entropy estimation pro-

cedure is quite simple. Run two suites of tests on the (post-processed but not

conditioned) data. The first suite of tests estimates the min-entropy [224] per sam-
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ple in the data set; the min-entropy is designed to provide a conservative estimate of

the entropy. The second suite of tests is a pass/fail set of so-called “Restart Tests”:

These ensure that the entropy source does not behave the same way each time it is

restarted. We will discuss only the entropy estimation suite. If a conditioning pro-

cedure is used, one should adjust down the min-entropy estimate if appropriate, as

described in the NIST recommendation [26]. The resulting estimate of min-entropy

per sample gives the upper limit on the rate at which entropy can be extracted from

the source.

The min-entropy estimation suite includes 10 different tests, and the final

min-entropy per sample estimate is the minimum of all the estimates. We have

run all 10 tests on our data, but since most of them give similar results we discuss

only two of the estimates here: the most common value (MCV) estimate and the

Markov estimate. The simplest entropy estimate is the MCV estimate. It assumes

that samples of the signal are independent and identically distributed and estimates

the entropy as − log2(pmax), where pmax is the fraction of samples appearing in the

most common bin. This is the exact min-entropy for an IID entropy source. The

second entropy estimate is the Markov estimate, which takes into account first-order

correlations. For a complete description of all the tests, see Ref. [26].

The NIST draft recommendation allows some post-processing before the en-

tropy analysis, but deterministic algorithms cannot increase the entropy rate and

serve only to make the entropy estimation process more difficult. Indeed, this was

recently shown for the commonly used post-processing technique of least significant

bit extraction [214]. It is known that some of the tests in the NIST suite severely
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underestimate the min-entropy of entropy sources with normal distributions [225];

this is a real problem because many of the best physical entropy sources have normal

or approximately normal PDFs. Thus, the NIST test suite unintentionally encour-

ages designers of these systems to include post-processing before testing, since this

is the only way their source can receive a high entropy estimate from the NIST

suite. The NIST draft recommendation does not address the details of the digitiza-

tion process, which has a bandwidth due to the detection apparatus, measurement

resolution ε, and sampling frequency τ−1 that all impact the rate at which entropy

can be harvested from a physical system. Finally, the NIST draft standards do

not mention chaotic entropy sources, even though it is well-known that entropy

can be harvested from chaotic systems due to their sensitive dependence on initial

conditions [17,210,226]. In light of these concerns, we provide some additional rec-

ommendations to designers and evaluators of physical entropy sources in the next

section.

6.1.3 Recommendation: A dynamical systems approach to entropy

estimation

Both stochastic and chaotic physical systems have been used to generate en-

tropy at high rates. It is therefore important to have techniques that can accurately

estimate the entropy from both stochastic and chaotic sources. For this, we recom-

mend a dynamical systems approach to entropy estimation.

Our first recommendation regards the role of post-processing in the evaluation
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of RNGs. As we have previously mentioned, deterministic post-processing algo-

rithms are useful for extracting entropy but cannot increase the entropy production

rate of the physical source. In order to obtain a more accurate and insightful measure

of the suitability of a physical system for random number generation, we recommend

estimating the rate of entropy production directly from the raw digitized data. Post-

processing and conditioning techniques can then be chosen to extract random bits

from the physical source at a rate up to the entropy rate. This procedure is depicted

in Fig. 6.1b.

As described above, many different physical processes can generate entropy. It

is even possible for a single system to have multiple sources of entropy; for example,

a chaotic laser entropy source might have entropy from the chaotic dynamics (which

amplifies intrinsic quantum mechanical noise from spontaneous emission) and from

electronic noise in the detector. We therefore recommend that designers take care in

choosing measurement parameters – measurement resolution ε and sampling period

τ – and post-processing techniques that extract entropy from the desired physical

source. In the rest of this section, we present h(ε, τ) as a technique to guide these

choices.

6.1.3.1 Noise, chaos, and h(ε, τ)

Gaspard and Wang [215] have shown that h(ε, τ) estimated by the Cohen-

Procaccia algorithm [227] can be used to directly compare the entropy production

of stochastic and chaotic processes. h(ε, τ) treats the entropy rate as a function of the
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measurement resolution ε and the sampling rate τ−1. Such an analysis can provide

insight into the type of physical process (stochastic or chaotic) that is generating

the entropy at a given measurement resolution or time scale. For example, in a

deterministic chaotic system as the measurement resolution Nε increases, h(ε, τ)

approaches a constant given by the Kolmogorov-Sinai entropy rate; however, in a

purely stochastic system, h(ε, τ) scales as Nε [215]. These predictions were recently

verified experimentally [58]. In the context of physical RNGs, the h(ε, τ) analysis

can guide the choice of the best ε, τ , and post-processing method to extract entropy

from the desired physical source.

The h(ε, τ) analysis is not limited to continuous time series; it can also be

applied to physical entropy sources based on discrete events such as single photon

detection. For example, entropy sources using single photon time-of-arrival measure-

ments [173, 174, 176] can be analyzed by considering the entropy rate as a function

of the temporal precision (ε) of the measurement of the arrival times and of the

maximum count rate (τ−1), as we show in the section 6.2.1

Despite these important advantages, the h(ε, τ) analysis has only recently been

applied in the context of physical random number generation [58]. The RNG sys-

tem in Ref. [58] was designed to study the (ε, τ) entropy rate estimate on low-

dimensional chaotic experimental data and generated only a few hundreds of bits

of entropy per second. In the following sections, we use the h(ε, τ) analysis to com-

pare three state-of-the-art optical RNG techniques: single photon time-of-arrival

measurements, digitization of chaotic laser data, and digitization of amplified spon-

taneous emission noise data. An h(ε, τ) analysis can be performed with any entropy
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estimation method; we use the Cohen-Procaccia estimate since it has been shown

to work for both chaotic and stochastic sources of entropy [215]. While the NIST

draft [26] does not discuss h(ε, τ), we also compute an h(ε, τ) using the MCV and

Markov estimates from the NIST suite [26] in order to compare with the Cohen-

Procaccia estimate.

6.1.3.2 Cohen-Procaccia entropy

In this section, we present the Cohen-Procaccia algorithm as a method to

estimate h(ε, τ) [227]. The Cohen-Procaccia estimate is especially useful because it

can be used to directly compare stochastic and chaotic sources [215]. Further, it

does not unnecessarily penalize entropy sources with PDFs that are approximately

normal like some of the NIST draft tests do [225].

The Shannon entropy, or average amount of information contained per sample,

of a random variable X is given by

H(X) = −
∑

p(x) log2(p(x)), (6.3)

where the summation is taken over all possible values of x [223]. For a joint proba-

bility distribution, this definition of entropy extends naturally to

H(X1, X2, ..., Xd) = −
∑

p(x1, x2, ..., xd) log2(p(x1, x2, ..., xd)). (6.4)

One definition of entropy rate is the average amount of new information ob-

tained by measuring the current sample given the history of previous samples:
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Figure 6.4: Demonstration of the Cohen-Procaccia entropy rate estimate
(blue line) on a simple time series. a Gaussian noise with strength
a=0.001. b Logistic map with parameter r=4. c Logistic map with
additive Gaussian noise with standard deviation 0.001. The red dashed
line shows a line with slope − log2(ε). The black dashed line gives the
Kolmogorov-Sinai entropy rate of the logistic map with r=4 (hKS=1 bit
per sample).
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h = lim
d→∞

1

dτ
H(Xd|Xd−1, Xd−2, ..., X1) (6.5)

= lim
d→∞

1

τ

(
H(Xd, Xd−1, ..., X1)−H(Xd−1, Xd−1, ..., X1)

)
,

where τ−1 is the rate at which the distribution is sampled. In Eq. 6.5, one considers

the rate at which the entropy of the set of patterns of length d symbols changes with

d.

To calculate the entropy of a dynamical system, the patterns of length d that

are used are obtained by a d-dimensional time-delay embedding [10] of the data with

delay τ . The time-delay vectors can be considered samples from a d-dimensional

probability distribution in phase space. h(ε, τ) can then be calculated according to

Eq. 6.5.

For an IID random process, each sample will be completely independent of

all previous samples, so Eq. 6.5 becomes h = τ−1H(Xd). However, when there are

temporal correlations of length dτ or less, the d-dimensional pattern entropy rate

will be reduced.

In principle, one can estimate the Shannon entropy directly. First estimate

the d-dimensional joint probability distribution by making a histogram with d-

dimensional boxes of width ε and use this in Eq. 6.5 to estimate the entropy rate.

This approach requires a large amount of data and computing resources for systems

with large embedding dimension.

Cohen and Procaccia [227] developed a more efficient way to estimate the

entropy rate in order to estimate the Kolmogorov-Sinai entropy from experimental
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data of chaotic systems. For additional information about the close relationship

between the Kolmogorov-Sinai entropy and the Shannon entropy, see Ref. [226].

Gaspard and Wang [215] later showed that the Cohen-Procaccia algorithm can also

be accurately estimate the entropy rate of stochastic systems. We now briefly review

the Cohen-Procaccia algorithm.

First, one makes the previously described d-dimensional time-delay embed-

ding. Then one randomly selects M of these points as reference points. Typically

M is much smaller than the length of the time series. For each reference point n,

one computes fn(ε), the fraction of other points within a d-dimensional box of width

ε (that is, within a distance ε/2 of the reference point). Here distance is given by

the square metric dist[x,y]= max{|x1 − y1|, |x2 − y2|, ..., |xd − yd|}, where x and y

are two d-dimensional vectors. The d-dimensional pattern entropy estimate is then

given by

Hd = − 1

M

M∑

n=1

log2(fn(ε)). (6.6)

The Cohen-Procaccia entropy rate estimate is then obtained by using Eq. 6.6

in Eq. 6.5

hCP (ε, τ, d) = τ−1(Hd(ε, τ)−Hd−1(ε, τ)), (6.7)

where we have explicitly added in the dependence of h and H on the box width ε and

the embedding time-delay τ . The only differences between the Cohen-Procaccia es-

timate and a direct calculation of the Shannon entropy are that the Cohen-Procaccia
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estimate uses M reference points, and that the histogram bins are centered on the

reference points instead of being a fixed rectangular array. The Cohen-Procaccia

calculation still requires a large amount of data, but is much more computationally

efficient than a direct calculation of the Shannon entropy. We note that placing the

centers of the bins on the reference points results in poor entropy rate estimates for

large ε (small Nε), but accurate estimates for small ε.

