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1. Introduction
Networks of coupled oscillators are dynamical systems of great interest for both basic and
applied research. Networks are high-dimensional systems that can display a great variety of
dynamical behaviours. Applications abound, from neuroscience [1] and gene regulation [2] to
the power grid [3] and machine learning [4]. Networks have long been a fertile ground for
theoretical research [5]; however, experiments on large networks have proven difficult because
of the necessity to create, connect and measure a large number of independent oscillators. In
the few cases where experiments with large networks have been possible, it is often difficult or
impossible to reconfigure the network, with a few notable exceptions [6–8].

Nonlinear systems with time-delayed feedback are a different type of high-dimensional
dynamical system that are much easier to study experimentally. Time delays often arise when the
intrinsic dynamics of a system are fast enough that the finite propagation velocity of signals must
be taken into account. For example, in a semiconductor laser with time-delayed feedback through
an external mirror, the photon lifetime is significantly shorter than the feedback time, which can
cause the laser intensity to oscillate chaotically [9]. From an experimental point of view, delay
systems are particularly attractive because the complexity of the dynamics usually increases with
the delay [10–12], which is typically easy to control.

The simplest delay systems can be modelled by [13]

τLẋ(t) = −x(t) + F
(
x(t − τD)

)
, (1.1)

where τL is the intrinsic time scale of the system, F(x) is a nonlinear function of x and τD is the time
delay. Equation (1.1) has been used to model systems from many different areas of science [14],
including physiology [15], population dynamics [16] and laser physics [17]. Systems described
by equation (1.1) have been shown to display a wide variety of interesting behaviours, including
square waves [18,19], new types of chaos (in the case that τD varies in time) [20] and spatio-
temporal phenomena [21].

Indeed, research over the last 25 years has shown that a wide variety of spatio-temporal
phenomena can be observed in temporal systems with a long delayed feedback. The
interpretation of dynamics in delayed systems as spatio-temporal phenomena is enabled by
the space–time representation [22]. Some of the theoretically predicted and experimentally
observed spatio-temporal phenomena include defect-mediated turbulence [23,24], coarsening
[25,26], domain nucleation [27], spatial coherence resonance [28] and phase transitions [29].

Our focus in this paper is on the implementation of networks of truly identical coupled
oscillators through the use of a single nonlinear delayed feedback system. This is made possible
through the same space–time representation that led to the observation of other spatio-temporal
phenomena in delay systems. Originally developed for the implementation of neural networks
for reservoir computing in hardware [30,31], this technique for implementing networks has
subsequently been adapted for basic research, such as the study of chimera states in ring
networks [32,33] and cluster synchronization in arbitrary networks [34–36]. This framework for
implementing networks is particularly attractive, because it allows for experiments on large
networks without building a large number of separate physical oscillators and it allows for
experiments on truly identical oscillators. We focus on opto-electronic implementations, which are
popular due to their speed, cost and ease of implementation; however, the techniques described
are applicable to other delay systems as well.

In §2, we introduce a basic mathematical description of a delayed feedback system through
a commonly used integro-differential delay equation. Additionally, we present a less commonly
used, but equivalent, description from filter theory that employs a convolution integral of the
feedback signal with the impulse response that describes the bandwidth limitations of the
system. This second formalism, when viewed in the space–time representation, provides insight
into how networks of oscillators can be realized with a single nonlinear system with delayed
feedback. Finally, we describe one particular opto-electronic oscillator that has been a favourite of
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experimenters due to its reliability and ease of implementation over a wide range of parameters
and time scales.

The space–time representation of delay systems is presented in §3. The space–time
representation relies on the separation of time scales—fast dynamics and a long delay—to
parametrize time as a time-like integer number that counts the number of round-trip times
and a continuous, space-like variable that denotes the position within each delay. This analogy
between feedback systems with a long time delay and spatio-temporal systems has allowed
for a deeper understanding of many complex phenomena observed in delay systems, including
defect-mediated turbulence [23,24], coarsening [25,26], domain nucleation [27], spatial coherence
resonance [28], phase transitions [29] and now, network dynamics.

Section 4 describes in detail how the space–time representation allows for the implementation
of networks of truly identical coupled oscillators using only a single delayed feedback system.
Traditional networks are spatially multiplexed: all nodes are updated simultaneously in parallel
depending on their previous states. Delay feedback networks replace the spatial multiplexing of
traditional networks with temporal multiplexing, in which the single nonlinear element serially
updates the nodes, which are distributed across the delay line. The nodes are coupled together by
the ‘inertia’, or non-instantaneous response time, of the system, which arises from the bandwidth
limitations of the components. When this filtering is time-invariant, the resulting network has
cyclic symmetry. In particular, §4 focuses on the discrete-time case; e.g. when the time delay is
implemented by a digital delay line.