Gaspard and Wang [215] used the Cohen-Procaccia estimate to compare the

entropy generation rates of Gaussian noise and the logistic map xn+1 = rxn(1− xn)

with r=4. We have replicated these results and present them in Fig. 6.4a and b.

The Cohen-Procaccia estimate can distinguish a stochastic process from a chaotic

one by revealing the dependence of the entropy rate on ε. For a stochastic process,

h(ε) should scale with log(1
ε
), while for a chaotic process h(ε) should converge to

hKS as ε → 0. This behavior is captured by the Cohen-Procaccia algorithm for

the logistic map in Figs. 6.4a and 6.4b. In Fig. 6.4b, for low resolution (large ε),

no entropy can be harvested from the system because the resolution is too coarse.

As the resolution increases, the amount of entropy that can be extracted from the

system also increases, until the full attractor is resolved. At this point, hCP (ε)

plateaus at hKS, even as ε→ 0.

Gaspard and Wang also considered a noisy logistic map, in which the time

series was obtained by iterating the logistic map with r=4 then adding Gaussian

noise of standard deviation 0.001 to the output. This result is shown in Fig. 6.4c.

For low resolution (large ε), the entropy increases as the resolution increases. At

intermediate resolution, the chaotic attractor can be fully resolved, but the noise
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cannot, so h(ε) plateaus at hKS. At high resolution (small ε), the noise is resolved

and h(ε) scales as log(1
ε
). It is clear from the figure not only that the Cohen-

Procaccia estimate can accurately predict the rate of entropy production of both

stochastic and chaotic systems, but also that the scaling of the entropy rate with ε

can provide some information about where the entropy is coming from at a given

measurement resolution.

As we mentioned previously, an (ε, τ) entropy rate analysis can be performed

with any entropy estimation method. We use the Cohen-Procaccia estimate be-

cause it is known to treat both chaotic and stochastic sources fairly [58,215] and it

can recognize higher order correlations better than metrics such as the MCV and

Markov estimates. While in principle, the Cohen-Procaccia algorithm can identify

correlations of any time scale, this requires an impractically large amount of data if

the time scale of the slowest correlations is much slower than the fastest time scale.

We do not consider this a significant problem, however, because good physical RNG

design involves stabilization techniques to remove slow fluctuations due to external

factors, such as power supply or temperature fluctuations.

However, there are some disadvantages to the Cohen-Procaccia entropy rate

estimate. In general, the Cohen-Procaccia algorithm does require significantly more

data than the NIST entropy estimation suite does, and the amount of data needed

increases with the dimension of the entropy estimate. It does, however, pick up

higher order correlations better than the NIST entropy estimation techniques. As a

result, for entropy analyses of systems that require a high dimension for the Cohen-

Procaccia algorithm to converge, it may be difficult to obtain an accurate estimate
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of the entropy rate. Still, the Cohen-Procaccia algorithm has value: for example,

if the entropy rate estimate varies with dimension, then it is clear that the system

is not behaving completely randomly and that the entropy source should probably

be sampled less frequently. Once the Cohen-Procaccia entropy rate estimate does

converge, then one has both an entropy rate estimate and some assurance that they

are sampling at an appropriate rate.

6.1.3.3 A comment about the relationship between PRNGs and de-

terministic chaos

We have stated that PRNGs cannot increase the entropy rate of their input

because they are deterministic algorithms. Given the set of equations and the initial

conditions, one can calculate the full future output of the system. However, it is

well-established that deterministic chaotic systems do have an associated entropy

rate, hKS [10,215,226]. One might might wonder why a chaotic system can generate

entropy while a PRNG cannot.

PRNGs require a seed (initial condition) as input, which contains all the en-

tropy [216]. The PRNG then performs deterministic computations on the seed in

order to generate pseudo-random numbers as output. These numbers appear ran-

dom: they are uniformly distributed and pass all statistical tests of randomness.

The numbers are called pseudo-random because for a given seed, the PRNG will

always produce the exact same output sequence. Therefore, if an attacker obtains

the seed, the future output of the PRNG is completely predictable.
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Due to the finite precision of computers, the seed must be finite length and the

PRNG will repeat after a finite (often very large) number of iterations [228]; that

is, once the entropy from the seed is used up, no new entropy can be obtained from

the PRNG. To resolve this, PRNGs are often re-seeded somewhat frequently with

additional entropy. Essentially, then, the PRNG serves to reveal the entropy from

the seed at a given rate and with some desired properties (e.g. uniformly distributed

output); however, the entropy itself must be provided from some other source (often

physical entropy sources). Due to finite precision constraints, computer simulation

of a deterministic chaotic system is essentially a PRNG and will encounter these

same restrictions [228].

We now consider mathematical chaotic systems that are described by deter-

ministic equations with infinite precision. As in the case of PRNGs on a classical

computer with finite precision, the entropy in an infinite-precision chaotic system is

stored in the initial condition. Unlike in a PRNG, in an infinite-precision chaotic

system, an infinite amount of information (or entropy) is stored in the infinitely

precise initial condition. Imagine that an observer of this system cannot measure

the initial condition to more than a handful of most significant bits. The chaotic

system, due to its inherent sensitivity to initial conditions, amplifies the bits of lower

significance so that they become measurable [229, 230]. The average rate at which

this information about the precise value of the initial condition is revealed by the

chaotic system can be quantified by the Kolmogorov-Sinai entropy rate, which is

typically equal to the sum of the positive Lyapunov exponents [215,226].

Of course, infinite-precision chaotic systems do not exist in the real world; all

181



physical systems are at some level granular, quantized, and susceptible to sources

of noise and uncertainty, which together prevent the physical chaotic system from

having infinitely precise initial conditions. This uncertainty continuously scrambles

the least significant bits of the state of the system, continuously re-seeding the

chaotic system. The noise is amplified by the chaos [200, 201] and contributes to

the entropy production. In the case of laser chaos, the intrinsic noise has been

considered to be quantum mechanical in origin and due to spontaneous emission in

the laser [231].

There may also be classical sources of noise. These may be intrinsic, in which

case they will be amplified by the chaos, or external (e.g. measurement noise), in

which case they may or may not contribute to the measured entropy rate, depending

on the ε and τ and post-processing used in the physical RNG, as discussed above.

In summary, for both PRNGs and ideal chaotic systems, the entropy comes

from the initial conditions; PRNGs and chaotic systems are similar in that they

amplify the bits of low significance of their initial conditions. The fundamental

difference is that the amount of entropy in the initial conditions of a PRNG is

limited by the finite precision of a computer, while the initial conditions of an ideal

chaotic system has infinite precision. Because of the finite precision, PRNGs must

eventually repeat and therefore are periodic systems with long periods; however,

chaotic systems never repeat. Once a PRNG repeats, it has used up all the entropy in

its seed and the output entropy rate is 0; a chaotic system reveals the infinitely many

low-significance digits of the initial conditions at an average rate of hKS forever.

Further, because of finite measurement precision and intrinsic noise, chaotic systems
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are truly random; Gaspard and Wang show that a chaotic system and a stochastic

Markov chain with the same hKS have the same degree of dynamical randomness

[215].

6.2 Review of some optical entropy sources

6.2.1 RNG with Single Photon Detection

The detection of single photons is perhaps the most established optical RNG

technique. There are many different techniques for generating randomness from sin-

gle photon detection; for a recent review, see Ref. [199]. Perhaps the most straight-

forward way is to send a single photon through a 50:50 beam splitter and assign a

“0” if it is detected at one output port and a “1” if it is detected at the other; this

is the method used by the commercial RNG from ID Quantique [166], and provides

1 bit per photon of entropy. Another method is to count the number of photons n

detected in a given time window from a low intensity light source. If the average

photon interarrival time is much less than the detector dead time, n will be a random

variable that follows the Poisson distribution [199]. It turns out that this technique

has the same rate of entropy production as the one we focus on here: single photon

time-of-arrival measurements [173,174,176].

Fig. 6.5a depicts our experimental realization of high-precision time-tagged

photon counting. The optical output of a 1550 nm CW laser is attenuated to an av-

erage photon rate of several million photons per second. Photons are detected using

superconducting nanowire detectors, and single photon arrivals are time-tagged by
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the HydraHarp 400 (PicoQuant) with a precision of 1 ps. The digitized interarrival

times between consecutive photons serve as our random signal.

The photon arrivals can be described as a Poisson process with constant rate

λ: the probability per unit time for a photon to arrive is constant and indepen-

dent of previous photon arrivals. It is well-known that the interarrival times of a

constant rate Poisson process follow an IID exponential distribution of the form

p(t) = λ exp [−λt] [173, 174, 199]. We can calculate the entropy per photon gen-

erated from these interarrival times as a function of the time-tagging resolution τ

using Shannon’s definition of entropy:

H(τ) = −
∞∑

k=0

pk(τ) log2(pk(τ)), (6.8)

where pk = exp [−kλτ ](1 − exp [−λτ ]) is the probability of the photon interarrival

time occurring between time kτ and (k+ 1)τ . This can be evaluated in closed form

as

H(τ) =
(1− p0) log2(1− p0)

p0

+ log2(p0), (6.9)

where p0 ≡ 1− exp [−λτ ]. The entropy generation rate h = λH.

Of course, real single photon detectors have a dead time. For non-paralyzable

detectors, the dead time τd does not affect the shape of the PDF; it only shifts it

by τd, as shown in Fig. 6.5b. This does not affect H, the entropy per photon.

The dead time does, however, affect the average rate of photons that are detected:

λd = λ/(1 + λτd) [174]. Thus the entropy rate becomes h = λdH. Our detector is

paralyzable; however, if the photon rate is not too high, we can approximate it as

non-paralyzable. Further, if the probability of more than one photon arriving in a
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single time bin is small (λτ << 1), we can approximate the entropy rate for photon

time-of-arrival measurements as

h(τ) = −λd log2(
λτ

e
). (6.10)

This is exactly the same entropy rate one would obtain by using Eq. 6.2, with

min(τ−1, 2BW ) = λd.

We estimate the entropy rate of experimentally measured photon interarrival

time measurements using the Cohen-Procaccia algorithm as a function of the time-

tagging resolution τ . We have performed time-of-arrival measurements for two dif-

ferent detected rates: λd=2.3 Mcps and λd=5.37 Mcps. In the first case the dead

time is not important (λd ≈ λ), while in the second case the dead time causes a loss

of about 40% of the photons. In both cases these results give excellent agreement

with Eq. 6.10, as shown in Fig. 6.5c. Furthermore, only 1 dimension is needed for

the Cohen-Procaccia algorithm to converge. This suggests that the photons were

indeed generated by a Poisson process with no intersample correlations.

The entropy rates obtainable from modern photon counting experiments are

on the order of a few hundred Mbits/s, and physical limitations present a significant

challenge for improving performance. As shown in Eq. 6.10, h scales logarithmically

with the time-tagging resolution, suggesting that increasing the time-tagging resolu-

tion beyond the current state-of-the-art of 1ps is not an economical way to improve

performance. The most efficient way to increase the entropy rate is to increase the

detected photon rate λd, which is limited by the detector dead time and is typically

on the order of a few tens of millions of counts per second with current technology.
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It is of course possible to increase the entropy rate by combining techniques. For

example, Stipcevic and Bowers were able to obtain one additional bit per photon by

combining the 50:50 beam splitter method with time-of-arrival measurements [232].

However, it is clear that this does not improve the scaling.

Single photon detection techniques are attractive because of their quantum

mechanical nature and conceptual simplicity. However, in light of the physical limi-

tations described above, we find it unlikely that RNG using single photon detection

techniques can become competitive with the high-speed digitization of unpredictable

analog waveforms, which can produce entropy rates of hundreds of Gbits/s.

6.2.2 RNG from Chaotic Lasers

It has long been known that a semiconductor laser can be made chaotic by

creating a time-delayed optical feedback via a reflector [31, 233]. In 2008 it was

demonstrated for the first time that these chaotic lasers can be used to generate

random numbers, and could do so at rates an order of magnitude faster than any

previous physical RNGs [17]. Since then, there has been much progress in building

faster chaotic RNGs [183,202–206].

Chaotic systems produce entropy by magnifying the small uncertainties in the

initial conditions. The maximum rate at which entropy can be harvested from a

chaotic system is called the Kolmogorov-Sinai entropy rate hKS, which is equal to

the sum of the positive Lyapunov exponents [215, 226]. Ref. [226] provides an in-

depth review of the relationship between the Kolmogorov-Sinai entropy rate and the
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Shannon entropy rate. Of course, real dynamical systems also have intrinsic noise

sources, which fundamentally limit the precision with which initial conditions can

be measured. For the chaotic laser systems used for optical random number gen-

eration, spontaneous emission noise (which is of quantum mechanical origin) and

potentially other noise sources are continuously amplified by the chaotic dynamics

and contributes to the entropy production. The rate at which entropy can be har-

vested from a chaotic laser is limited both by the bandwidth of the detectors (Eq.

6.2) and hKS of the chaos.

The chaotic laser system we consider here obtains an enhanced bandwidth

by cascading three semiconductor lasers (NTT Electronics, KELD1C5GAAA), as

described in detail in Ref. [205] and shown in Fig. 6.6a. The first laser has time-

delayed optical feedback from the reflector. The chaotic output intensity of the

first laser is injected into the second laser, and the chaotic output of the second

laser is then injected into the third laser. This cascading increases the standard

bandwidth from 12.5 GHz at the first laser to 34 GHz at the final output. The final

output intensity is detected by a 38 GHz photodetector (New Focus, 1474-A). The

electrical signal from the photodetector is sampled by a high speed 8-bit oscilloscope

(Tektronix DPO73304D, 33 GHz bandwidth, 100 GigaSamples/s). The RF power

spectrum is shown in Fig. 6.6b, and a typical time series is shown in Fig. 6.6c.

One can immediately tell from the time series in Fig. 6.6c that a few of the least

significant bits of the signal are due to electronic noise rather than the optical signal.

Figures 6.7a and 6.7b compare the results of different entropy rate estimates on

the chaotic laser signal. For the Cohen-Procaccia estimate, we use d = 6 embedding
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dimensions. While it is unlikely that the attractor can be fully embedded in 6

dimensions, we choose d = 6 because the entropy rate estimate did not change

much for d > 6. The bandwidth used in determining h0 is the detector bandwidth

BW = 33 GHz because the bandwidth of the chaos (34 GHz) is greater than the

detector bandwidth. Because we do not have a theoretical prediction for a PDF for

the chaotic laser system, we use the experimentally measured PDF for computing

DKL in Eq. 6.2.

In Fig. 6.7a, we consider h(ε) for a fixed τ . Nε is the number of bits per

sample measured by the detector. For the NIST tests Nε is obtained by taking the

appropriate number of most significant bits from an 8-bit oscilloscope measurement;

for the Cohen-Procaccia estimate Nε is obtained by referencing the bin width ε

(described in Section 6.1.3.2) to the full 8-bit resolution of the oscilloscope (1.6mV).

We also show the thresholding (Nε = 1 bit) limit h = 2BW bits/s as a blue dotted

line. The shading above these limits denotes a region of unobtainable entropy rates

for a system with the experimental PDF shown in Fig. 6.6c. For comparison, we

show the d = 1 Cohen-Procaccia entropy rate estimate, which estimates the entropy

of the experimentally measured histogram and considers no temporal correlations.

This shows what the entropy rate would be if the system were actually IID when

sampled at τ−1 =100 GSamples/s. Of course, the system cannot be IID when

sampled at faster than 66 GSamples per second, since the detector bandwidth is

33 GHz. Unsurprisingly, both the MCV and the d = 1 estimates significantly

overestimate the entropy rate. The Markov estimate does little better, still providing

an entropy rate estimate that is significantly higher than the h0 limit. The d = 6

190



Cohen-Procaccia estimate agrees well with the Eq. 6.2 limit for Nε ≥ 2. However,

the Cohen-Procaccia estimate is unable to provide a d = 6 estimate for Nε > 4 due

to the data requirements (we used 1GB of data).

Fig. 6.7a also shows the entropy rate obtained by simply turning off all optics

and measuring the electronic noise at the detector. It is clear that the electronic

noise in the detector and ADC contributes a significant fraction (about 20%) of the

entropy at full resolution. This noise is in part due to the inherent sampling noise

of high-speed digitizers, which is typically quantified by the effective number of bits

(ENOB). For the oscilloscope used here, the ENOB is 5.5 bits.

Fig. 6.7b shows the entropy rate as a function of the sampling rate τ−1 for

a fixed Nε = 3 bits. As the sampling rate is increased, the maximum entropy

rate increases, then starts to plateau at a sampling rate of about 50 GSamples per

second. As expected, the MCV estimate detects no correlations and continues to

increase for τ−1 > 2BW; the Markov estimate does only a little better, showing a

slight roll off. The d = 6 Cohen-Procaccia estimate has the most noticeable roll off,

indicating that it detects temporal correlations better than the other two methods.

By detecting these correlations, the Cohen-Procaccia algorithm informs us that the

experiment is not purely random at high sampling rates; this can inform the choice

of τ−1 in RNG design. For example, it suggests that this system should be sampled

at τ−1 < 50 GSamples/s if the designer wants there to be no temporal correlations.

As noted above, there are two important limits to consider in the design of a

RNG based on chaotic lasers: hKS and h0. One might wonder about the interplay

between hKS, which describes the dynamics of the chaotic system and hSH , which
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by thresholding at the median, τ−1. b) Entropy rate h(τ) of the chaotic
laser system for a fixed Nε = 3 bits. The h0 limit (Eq. 6.2) is the
information theoretical limit for the entropy rate given the PDF and
bandwidth of the signal. Since we do not have a theoretical prediction for
the PDF of the laser chaos, we estimate the PDF using the experimental
histogram shown in Fig. 6.6 and determine DKL = −0.95 bits. hCP is
the Cohen-Procaccia entropy rate estimate performed on the data. Here
we show hCP using embedding dimensions (pattern lengths) of d = 1
and d = 6. MCV=−τ−1 log2(pmax) is the Most Common Value entropy
rate estimate from the NIST draft recommendations [26]. The Markov
estimate, also from the NIST draft recommendations, takes into account
first-order correlations in the data. hCP (d = 3) for the electronic noise
in the detectors is also shown.
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limits the amount of information that can be transmitted through a finite bandwidth

channel. It has long been known that filtering a chaotic system does not change

the hKS [234,235]. Passing a chaotic signal through a linear filter simply makes the

current output of the filter some linear combination of all the previous inputs to the

filter. In principle, if one knows the linear combination that describes the filter, one

can determine the unfiltered output of the chaotic system from the filtered output

and thus obtain an entropy rate of hKS.

It might seem, then, that a RNG based on a chaotic system can violate the

Shannon-Hartley limit described above by low-pass filtering a chaotic signal so that

hSH < hKS. This is not the case. There is a minimum resolution necessary to obtain

hKS, as described in Section 6.1.3.2 and Ref. [215]. One must use a higher resolution

to obtain hKS from the filtered chaotic system than is necessary to obtain hKS from

the unfiltered system [236]. This increase in resolution increases Nε in such a way

as to cancel the decrease in bandwidth BW and ensure that the Shannon-Hartley

limit (Eq. 6.1) is not violated.

Essentially, hKS describes the rate at which the chaotic system generates en-

tropy. This is a property of the physical entropy source and is independent of

filtering or any other part of the digitization process. hSH and h0 describe the rate

at which entropy can be harvested by the measurement apparatus given the res-

olution and bandwidth limitations of the measurement apparatus. In short, just

because a physical system is generating entropy at a rate hKS does not mean that a

given measurement apparatus is able to harvest that much entropy from the system.

hKS can in principle be determined from a deterministic model of the chaotic
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system by calculating the Lyapunov spectrum; however, a reliable estimate of hKS

from experimental data is problematic due to the high dimensionality of three time-

delayed chaotic lasers. We note that the largest Lyapunov exponent has been cal-

culated numerically to be on the order of several ns−1 for two cascaded chaotic

lasers [237]. We expect that hKS should be several times greater than this for our

three cascaded laser system, since the additional chaotic laser should increase the

complexity and hKS depends on all the Lyapunov exponents, not just the largest

one. Our entropy estimates shown in Fig. 6.7 are consistent with this expectation.

6.2.3 RNG from Amplified Spontaneous Emission

The final optical RNG technique we analyze is the detection and digitization

of optically filtered amplified spontaneous emission (ASE) noise from a light source

such as superluminescent diode (SLD). ASE sources provide an easily measurable,

high bandwidth noise signal and have been used for RNG since 2010 [179]. Because

it is inherently quantum mechanical in origin, ASE cannot be described determin-

istically; thus, entropy can be harvested by detecting and sampling the ASE signal.