The use of delay networks for hardware implementations of reservoir computers is discussed
in §5. Reservoir computing (RC)—alternatively echo state networks [4] or nonlinear transient
computing [37]—is a type of neural network in which only the output connections are trained
(the input and internal connections are fixed). Reservoir computers are particularly attractive
because they can be trained by simple linear regression and because they are well suited for
implementation in specialized hardware. Delay networks have proven to be particularly well
suited for hardware implementations of RC.

Section 6 extends the delay network formalism developed in §4 to the continuous-time case
(the case of analogue delay lines).

Chimera states are an unexpected coexistence of spatial domains of coherence and incoherence
in a system of identical oscillators with symmetric coupling [38,39]. Chimera states were
particularly difficult to observe in experiments because they typically (but not always [40,41])
occur in large networks, which are difficult to experimentally implement. Initially observed in
2012 [6,7] a decade after their prediction, they were soon after observed in electronic [32] and
opto-electronic [33] delay systems, as presented in §7.

A recently developed technique [34] that allows a network with any topology to be
implemented in a delay system is described in §8. This technique replaces the time-invariant
filters used in the original delay network implementations with a time-dependent filter. The time-
dependent filter, implemented digitally with a field-programmable gate array (FPGA), extends
the range of networks that can be realized from only networks with rotational symmetry to
networks with completely arbitrary topology.

2. Introduction to opto-electronic oscillators with delayed feedback
The basic form of a delayed feedback system is depicted by the block diagram in figure 1a.
The output of a nonlinearity F(·) is amplified, filtered and delayed before being fed back as the
input to the nonlinearity. The filtering may either be intentionally implemented or arise from
the bandwidth limitations of the system. Such a delayed feedback system can be described by
the convolution of the input to the filter with the impulse response h(t) that characterizes the
filter [42]:

x(t) = h(t) ∗ βF(x(t − τD)) = β

∫∞

−∞
h(t − t′)F

(
x(t′ − τD)

)
dt′ = β

∫ t

−∞
h(t − t′)F

(
x(t′ − τD)

)
dt′, (2.1)
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Figure 1. Nonlinear delayed feedback system. (a) Block diagram of a delay system. v(t)= βF(x(t − τD)) is the input to the
linear filter described by the impulse response h(t), and x(t) is the filter output. (b) Experimental set-up of an opto-electronic
oscillator delayed feedback system. The filtering is performed either by the component with the narrowest bandwidth (usually
the photodiode) or by a stand-alone filter (not shown). The oscillator can be a discrete-time map (when powered by a pulsed
laser) or a continuous-time system (when powered by a CW laser). (Online version in colour.)

where in the last step we use the property that h(t) is causal. In equation (2.1), x(t) is the filter
output, β is the round trip gain, and τD is the time delay.

For a large class of filters, an equivalent delay differential equation can be used to describe the
system [42]. In the case that the bandwidth limitations of the system can be accurately described
by a two-pole bandpass filter, the delay differential equation is

τLẋ(t) = −
(

1 + τL

τH

)
x(t) − 1

τH

∫ t

−∞
x(s) ds + βF

(
x(t − τD)

)
, (2.2)

where τD is the time delay, τL = 1/2π fL is the low-pass filter response time, and τH = 1/2π fH is the
high-pass filter response time. Equation (2.2) is quite general in that it can be used to model many
delayed feedback systems. Indeed, by considering the limit τH → ∞ (i.e. the case of a low-pass
instead of a band-pass filter), equation (2.2) reduces to equation (1.1).

One experimental system of particular interest that can be accurately modelled by
equation (2.2) is the opto-electronic oscillator. Opto-electronic oscillators were originally studied
in bulk optics [43] and soon after implemented using standard telecommunications components
[44]. These systems have been found to be extremely rich in their dynamics, in part because they
can span an enormous range of time scales [45]. They have been used to study chaotic breathers
[46], broadband chaos [47], network dynamics [41,48] and the transition from noise to chaos
[49]. Additionally, opto-electronic oscillators are useful for a variety of applications, including the
generation of high-spectral purity microwaves [50], chaos communications [51,52] and RC [31,37].

A schematic of an opto-electronic oscillator is shown in figure 1b. Constant intensity light from
a fibre-coupled CW laser passes through an integrated electro-optic Mach–Zehnder intensity
modulator, which provides the nonlinearity F(x) = sin2(x + φ). The quantity x(t) represents the
normalized voltage applied to the intensity modulator, and φ is the normalized DC bias voltage.
The time delay is implemented by an optical or electronic (not shown) delay line. The filtering is
performed either by the photodiode (the component with the narrowest bandwidth) or a stand-
alone analogue [50] or digital [53] filter (not shown). For a recent review of these opto-electronic
oscillators, see [54].