There have been several different but closely related schemes to generate ran-

dom numbers from ASE sources [167,179–185]. Here, we discuss the system depicted

in Fig. 6.8a. The ASE output of a SLD (DenseLight Semiconductors DL-CS5254A-

FP) passes through an optical isolator, a tunable optical filter (Santec OTF-970),

and an erbium-doped fiber amplifier (EDFA, PriTel FA-18-IO). This optical inten-

sity is then attenuated before being detected by a 38 GHz photodetector (New Focus
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1474-A). The electrical signal from the photodetector is amplified by a 35 GHz elec-

tronic amplifier (Picosecond pulse labs, 5882-219) then sampled by a high speed 8-bit

oscilloscope (Tektronix DPO73304D, 33 GHz bandwidth, 100 GigaSamples/s).

The optical filter is used to control the bandwidth of the ASE signal. It

has been shown that the optimal optical filter bandwidth for RNG is approximately

equal to the photodetector bandwidth [179]. In this case, we used an nominal optical

bandwidth of 0.6nm at 1550 nm center wavelength. The experimentally measured

power spectrum of the ASE signal with this filter is given in Fig. 6.8b; the 90%

signal bandwidth is 31 GHz. The PDFs and representative time series of both the

full ASE signal and the electronic noise (with all optics turned off) are given in Fig.

6.8c. As in the case of the chaotic laser, one can tell from the time series in Fig. 6.8c

that a few of the least significant bits of the signal are due to electronic noise rather

than the optical signal. This is confirmed by the entropy analysis in Fig. 6.9a.

While the probability distribution of the photocurrent output by the photode-

tector depends on the properties of the optical filter and photodetector used, it is

known that the photocurrent distribution can be reasonably approximated by the

gamma distribution

pi(x) =
xa−1 exp [−x/b]

baΓ(a)
, x > 0 (6.11)

where a is the shape parameter (signal-to-noise ratio) and b is the scale parameter

[179,238]. Fig. 6.8c shows that this is a reasonably good approximation in this case,

with a=2.77 and b=17.7 mV.
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Figures 6.9a and 6.9b compare the results of different entropy rate estimates

on the ASE signal. As with the chaotic laser, Nε ≤ 8 is obtained by taking the

appropriate number of most significant bits from an 8-bit oscilloscope measurement

for the NIST tests; for the Cohen-Procaccia estimate Nε is obtained by referencing

the bin width ε to the full 8-bit resolution of the oscilloscope (1.6mV). The upper

limit h0 is given by Eq. 6.2 as a black dashed line and the thresholding (Nε = 1

bit) limit h = 2BW bits/s as a blue dotted line. Here, BW = 31 GHz since the

90% signal bandwidth is the smallest relevant bandwidth. We use Eq. 6.11 with

best-fit parameters a=2.77 and b=17.7 mV to determine DKL and h0. The shading

above these limits denotes a region of unobtainable entropy rates for a system with

the PDF given by Eq. 6.11. In Fig. 6.9a, the d = 1 Cohen-Procaccia estimate

shows what the entropy rate would be if the system were IID when sampled at

τ−1 = 100 GSamples/s. Of course, the system cannot be IID when sampled at

faster than 62 GSamples per second, since the signal bandwidth is 31 GHz. Thus, it

is expected that the d = 1 Cohen-Procaccia estimate would lie in the shaded region

of unobtainable entropy rates.

For this data, we use the Cohen-Procaccia entropy rate estimate with d = 6

dimensions because the entropy rate estimate did not change much for d > 6. The

d = 6 Cohen-Procaccia estimate closely follows the h0 limit, while the other entropy

estimates show a significantly larger slope, resulting in large overestimates of the

entropy rate. The d = 6 Cohen-Procaccia lies slightly above the h0 limit; this is

likely due to the mismatch between the theoretical PDF in Eq. 6.11 and the actual

experimental PDF. The d = 6 Cohen-Procaccia estimate is the only one of the 4
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entropy estimates shown that seems to follow the h0 limit; however, the Cohen-

Procaccia estimate is unable to provide a d = 6 estimate for Nε > 4 due to the data

requirements.

Fig. 6.9a also shows the entropy rate obtained by simply turning off all optics

and measuring the electronic noise at the detector. As for the case of the chaotic

laser, it is clear that the electronic measurement noise contributes a significant

fraction (about 20%) of the entropy at full resolution. Again, the typical ENOB for

the oscilloscope used is 5.5 bits.

Fig. 6.9b shows the entropy rate as a function of the sampling rate τ−1 for a

fixed Nε = 3 bits. Again, the dashed black line denotes the upper limit provided

by Eq. 6.2. For lower sampling rates, the Cohen-Procaccia estimate is slightly

above the Eq. 6.2 limit; this is due to the mismatch between the theoretical and

experimental PDFs shown in Fig. 6.8c. As the sampling rate is increased, the

maximum entropy rate increases, then plateaus as the sampling rate approaches

twice the signal bandwidth (62 GSamples/s). As expected, the MCV estimate

detects no correlations and continues to increase for τ−1 > 2BW; The Markov and

Cohen-Procaccia estimates do quite a bit better, showing a roll off with increasing

sampling rate. This indicates that there are temporal correlations in the data. By

detecting these correlations, the entropy estimates inform us that the experiment

is not behaving purely stochastically for sampling rates that are too high. While

the Markov and Cohen-Procaccia estimates perform similarly for Nε = 3, it is clear

from Fig. 6.9a that the Markov estimate does not give valid results for Nε ≥ 7.

Since ASE sources can have large bandwidth, the main factor that limits the
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Figure 6.9: a) Entropy rate h(ε) of the ASE signal from an SLD and a
0.6nm filter for a fixed τ−1 = 100 GSamples/s. The blue dotted line is
the entropy rate obtained by thresholding at the median, τ−1 b) Entropy
rate h(τ) from an SLD and a 0.6nm filter for a fixed Nε = 3 bits. The
h0 limit (Eq. 6.2) is the information theoretical limit for the entropy
rate given the PDF and bandwidth of the signal (DKL = −1.94 bits
for the best-fit PDF from Eq. 6.11 and shown in Fig. 6.8). hCP is
the Cohen-Procaccia entropy rate estimate performed on the data. Here
we show hCP using embedding dimensions (pattern lengths) of d = 1
and d = 6. MCV=−τ−1 log2(pmax) is the Most Common Value entropy
rate estimate from the NIST draft recommendations [26]. The Markov
estimate, also from the NIST draft recommendations, takes into account
first-order correlations in the data. hCP (d = 6) for the electronic noise
in the detectors is also shown.
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entropy rate for ASE sources is the bandwidth of the measurement apparatus. Thus,

as the bandwidths of photodetectors and digitizers improve, we expect the entropy

rate of ASE sources to similarly increase. Additionally, a single ASE source can be

used to generate multiple independent bitstreams by taking different slices of the

optical spectrum, as done in Ref. [180].

6.3 Conclusions

Physical RNGs are becoming increasingly important in digital communications

and security, as evidenced by their widespread commercial availability, both embed-

ded in CPUs [168] and as external devices [165–167]. Optical and photonic systems

are leading the way as physical sources of randomness due to their high speed, access

to the inherent randomness in quantum mechanical phenomena, and resistance to

external interference from electric and magnetic fields. In the last decade, optical

RNGs have elevated the state-of-the-art from a few hundred Mbits/s to one Tbit/s.

Motivated by this race for the highest random bit rates, researchers have often

been insufficiently concerned about where the entropy is coming from. Instead, the

standard practice is to sufficiently post-process some unpredictable signal so that

the final output bit sequence can pass statistical tests designed for PRNGs. As we

discussed above, the fastest physical entropy sources involve the digitization of high-

bandwidth, unpredictable analog waveforms. The digitization process naturally

forces one to think about what the measurement resolution ε and sampling rate τ−1

should be. As we have shown, the choices of ε, τ , and post-processing technique can
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determine which physical process or processes contribute to the extracted entropy

rate.

The new NIST draft recommendations for the evaluation of physical RNGs [26]

are a significant improvement upon the old standards [217]; they suggest that one

estimate the entropy using minimally post-processed data and require some physical

justification of where the entropy is coming from. However, the new standards do not

recognize dynamical entropy sources or the importance of the digitization process

(ε and τ).

We recommend that physical RNG evaluation techniques evolve away from

statistical tests designed for PRNGs toward entropy estimates that provide insight

into the physical origins and limitations of the optical entropy source. In order to

acheive this, we recommend that RNG designers perform an (ε, τ) entropy analysis

on the raw digitized data (as in Fig. 6.1b) using a variety of entropy estimates,

including the the Cohen-Procaccia estimate and tests from the NIST entropy esti-

mation suite. The h(ε, τ) analysis, in conjunction with considering simple physical

and information theoretical limits of entropy generation, provides more than a sim-

ple pass/fail validation of a RNG; it provides relevant information about an entropy

source such as how finely and frequently to sample the source and what types of

post-processing and conditioning should be used to extract entropy from the desired

source.

As an example, we have performed this analysis for three state-of-the-art

optical entropy sources. We found that the digitization of unpredictable, high-

bandwidth analog signals generates significantly higher entropy rates than does sin-
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gle photon detection. Chaotic lasers and ASE signals can produce similar entropy

rates (on the order of hundreds of Gbits per second); however, the simplicity of the

ASE setup is attractive as is the ability for one SLD to generate multiple indepen-

dent bitstreams, as done in Ref. [180]. We also found that post-processing methods

that use least-significant bit extraction might be taking their entropy from electronic

noise in the detector or digitizer rather than from the desired optical entropy source.

6.4 Epilogue

In May 2016, we presented much of the research on which this chapter was

based at the NIST Random Bit Generation Workshop (video of our presentation is

available at Ref. [239]) in Gaithersburg, MD. The purpose of this workshop was for

“the public” (non-NIST researchers as well as private companies) to comment on

the Second Draft of NIST’s SP800-90B: Recommendation for the Entropy Sources

Used for Random Bit Generation. The manuscript on which this chapter was based

was published as a “Perspective” in APL Photonics in September 2017.

In January 2018, the final version of NIST’s SP800-90B: Recommendation

for the Entropy Sources Used for Random Bit Generation was released [25]. This

document is very similar to the SP800-90B Second Draft, which was the most up-

to-date version at the time of writing of our manuscript. However, the final version

did make some important changes. Some of these changes are summarized below.

A complete list of the changes can be found in Ref. [240].
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Post-processing

Limited post-processing of the digitized data before entropy estimation was allowed

in the Second Draft of SP800-90B [26] (italics as in the original document):

If the non-deterministic activity being sampled produces something other

than binary data, the sampling process includes a digitization process

that converts the output samples to bits. The noise sourse [sic] may also

include some simple post-processing operations that can reduce the sta-

tistical biases of the samples and increase the entropy rate of the resulting

output. The output of the digitized and optionally post-processed noise

source is called the raw data.

The document goes on to list Von Neumann’s method, the linear filtering

method, and the length-of-runs method as the only approved post-processing meth-

ods. We (and others [214]) criticized the allowance of any post-processing before

entropy estimation because deterministic post-processing cannot increase the en-

tropy rate of the entropy source, but instead just makes the entropy estimation

more difficult.

In the final version of SP800-90B, the “concept of post-processing of the noise

source is removed” [240]. The final version reads [25]:

If the non-deterministic activity being sampled produces something other

than binary data, the sampling process includes a digitization process

that converts the output samples to bits. The output of the digitized

noise source is called the raw data.
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There is no mention of “post-processing” in the final document. “Condition-

ing” to extract entropy from the entropy source is still allowed, but must occur after

entropy estimation.

A comment about the scope and intent of the entropy estimation tests

A comment clarifying the limitations of the entropy estimation was added to the

final version [25]. The document now states that the

entropy estimation methods described in this section rely on some sta-

tistical assumptions that may not hold for all types of noise sources.

The methods should not replace in-depth analysis of noise sources, but

should be used to support the initial entropy estimate of the submitter.

This comment seems to emphasize the importance of the initial entropy estimate

of the submitter, which should be based on the physical principles of the entropy

source. We view this as an important improvement because, as we stated in Section

6.1.1 “statistical tests are perhaps best viewed as a sanity check against blatant

errors, rather than a proof of randomness.” We are hopeful that the fact that NIST

is now also emphasizing this view will encourage designers of physical RNGs to focus

on the physical origins and limitations of the entropy source.

Entropy estimation tests

Researchers at NIST [225] and elsewhere [241] have found that some of the tests

in the NIST suite severely underestimate the min-entropy of entropy sources with

normal distributions. As we pointed out in Section 6.1.2 this is a practical problem
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because many of the best physical entropy sources have normal or approximately

normal PDFs. The final version of SP800-90B solves this problem by requiring the

collision, Markov and compression entropy estimates for only sources that produce

binary outputs.

This is an important concession, as the combination of allowed post-processing

and the requirement of these tests by the previous Recommendation unintentionally

encouraged designers to include post-processing before testing, since this is the only

way a normally-distributed source could have received a high entropy estimate from

the NIST suite.

The measurement process

Documentation explaining why the data collection method does not interfere with

the noise source is now required. The draft Recommendation did not require this.

While this does not go as far as our own recommendation to encourage some sort

of (ε, τ) analysis, this is a significant improvement in the final version, as an un-

derstanding of the impact of the measurement process on the entropy source being

measured and on the measured result itself is essential to determining whether any

physical device is working properly.

We do not claim credit for these or any of the changes present in the NIST’s fi-

nal Recommendation. Hundreds of researchers and industry representatives from all

over the world attended the Random Bit Generation Workshop (either in person or

via teleconference) and/or sent in comments regarding the Second Draft. All of these

comments as well as journal publications and other factors were surely considered
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by NIST when deciding their final Recommendation. However, we do think these

changes significantly improve the final Recommendation for the Entropy Sources

Used for Random Bit Generation. Still, we continue to encourage researchers to

use an (ε, τ) entropy analysis in addition to following the NIST Recommendation

to help them in the design and testing of physical entropy sources.
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Today is gone. Today was fun.

Tomorrow is another one.

Every day, from here to there,

funny things are everywhere.

One fish two fish red fish blue fish

Dr. Seuss

Chapter 7: What’s next?

In Chapters 2 and 3, we presented our experimental observation of “synchro-

nized chimeras” and patterns of cluster synchronization in a network of four opto-

electronic oscillators. This was the first observation of chimeras in such a small

network. We showed that “synchronized chimeras” are a special case of cluster

synchronization and that the stability of both “synchronized chimeras” and clus-

ter synchronization can be calculated using the same group theoretical techniques.

This additionally showed that some chimeras can be stable, something that was not

known previously. As far as I am aware, it is still not clear whether there are cases

in which “coherent chimeras” can be stable.

In our experiments, chimeras were always observed in regions of multistability

with other patterns of synchronization. It is not clear whether this is a general
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requirement. Further, we do not have any real understanding of the sizes of the

basins of attraction of different patterns of synchronization in these regions of mul-

tistability. Because our oscillators had feedback and coupling delays, we had an

extremely large initial condition space, and so a study of the basins of attraction

was not feasible. Perhaps the new experimental network described in Ch. 4 would

permit the study of basins of attraction, since the initial condition space is “only”

N dimensional, where N is the number of nodes in the network.

Chapters 4 and 5 concern a new experimental technique that we developed for

the implementation of coupled oscillator networks with arbitrary topology. We used

the space-time interpretation of systems with a long delay along with non-traditional

digital filtering to realize a complex network in a single, table-top opto-electronic

oscillator. This technique is the only way to implement a network of truly identical

nodes in an experiment.

The question of the usefulness of our arbitrary network experiment for reservoir

computing tasks is one obvious and important path for future research. Of course,

our system would have to be sped up significantly from the kHz rates used here.

Along these lines, it has been demonstrated using faster electronics that similar

opto-electronic networks with ring topology can characterize up to 1 million words

per second [143]. However, it is not clear that this is the optimal network structure

for reservoir computing (or even if the topology of the reservoir network matters at

all). Whether using the longer range connections available in an arbitrary network

like our system would help is an interesting question from the point of view of

both basic and applied science. At the very least, we suspect the ease of network
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re-configuration in our set-up should make it useful for research and development,

before implementation on dedicated hardware once optimal networks are better

understood.

While delay systems themselves are often continuous time systems, the space-

time representation causes delay networks to be discrete in time. We believe it

is possible, at least in some cases, to realize continuous-time networks in a sin-

gle delay system by adopting the multiple time delay implementation of arbitrary

networks discussed in Section 4.4.2. Importantly, this technique is not reliant on

opto-electronics: one could replace the optics with any system of interest. This

might be useful for building prototypes for large networks of coupled oscillators

when the oscillators are expensive, such as in the case of power grids. It may also

allow for the experimental study of large networks of truly identical oscillators in

situations where the oscillators are rarely identical in practice (e.g. biological sys-

tems such as neurons). This could permit the study of the impact of heterogeneity

on the network dynamics.

In Chapter 6 we presented some recommendations for how to evaluate the rate

of entropy production of the entropy source in physical random number generators.

Some of the ideas we suggested, such as requiring the estimation of entropy rates

before any post-processing of the raw data and emphasizing the in-depth analysis of

the physical processes generating the entropy, have been incorporated into the NIST

Recommendation for the Entropy Sources Used for Random Bit Generation [25],

published January 2018.

The aforementioned release of the official NIST recommendations for physical
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entropy sources has provided some new entropy estimation techniques. These now

need to be tested on all types of optical entropy sources. The statistical analysis of

data from physical entropy sources is a highly challenging but important problem

in the field of RNG. We hope that our work as well as the recent release of the

NIST recommendations will lead the optical RNG community to embrace entropy

estimation from the raw physical data, and to continue to develop new and better

entropy estimates.

In this thesis we advocated the Cohen-Procaccia method for estimating the en-

tropy production of a physical system from raw data. The Cohen-Procaccia method

is one of a series of “phase space” or “time-delay embedding techniques” that involve

estimating the entropy production by counting the frequency of appearance of data

patterns of a given length.

An alternative approach is to try to predict the next output of the system

using the best possible deterministic model. An attacker could then try to syn-

chronize their deterministic model with the system and use their model to predict

the next output. However, it is not always clear how to come up with “the best

deterministic model.” It has recently been demonstrated that a reservoir computer

can successfully predict chaotic systems so well that the Lyapunov exponents can

be accurately calculated from the known reservoir equations of motion, even in the

presence of some observation noise [242]. In this sense, the reservoir “learns” the

best deterministic model of the noisy chaotic system. The attacker can then try to

synchronize the reservoir to the system and use this deterministic model to predict

the next output of the entropy source.
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This suggests a new entropy estimation technique. A trained reservoir com-

puter (on data from the entropy source) gives the best guess (from a deterministic

model) you can have for the next output. The deterministic equations of the reser-

voir can then be used to obtain an estimate of the entropy rate of the best determin-

istic model of the entropy source. The use of model-agnostic AI methods, in general,

to predict otherwise random variations and quantify entropy is an interesting topic

that has not been widely explored.

Another crucial issue facing the optical RNG community is to bridge the gap

between the ultrafast RNG rates possible in the lab (∼1 Tb/s) and the significantly

slower speed of commercially available optical RNGs (∼1 Gb/s). The ultrafast rates

in laboratory experiments have been obtained by taking one-time measurements

with an oscilloscope; they cannot be sustained for more than tiny fractions of a

second. Further, the postprocessing necessary to extract the entropy is often done

offline. One critical path of future research is developing real-time implementations

of the post-processing necessary for optical RNGs. There has been some work in

this area [209,212,243,244]; however, as of now real-time implementations of optical

RNGs have a long way to go to read the Tb/s rates of the one-time oscilloscope

measurements. Once post-processed, there is the problem of transferring the data

to the memory of the user in real time. High-speed entropy extraction and data

transfer are two major practical problems that the field of optical random number

generation will have to address in the coming years.

Additionally, in order to be practically useful, the size and cost of the labo-

ratory RNGs must be reduced. One promising way to do this is by implementing
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the optical RNG on photonic integrated circuits [209]. Low-cost photonic integrated

circuits are currently being developed for optical computing and information trans-

fer within traditional computing; we anticipate that optical RNGs will begin to be

developed on chip as well. These circuits provide the additional benefit that they

are robust against temperature fluctuations and air turbulence.

We also anticipate the development of optical RNGs with special properties

suited for application-specific purposes. One recent example of this is the laser

phase noise-based RNG used in the recent loophole-free Bell tests [245–247]. Each

of these tests relied on the real-time optical RNG described in Ref. [244] to randomly

and independently choose the measurement bases such that the choice of basis is

space-like separated. This allowed the researchers to close the locality loophole.