Alternatively, the system can be turned into a discrete-time map by pulsing the laser at a
repetition rate fr = N/τD [55]. In this case, the system can be modelled as

x[k] = β

k∑
m=−∞

h[k − m]F(x[m − N]). (2.3)

where x[k] is the height of the kth electrical pulse applied to the modulator, h is the infinite impulse
response of the filter sampled at the repetition rate fr. As the repetition rate fr → ∞, time becomes
continuous, the sum becomes a convolution integral, and we obtain equation (2.1). Therefore, this
system allows for the study of the transition from discrete to continuous time in chaotic systems.
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3. Space-time representation
The space–time representation of delay systems was originally motivated by the numerical
treatment of delay differential equations [10]. The time variable is split up into a continuous
variable σ bounded between 0 and τD, and an independent discrete variable n that counts the
number of delays since the origin. Ikeda & Matsumoto [56] were the first to consider σ to be
a ‘spatial’ variable in their modelling of optical turbulence. The space–time representation was
formalized and first used on experimental data by Arecchi et al. in 1992 [22] in order to study
long-time correlations on the order of one delay in a CO2 laser with delayed feedback. Since
then, the relationship between delay systems and spatio-temporal systems has been investigated
thoroughly [23,29,32,33], and in many cases, equivalence has been rigorously established [24,57–
59]. For a recent review, see [21].

The space–time representation of delay systems is particularly meaningful when the delay τD

is long compared with the time scale tc of the temporal dynamics of the system, as measured by
the width of the zeroth peak in the autocorrelation [21]. In this case, there is a separation of time
scales, and so it is natural to parametrize time as

t = nτD + σ , (3.1)

where n is an integer that counts the number of delay times since the origin, and σ is a continuous
variable between 0 and τD that gives the position along the delay. As a result, n is often considered
to be a discrete time and σ a continuous pseudo-spatial variable. We note that tc is a property of
the dynamics and therefore depends on β and F(x) in addition to the time scales τL and τH in
equation (2.2); in practice, however, it is often the case that tc ≈ τL [21].

When working with delay systems, one often obtains a long time series x(t) such as the one
shown in figure 2a. It seems that there are (and indeed one expects there to be) correlations on the
order of one time delay τD. Plotting the time series in the space–time representation in figure 2b
shows long-time correlations (on the order of several τD) as spatial structures that evolve in
discrete time.

While figure 2b does reveal long-time correlations as spatio-temporal structures, it is clear
that as n increases the structures are drifting to the right in σ -space. In other words, the long-
time correlations occur over a time slightly larger than τD. This can be seen by looking at the
autocorrelation of the time series, shown in figure 2c. The autocorrelation begins to increase near
a lag of τD, but only reaches its peak at τD + δ due to the non-instantaneous response time of the
system [21]. Therefore, δ is related to the width of the zeroth autocorrelation peak tc as well as the
width of the first autocorrelation peak. Previous works have extensively studied this drift and its
relation to co-moving Lyapunov exponents [25,57].

The drift is a consequence of the fact that the system is causal. The delayed term x(t − τD)
cannot affect the dynamics before, or even at, the time t. Therefore, in figure 2d, we use

t = nT + σ , (3.2)

to create space–time representations, where T = τD + δ is the recurrence time and now σ ∈ [0, T].
When the space–time representation is done in this way, the structures are stabilized in space
(i.e. they have a nearly stationary average spatial position). Indeed, it has been shown that this is
often the correct moving frame in which to view the spatio-temporal behaviour of time-delayed
systems [21].

4. Using the space-time representation to realize coupled oscillators in a single
delay system

Recently, the space–time representation has been used to interpret a single nonlinear node with
delayed feedback as a network of coupled oscillators. These experiments replace the spatial
multiplexing of a traditional network (in which all nodes are updated simultaneously in parallel)
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Figure 2. Illustration of the space–time representation. (a) Time series of the delayed system in equation (2.2). (b) Space–
time representation of the time series shown in (a), where σ ∈ [0, τD]. (c) Autocorrelation of the time series shown in
(a) The distance to the first autocorrelation peak is τD + δ. Here τD = 4 ms and δ = 250µs. Inset. Zoom in on central
autocorrelation peak. Thewidth of this peak is tc . (d) Space–time representationwith drift correction (σ ∈ [0, τD + δ]). These
figures were made from a numerical simulation of equation (2.2) with β = −5, τL = 400µs, τH = 10 ms, τD = 4 ms and
F(x)= sin2(x(t) − π/4), which describes the opto-electronic oscillator shown in figure 1b. (Online version in colour.)