Over the last decade, much of the optical RNG research has focused on break-

ing bit rate records that pass the statistical test suites. Once the optical RNG

community shifts focus from record breaking to entropy analysis and physical ori-

gins of randomness, we will also see an increasing focus on decreasing the size and

power constraints and increasing the robustness to external (potentially unsafe)

noise sources. When all of these considerations are taken into account, optics and

photonics will emerge as the most promising technology for physical random number

generation.

212



Appendix A: Details of the experimental implementation

We now provide more details about the experimental implementation of the

setup described in Section 4.4.3, including a discussion of some of the important de-

sign choices. As mentioned previously, FPGAs are particularly well-suited for this

experiment because they are easily reconfigurable. Indeed, any arbitrary network

can be implemented by simply reconfiguring the FPGA without modifying any other

part of the experimental apparatus. We do the FPGA programming in verilog, a

common hardware description language. An example of the verilog code used to

implement a simple two node network with bidirectional coupling is given in Ap-

pendix B. However, for large networks, writing out the verilog code can be tedious.

Therefore, we use a python script that accepts an arbitrary adjacency matrix as its

input and writes the verilog code that implements the network described by that

adjacency matrix on the FPGA.

We chose the Altera Cyclone V GT as our FPGA because the Cyclone V GT

Development Board was the least expensive board that provides both a PCIe slot

(for streaming data at high speeds from the FPGA to a PC) and the capability

for interfacing with both an ADC and DAC. The Cyclone V has a High-Speed

Mezzanine Card (HSMC) interface, which allows us to attach the Terasic Data
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Figure A.1: Data Conversion Card modifications. This is a photo-
graph of the Terasic Data Conversion Card used in our experiment. The
transformers that come on the card are removed, and they are replaced
with wiring that directly connects the ADC and DAC pins to the SMA
outputs. The wiring that we added is denoted in the figure by the red
box.
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Conversion Card to our FPGA.

The Data Conversion Card (Fig. A.1) is an extension card with two 14-

bit ADCs (Analog Devices AD9254) and two 14-bit DACs (Texas Instruments

DAC5672), along other components that are not relevant for this experiment. The

Data Conversion Card is designed such that the input of the ADCs and the output

of the DACs are transformer coupled. These transformers were a problem because

we needed our converters to be DC-coupled so that there would be no unintended

time-invariant (in this case, high-pass) filtering. Therefore, we removed the trans-

formers from the Data Conversion Card. This created a new problem: The ADCs

require differential inputs and the DACs require differential outputs. We wired the

two differential inputs to one of the ADCs directly to two on-card SMA ports. Sim-

ilarly, we wired two differential outputs of one of the DACs directly to two on-card

SMA ports. These modifications are highlighted by the red box in the photograph

of the Data Conversion Card in Fig. A.1.

As mentioned above, our ADC requires a differential input; however, the pho-

toreceiver output (which serves as the input to the ADC) is single-ended. Therefore,

we use a unity gain single-ended to differential amplifier (Analog Devices AD8138) to

convert the single-ended output of the photoreceiver to a differential signal suitable

for input to the ADC.

Similarly, our DAC provides a differential output; however the intensity mod-

ulator requires a single-ended input. Therefore we use a preamplifier (Stanford

Research Systems Model SR560) to convert the differential output of the DAC to a

single-ended voltage referenced to ground. The preamplifier also provides a voltage
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Open

Vin

Vout

R3=499

R2=50

R4=900 Z4=110

Z3=9501

2
5

3

4

THS

+15V

−15V

Figure A.2: Non-inverting amplifier circuit diagram. This amplifier is
placed after the SR560 differential amplifier as described in Section 4.4.3
and provides an additional gain of 3. The operational amplifier we use
is the Texas Instruments THS4631DDA. This circuit is implemented on
the THS4631DDA EVM board from Texas Instruments. The resistor
numbering is the same as that on the board’s reference manual.
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gain of 10dB. We then use a single-ended amplifier (Texas Instruments THS4631

configured as a non-inverting amplifier as in Fig. A.2) to provide a further voltage

gain of 3.

We also had to make a few experimental modifications related to the electro-

optic intensity modulator. As mentioned previously, the modulator has two electrical

inputs: a DC input and a RF input. The DC input is high-impedance, but the RF

input is typically terminated with a 50 Ω resistor to allow for impedance matching

with high-frequency RF drivers. As mentioned previously, our set-up needs to allow

for DC signals to be applied to the RF port. The voltages being applied to the RF

port can be up to 2Vπ,RF = 4.80 V. Therefore, the power dissipated in the 50 Ω

resistor can be quite high, on the order of 0.25 W. This can heat the resistor. In

order to avoid this, we opened up the modulator and removed the resistor, so that

now the RF input port is also a high-impedance port. Once this was done, we found

that the modulator behaved much more stably and repeatably.

We had to make two additional modifications due to the specified voltage limits

of the RF port of the modulator. The RF port is rated for ±5 V; however, depending

on the system parameters and resulting dynamics, x (and therefore vRF ) can be any

real number. In order to keep vRF within the manufacturers specifications and

to circumvent the limited output voltage range of the DAC, we take advantage of

the fact that the modulator’s nonlinearity is invariant when taken modulo 4Vπ. We

implement this modulo in the FPGA by taking x modulo 2π. Even with this modulo

operation, the voltage range does not fit into the manufacturers specifications: for

x ∈ [0, 2π), vRF ∈ [0, 4Vπ,RF ) = [0, 9.60V ). In order to resolve this, we shift vRF →
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vRF − 2Vπ,RF , taking advantage of the fact that the modulator’s nonlinearity is

invariant under a voltage shift of 2Vπ. This results in vRF ∈ [−2Vπ,RF , 2Vπ,RF ) =

[−4.80 V,4.80 V), a voltage range within the manufacturers specifications. This

shift is also implemented in the FPGA.

Fixed point notation in the FPGA

All arithmetic in the FPGA is integer arithmetic. In order to represent real numbers

like the normalized intensity I or the normalized voltage x, we use signed fixed point

arithmetic. In signed fixed point arithmetic, real numbers are represented as M -bit

signed integers, where the most significant bit (MSB) determines the sign and the

remainingM−1 bits determine the value. In order to represent non-integer numbers,

a fixed point can be chosen such that all bits (except the MSB) to the left of that

point represent the integer part of the number, and all bits to the right of that point

represent the fractional part of the number. This can be denoted as P.Q signed

fixed point notation, where Q is an integer giving the number of decimal bits and

P = M −Q gives the number of remaining bits. In our implementation, we use 5.10

signed fixed point notation, meaning that the MSB determines the sign, the next four

MSBs determine the integer part, and the 10 least significant bits (LSBs) determine

the decimal part of the number being represented. For example, in 5.10 fixed point

notation, the decimal number 5.37510 is represented as 00101(.)01100000002, where

numbers to the right of the decimal place give the fractional part and numbers to

the left of the decimal place give the sign and integer part.

The particular type of signed arithmetic we use is called twos-complement. In
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twos complement notation, positive integers have zero as the MSB, and the rest of

the integer is represented in standard binary notation. For example, the positive

integer 1010 in 15-bit twos complement notation is represented as 0000000000010102.

A negative number is represented by writing 2M −K in binary notation, where K

is the absolute value of the negative number to be represented. For example, to

represent the negative integer −1010 in 15-bit twos complement notation, one first

computes 3276810− 1010 = 3275810, then converts the decimal number 3275810 into

its binary equivalent 1111111111101102. The idea behind this formalism is that

the sum of K and −K is zero when the sum is written as an M-bit integer (i.e.

K + (−K) = 0 (modulo 2M)). For example, 1010 + (−1010) = 0000000000010102 +

1111111111101102 = 10000000000000002. Notice that the “1” in the sum is the

16th bit, which means that it is dropped when written as a 15-bit integer. Twos

complement notation can represent integers in the range [−2M−1, 2M−1 − 1]. Twos

complement notation can be combined with the fixed point notation described above

to represent real numbers with a precision of 2−Q, where Q is the number of decimal

bits.

We chose to represent all numbers used in computations on the FPGA as 5.10

signed fixed point notation for practical reasons. As mentioned above, the ADC

reads in the normalized intensity I with 10-bits of precision, so 10 bits are needed

to represent I. As shown in Eq. 4.35, in order to compute x, I is multiplied by

β, which can, in principle, be any real number. We allocate an additional 5 bits (1

sign bit, 4 integer bits), allowing reliable computations to be performed with β in

the range [-16,16) for the case of only a single node. To implement networks with
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large β or σ or with nodes with large in-degree, it may be necessary to use a larger

number of integer bits in the computation of x, and then to take x modulo 2π when

determining the voltage to output from the DAC, as discussed previously.

The 5.10 signed fixed point notation was chosen because it provides a rea-

sonable compromise between sufficient resolution to prevent overflows and fill up

the 14 bit DAC output, while not requiring too many FPGA resources. However,

as mentioned above, the normalized voltage x to be output by the DAC is taken

modulo 2π in order to keep vRF within the manufacturer’s specifications. Therefore,

if we simply output x from the DAC, the full 14-bit dynamic range of the DAC will

not be used. In order to use the full dynamic range of the DAC, we scale x by

(214 − 1)/2π immediately before outputting it to the DAC.

The ADC has 14 bits of resolution, but the MSB is dedicated to detecting the

sign of the measured voltage. Since the voltage that we are measuring is proportional

to the (non-negative) intensity of the light that passes through the modulator, we

can use only the 13 LSBs of the ADC. Equation 4.35, which is implemented in the

FPGA, uses the normalized intensity I = I/Imax ∈ [0, 1]. This is implemented by

setting the laser power so that the electrical output of the photoreceiver when the

intensity modulator is maximally transmitting fills up the 13 LSBs of the ADC. This

occurs when the maximum electrical output of the photoreceiver is 520 mV. The

electrical output of the photoreceiver is read into the FPGA in 5.10 signed fixed

point notation (where the sign bit is always 0). This means only 10 of the ADC bits

are actually utilized; the 3 LSBs are discarded. This quantization error (1 part in

1024) is sufficiently small that it does not contribute significantly to the noise, as
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discussed below.

FPGA timing

The timing of operations is crucial to obtain reliable performance from an FPGA.

Often, the timing of FPGA operations are controlled by one or more binary clocks

that oscillate periodically at a given frequency. This is the case in our set-up. The

Altera Cyclone V GT Development Board has an on-board 50 MHz crystal oscillator

that is hard-wired to an FPGA input pin. This crystal oscillator can then be used

as the input to a phase-locked loop (PLL), which can multiply and/or divide the

frequency to obtain a desired clock frequency. We use two different PLLs to generate

two clocks, one with frequency fr and the other with frequency fr/N , where N is

the number of nodes we want in our network. Typically, we choose fr = 20 kHz;

however, our set-up has the potential to go up to about fr = 1 MHz. With state-of-

the-art amplifiers, ADCs, DACs, and FPGA, such a system could obtain fr on the

order of 1 GHz or higher.

A timing diagram for our FPGA network set-up is shown in Fig. A.3. The

“node clock” oscillates at fr and keeps the “node time” k from Eq. 4.4. On the

positive edge of the “node clock,” xi[n] is transmitted to the PC for storage and

output by the DAC. On the negative edge of the “node clock,” Ii[n] is measured by

the ADC and read in to the FPGA. The “network clock” keeps the “network time”

n and triggers the updating of the network state x = [x0, x1, ...xN−1] according to

Eq. 4.35.
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...0 1 2 3 N-1 0node clock

network 
clock

output value to DAC;
write x(i) to PC

read in value
to ADC

update network
(implement Eq. (4.37))

Figure A.3: FPGA timing diagram. There are two clocks, the “node
clock,” which corresponds to k, and the “network clock,” which corre-
sponds to n.
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Appendix B: Sample verilog code for two-node delay network

module two_node_network(

input CLK_50M, //this is assigned to a 50 MHz on-board clk

input [7:0] USER_SW, //on-board DIP Switches

input USER_PB_0, //on-board push-buttons

input USER_PB_1,

input USER_PB_2,

output [13:0] DAC, //DAC pins

output DAC_CLK,

input [13:0] ADC, //ADC pins

output ADC_CLK,

output ADC_DCS, //set to high

output ADC_DFS, //does formatting for adc

output ADC_CS, //chip select...make it high

output ADC_OE, //output enable

input ADC_DCO //adc data clock output

);

/*

SUMMARY OF INTERFACING WITH THE FPGA I/Os:

SW_1: ON allows self-feedback; OFF means beta=0

SW_2: ON allows coupling; OFF means sigma=0

SW_5: ON means that push buttons change beta;

OFF means that push buttons change sigma

SW_6 and SW_7: 00: increment=1 01:increment=10 10:increment =500

*/

parameter bitwidth = 14;

parameter totalbits = 28; //Nnodes * bitwidth

//this does the ADC settings

assign ADC_CS = 1'b1;

assign ADC_DCS = 1'b1;

assign ADC_OE = 1'b0;

assign ADC_DFS = 1'b0;
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wire [13:0] betasf;

wire [13:0] sigmasf;

wire [bitwidth-1:0] I_ADC_2_storage;

wire MUX_select;

wire store_select;

wire [totalbits-1:0] I_storage_2_iterate;

wire [totalbits-1:0] phi_iterate_2_MUX;

wire [bitwidth-1:0] phi_mux_2_DAC;

wire fast_clk;

wire slow_clk;

wire [7:0] USER_sw;

assign USER_sw=~USER_SW; //DIP switches for our board are inverted

//generate clocks

//The PLL outputs two clocks such that

//the frequency of the slow_clk = fast_clk / Nnodes.

//This must be done using the Altera PLL IP Core Megafunction wizard.

pll1 pll_1(

.refclk(clk_50M),

.rst(),

.outclk_1(fast_clk),

.outclk_4(slow_clk),

.locked()

);

//read I from ADC

assign ADC_CLK = CLK_50M;

assign DAC_CLK = CLK_50M;

reg [13:0] ADCreg;

always @(posedge ADC_DCO)

ADCreg<=ADC;

//chop off MSBs so that I_ADC_2_storage is normalized to 1

//in 4.10 fixed point notation

assign I_ADC_2_storage[13:10] = 4'b0;

assign I_ADC_2_storage[9:0] = ADCreg[12:3];

//read ADC at negedge of fast clock

always @ (negedge fast_clk)

case (MUX_select)
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1'b0 : I_storage_2_iterate[13:0] = I_ADC_2_storage;

1'b1 : I_storage_2_iterate[27:14] = I_ADC_2_storage;

default : I_storage_2_iterate[13:0] = 14'b0;

endcase

endmodule

//triggers at negedge slow_clk

iterate_network(

.clk(slow_clk),

.betasf(betasf),

.sigmasf(sigmasf),

.I(I_storage_2_iterate),

.phi(phi_iterate_2_MUX),

.phi_out(phi_out_storage)

);

//determine which node we're on

always @(posedge fast_clk)

begin

if (MUX_select>=1)

MUX_select<=0;

else

MUX_select<=select+1;

end

endmodule

//create MUX to select correct output

always @(MUX_select)

case(MUX_select)

0 : phi_mux_2_DAC = phi_iterate_2_MUX[13:0];

1 : phi_mux_2_DAC = phi_iterate_2_MUX[27:14];

default : phi_mux_2_DAC = 14'b0;

endcase

//For Vpi=2.42 modulator, the DAC amplifier is calibrated so that

//DAC=0 --> -4.84V and DAC=2^14-1 --> 4.84V.

assign DAC = 14'b00010100010111*phi_mux_2_DAC;

//allows me to change beta using pushbuttons

set_value set_beta(

.onoff(USER_sw[1]),

.enable(USER_sw[5]),

.reset(USER_PB_0),

.increase_clk(USER_PB_2),

.decrease_clk(USER_PB_1),
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.sf(betasf),

.incrementSW({USER_sw[6],USER_sw[7]})

);

//allows me to change sigma using pushbuttons

set_value set_sigma(

.onoff(USER_sw[2]),

.enable(~USER_sw[5]),

.reset(USER_PB_0),

.increase_clk(USER_PB_2),

.decrease_clk(USER_PB_1),

.sf(sigmasf),

.incrementSW({USER_sw[6],USER_sw[7]})

);

endmodule
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module iterate_network(

input clk,

input [13:0] betasf,

input [13:0] sigmasf,

input [27:0] I,

output [27:0] phi,

output [35:0] phi_out

);

reg [27:0] temp_feedback0;

reg [27:0] temp_feedback1;

reg [27:0] temp_sum0;

reg [27:0] temp_sum1;

reg [27:0] temp_coupling0;

reg [27:0] temp_coupling1;

reg [17:0] temp_phi0;

reg [17:0] temp_phi1;

assign phi_out = {temp_phi1, temp_phi0};

// node number 0

always @(negedge clk)

begin

temp_feedback0 = betasf * I[13:0];

temp_sum0 = I[27:14];

temp_coupling0 = sigmasf * temp_sum0;

temp_phi0 = temp_feedback0[27:10]+temp_coupling0[27:10];

end

// node number 1

always @(negedge clk)

begin

temp_feedback1 = betasf * I[27:14];

temp_sum1 = I[13:0];

temp_coupling1 = sigmasf * temp_sum1;

temp_phi1 = temp_feedback1[27:10]+temp_coupling1[27:10];

end

mod2pi mod2pi0(

.value(temp_phi0),

.out(phi[13:0]));
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mod2pi mod2pi1(

.value(temp_phi1),

.out(phi[27:14]));

endmodule
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module set_value(

input onoff,

input enable,

input reset,

input increase_clk,

input decrease_clk,

input [1:0] incrementSW,

output [13:0] sf //scalefactor

);

wire [13:0] increment;

assign increment = ~incrementSW[1] ? (~incrementSW[0] ? 1 : 10) : 500;

reg [31:0] plus;

reg[31:0] minus;

wire [13:0] val;

assign val = plus - minus;

assign sf = (onoff) ? val : 14'b0;

always @(negedge increase_clk)

begin

if(enable)

begin

if (reset==0)

begin

plus <= minus;

end

else

begin

plus <= plus + increment;

end

end

end

always @(negedge decrease_clk)

begin

if(enable)

minus <= minus + increment;

end

endmodule
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Appendix C: Adjacency matrices from Chapter 5

The adjacency matrix for the symmetric network shown in Fig. 5.10a is

Asym =




0 0 0 0 0 1 1 1 0 0 0 0 1 0 0 1
0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 1
0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1
0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 1
1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0 0 1 1 1 0
0 0 0 1 1 0 0 0 0 0 0 0 1 1 1 0
0 0 0 0 1 0 1 0 0 0 0 0 1 1 1 0
0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 0
1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 1 0 0 1 1 1 1 0 0 0 0
1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0




(C.1)

The adjacency matrix for the optimized network shown in Fig. 5.10b is

Aopt =




0 0 0 0 0 0 1 1 0 0 0 0 1 0 1 1
0 0 0 1 0 1 1 1 0 0 0 0 0 1 0 1
0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1
0 0 0 0 1 1 1 1 0 1 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 0 1 0 1 0 0 1 0 0 0 0 1 1 0 0
0 1 0 1 1 0 0 0 1 0 0 0 1 1 1 0
0 0 0 0 1 0 1 0 0 0 0 0 1 1 1 0
0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 0
1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0
0 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 1 0 0 1 1 1 1 0 0 0 0
1 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0




(C.2)
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The adjacency matrix for the symmetric network shown in Fig. 5.11a is

Asym =




0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
1 0 1 1 0 1 1 1 1 0 0 1 1 1 1 1 1
1 1 0 1 0 1 1 1 1 0 0 1 1 1 1 1 1
1 1 1 0 1 1 1 1 1 1 1 0 0 0 0 0 0
1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 0 1 1 1 1 1 0 0 0 0 0 0
1 1 1 1 1 1 0 1 1 1 1 0 0 0 0 0 0
1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1
1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1
1 0 0 1 0 1 1 1 1 0 1 1 1 1 1 1 1
1 0 0 1 0 1 1 1 1 1 0 1 1 1 1 1 1
0 1 1 0 0 0 0 1 1 1 1 0 1 0 0 0 1
0 1 1 0 0 0 0 1 1 1 1 1 0 1 0 0 0
0 1 1 0 0 0 0 1 1 1 1 0 1 0 1 0 0
0 1 1 0 0 0 0 1 1 1 1 0 0 1 0 1 0
0 1 1 0 0 0 0 1 1 1 1 0 0 0 1 0 1
0 1 1 0 0 0 0 1 1 1 1 1 0 0 0 1 0




(C.3)

The adjacency matrix for the optimized network shown in Fig. 5.11a is

Aopt =




0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
1 0 1 1 0 1 1 1 1 0 0 1 1 1 1 1 1
1 1 0 1 0 1 1 1 1 0 0 1 1 1 1 1 1
1 1 1 0 1 1 1 1 1 1 1 0 0 0 0 0 0
1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 0 1 1 1 1 1 0 0 0 0 0 0
1 1 1 1 1 1 0 1 1 1 1 0 0 0 0 0 0
1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1
1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1
1 0 0 1 0 1 1 1 1 0 1 1 1 1 1 1 1
1 0 0 1 0 1 1 1 1 1 0 1 1 1 1 1 1
0 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0
0 1 1 0 0 0 0 1 1 1 1 0 0 1 0 0 0
0 1 1 0 0 0 0 1 1 1 1 0 0 0 1 0 0
0 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 0
0 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 1
0 1 1 0 0 0 0 1 1 1 1 1 0 0 0 0 0




(C.4)
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The adjacency matrix for the symmetric network shown in Fig. 5.12a is

Asym =




0 1 1 0 1 1 1 1 1 1 1 0 0 0 0 0 0
1 0 1 0 1 1 1 1 1 1 1 0 0 0 0 0 0
1 1 0 1 1 0 0 0 0 0 0 1 1 1 1 1 1
0 0 1 0 1 1 1 1 1 1 1 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1
1 1 0 1 0 0 1 0 0 0 1 1 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0
1 1 0 1 0 0 1 0 1 0 0 0 0 1 0 0 0
1 1 0 1 0 0 0 1 0 1 0 0 0 0 1 0 0
1 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0
1 1 0 1 0 1 0 0 0 1 0 0 0 0 0 0 1
0 0 1 0 1 1 0 0 0 0 0 0 1 1 0 1 0
0 0 1 0 1 0 1 0 0 0 0 1 0 0 1 0 1
0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 1 0
0 0 1 0 1 0 0 0 1 0 0 0 1 1 0 0 1
0 0 1 0 1 0 0 0 0 1 0 1 0 1 0 0 1
0 0 1 0 1 0 0 0 0 0 1 0 1 0 1 1 0




(C.5)

The adjacency matrix for the optimized network shown in Fig. 5.12a is

Aopt =




0 1 1 0 1 1 1 1 1 1 1 0 0 0 0 0 0
1 0 1 0 1 1 1 1 1 1 1 0 0 0 0 0 0
1 1 0 1 1 0 0 0 0 0 0 1 1 1 1 1 1
0 0 1 0 1 1 1 1 1 1 1 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1
1 1 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0
1 1 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0
1 1 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0
1 1 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0
1 1 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0
1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 1 0 1 1 0 0 0 0 0 0 1 1 0 0 0
0 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 1
0 0 1 0 1 0 0 1 0 0 0 0 0 0 1 1 0
0 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 0
0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1
0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0




(C.6)
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Appendix D: Derivation of the h0 limit

In Eq. 6.2 we provide the information theoretical limit for the maximum
entropy that can be harvested with a given probability distribution p(x) with a
signal and measurement bandwidth of BW . Here we derive this from a previous
result and explain how to calculate it in practice.

Gaspard and Wang [215] give the upper limit of ε-entropy per sample as

H0(ε) = − log2(ε)−
∫

dx p(x) log2 p(x) +O(ε), (D.1)

where p(x) is the PDF of the signal from which entropy is being harvested. One can
either use a theoretical PDF or estimate the PDF from an experimentally measured
histogram for p(x). A theoretical PDF is preferable, since one can calculate the
integral exactly. We also know that the sampling rate is limited by information
theory to the Nyquist rate fmax = 2BW . Here, BW is the limiting bandwidth, which
is the minimum of all relevant bandwidths (signal bandwidth, detector bandwidth,
digitizer bandwidth, etc.). Thus, as ε→ 0

h0(ε) = min(τ−1, 2BW )
(
− log2(ε)−

∫
dx p(x) log2 p(x)

)
. (D.2)

In practice, it is often easiest to use Eq. D.2 to determine the h0 limit. However, the
limit can be understood intuitively by writing it in terms of Nε and the Kullback-
Leibler divergence, as we now show.

The number of bits per sample Nε = log2( b−a
ε

), where a and b are the end
points of the measurement range of the digitizer. If we define U = 1

b−a , we can write
Nε = − log2(Uε) and

h0(ε) = min(τ−1, 2BW )
(
Nε + log2 U −

∫
dx p(x) log2 p(x)

)
. (D.3)

Now define u(x)=U for a ≤ x ≤ b and u(x) = 0 for all other x. p(x) is also only
non-zero for a ≤ x ≤ b. Since

∫
p(x)dx=1, we can write log2 U =

∫
p(x) log2 U dx.

We can then combine the integrals:

h0(ε) = min(τ−1, 2BW )
(
Nε −

∫
dx p(x) log2(

p(x)

u(x)
)
)
. (D.4)

The Kullback-Leibler divergence is defined as
DKL(p(x)||u(x)) ≡

∫
dx p(x) log2( p(x)

u(x)
), giving us Eq. 6.2:

h0 = min(τ−1, 2BW )
(
Nε −DKL(p(x)||u(x))

)
. (D.5)
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dom number generation from spontaneous Raman scattering. Applied Physics
Letters, 107(14):141112, 2015.

[179] Caitlin RS Williams, Julia C Salevan, Xiaowen Li, Rajarshi Roy, and
Thomas E Murphy. Fast physical random number generator using amplified
spontaneous emission. Optics Express, 18(23):23584–23597, 2010.

[180] Xiaowen Li, Adam B Cohen, Thomas E Murphy, and Rajarshi Roy. Scalable
parallel physical random number generator based on a superluminescent led.
Optics Letters, 36(6):1020–1022, 2011.

[181] Apostolos Argyris, Evangelos Pikasis, Stavros Deligiannidis, and Dimitris
Syvridis. Sub-Tb/s physical random bit generators based on direct detection
of amplified spontaneous emission signals. Journal of Lightwave Technology,
30(9):1329–1334, 2012.

[182] Wei Wei, Guodong Xie, Anhong Dang, and Hong Guo. High-speed and bias-
free optical random number generator. IEEE Photonics Technology Letters,
24(6):437–439, 2012.

[183] Taiki Yamazaki and Atsushi Uchida. Performance of random number gen-
erators using noise-based superluminescent diode and chaos-based semicon-
ductor lasers. Selected Topics in IEEE Journal of Quantum Electronics,
19(4):0600309–0600309, 2013.

[184] Lei Li, Anbang Wang, Pu Li, Hang Xu, Longsheng Wang, and Yuncai Wang.
Random bit generator using delayed self-difference of filtered amplified spon-
taneous emission. IEEE Photonics Journal, 6(1):1–9, 2014.

[185] Jianzhong Zhang, Mingjiang Zhang, Yi Liu, Pu Li, Xiaogang Yi, Mingtao
Zhang, and Yuncai Wang. Fast random number generation with sponta-
neous emission noise of a single-mode semiconductor laser. Laser Physics,
26(11):115002, 2016.

[186] Hong Guo, Wenzhuo Tang, Yu Liu, and Wei Wei. Truly random number
generation based on measurement of phase noise of a laser. Physical Review
E, 81(5):051137, 2010.

248



[187] Bing Qi, Yue-Meng Chi, Hoi-Kwong Lo, and Li Qian. High-speed quantum
random number generation by measuring phase noise of a single-mode laser.
Optics Letters, 35(3):312–314, 2010.

[188] Feihu Xu, Bing Qi, Xiongfeng Ma, He Xu, Haoxuan Zheng, and Hoi-Kwong
Lo. Ultrafast quantum random number generation based on quantum phase
fluctuations. Optics Express, 20(11):12366–12377, 2012.

[189] ZL Yuan, M Lucamarini, JF Dynes, B Fröhlich, A Plews, and AJ Shields. Ro-
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[236] Holger Kantz, Wolfram Just, Nilüfer Baba, Katrin Gelfert, and Anja Riegert.
Fast chaos versus white noise: entropy analysis and a Fokker–Planck model
for the slow dynamics. Physica D, 187(1):200–213, 2004.

[237] Kazutaka Kanno, Atsushi Uchida, and Masatoshi Bunsen. Complexity and
bandwidth enhancement in unidirectionally coupled semiconductor lasers with
time-delayed optical feedback. Physical Review E, 93(3):032206, 2016.

[238] Joseph W Goodman. Statistical optics. John Wiley & Sons, 1985.

[239] NIST random bit generation workshop 2016. https://www.nist.gov/

news-events/events/2016/05/random-bit-generation-workshop-2016,
2016.

252

https://www.nist.gov/news-events/events/2016/05/random-bit-generation-workshop-2016
https://www.nist.gov/news-events/events/2016/05/random-bit-generation-workshop-2016


[240] Meltem Sönmez Turan, Elaine Barker, John Kelsey, Kerry A. McKay,
Mary L. Baish, and Mike Boyle. Summary of changes NIST SP 800 90B.
https://csrc.nist.gov/CSRC/media/Publications/sp/800-90b/final/

documents/sp800-90B-changes-2nd-draft-to-final-summary.pdf, 2018.

[241] Shuangyi Zhu, Yuan Ma, Tianyu Chen, Jingqiang Lin, and Jiwu Jing. Analysis
and improvement of entropy estimators in nist sp 800-90b for non-iid entropy
sources. IACR Transactions on Symmetric Cryptology, 2017(3):151–168, 2017.

[242] Jaideep Pathak, Zhixin Lu, Brian R Hunt, Michelle Girvan, and Edward Ott.
Using machine learning to replicate chaotic attractors and calculate lyapunov
exponents from data. Chaos, 27(12):121102, 2017.

[243] Anbang Wang, Pu Li, Jianguo Zhang, Jianzhong Zhang, Lei Li, and Yuncai
Wang. 4.5 Gbps high-speed real-time physical random bit generator. Optics
Express, 21(17):20452–20462, 2013.

[244] Carlos Abellán, Waldimar Amaya, Daniel Mitrani, Valerio Pruneri, and Mor-
gan W Mitchell. Generation of fresh and pure random numbers for loophole-
free Bell tests. Physical Review Letters, 115(25):250403, 2015.

[245] Lynden K Shalm, Evan Meyer-Scott, Bradley G Christensen, Peter Bierhorst,
Michael A Wayne, Martin J Stevens, Thomas Gerrits, Scott Glancy, Deny R
Hamel, Michael S Allman, et al. Strong loophole-free test of local realism.
Physical Review Letters, 115(25):250402, 2015.

[246] Bas Hensen, Hannes Bernien, Anäıs E Dréau, Andreas Reiserer, Norbert
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