with temporal multiplexing, in which the single nonlinear element serially updates each of the
nodes, which are distributed across the delay line. There are two major benefits to this network
implementation: this is the only way to create a network of truly identical nodes, and it allows
one to implement a large network without building a large number of separate physical nodes.
While originally used for a hardware implementation of RC [30,31,37,60–62], these types of delay
systems have since been used to study chimera states in cyclic networks [32,33] and cluster
synchronization in arbitrary networks [34,35].

Because delay systems require a continuous function to describe their initial conditions,
they are considered infinite-dimensional systems. However, it was noticed early on that chaotic
attractors of delay systems have finite dimension in practice [10]. In trying to explain this finite
dimensionality, Le Berre et al. conjectured that the dimension of the attractor is equal to τD/tc,
where tc is the width of the zeroth peak of the autocorrelation of the chaotic time series [11]. In
other words, in practice, only τD/tc values are needed to specify a point on the attractor [63].
Even more, it was suggested that a delay can be thought of as a set of τD/tc roughly independent
time slots, such that the kth time slot in one delay is correlated with only the kth time slot in
the following delay, as confirmed by the secondary peaks in the autocorrelation function (e.g.
figure 2c). If each of these independent time slots is considered to be a ‘node’, one can think of
the delay system as consisting of a set of τD/tc independent, discrete-time nonlinear systems. This
reasoning is similar to the reasoning that led to the development of the space–time representation
and is particularly useful in the same types of situations, i.e. when τD � tc.
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Temporal discretization arises naturally in many experimental implementations of delay
systems. The opto-electronic feedback system with a pulsed laser described in §2 is one such
example [55,64]. Further, many experimental delay systems implement the delay line with a
synchronously clocked shift register because of the ability to easily vary the delay [30,33,34,37,41,
53,65]. In these implementations, the digital delay discretizes time into steps of size �t = τD/N,
where N is an integer. These digital delay lines apply a constant feedback for one time step �t,
then sample the system at the end of the time step. Because of the discretization, the use of the
co-moving frame T = τD + δ discussed in §2 is not always necessary, and we can simply use a
discretized version of original space–time representation equation (3.1).

In order to reveal the link between these systems and networks, we explicitly discretize time
into time steps of length �t, and we call each time slot a network node. If �t is chosen to be
slightly less than tc, the nodes (which span an interval �t) are no longer roughly independent,
but are now coupled through the ‘inertia’ due to the non-instantaneous response time of the
system to which delayed feedback is applied. This response time can be described by a filter
impulse response. In this way, we have a network of coupled nodes, where the strength and
topology of the coupling are determined by the form of the filter impulse response. The temporal
discretization �t is chosen depending on the application and can have an important impact on
the dynamics and coupling, as we discuss at the end of this section.

In order to show explicitly how the network structure arises in these cases, we consider the
discretized space–time representation

k = nN + i, (4.1)

where k is the original discrete time, n is an integer that counts the number of delays that have
passed, N = τD/�t is the number of time steps in a delay, and i is the discrete spatial variable.
In our network interpretation, n will be the network time and i will be the node index. We
impose this discrete space–time representation (equation (4.1)) upon the discrete-time delayed
equation (2.3):

x(i)[n] = β

nN+i∑
m=−∞

h[nN + i − m]F(x[m − N]), (4.2)

where N = τD/�t is the number of nodes in the network, n is the network time and i is the node
index. We can then split up this summation as follows:

x(i)[n] = S(i)[n] + C(i)[n], (4.3)

S(i)[n] = β

(n−1)N+i∑
m=−∞

h[nN + i − m]F(x[m − N]) (4.4)

and C(i)[n] = β

nN+i∑
m=(n−1)N+i+1

h[nN + i − m]F(x[m − N]). (4.5)

Further insight into the meaning of S(i)[n] can be provided by a concrete example. Here we
consider a single-pole low-pass filter described by [42]

h(t) = τ−1
L e−t/τL u(t), (4.6)

where u(t) is the Heaviside step function, as depicted in figure 3a. This is the response that
one would use, for example, when solving the Ikeda equation, equation (1.1). In this case,
equation (4.4) becomes

S(i)[n] = βe−τD/τL x(i)[n − 1]. (4.7)

Equation (4.7) shows that S(i)[n] is a self-feedback term with a weight wh that depends on the form
of h(t). In general when the delay is long relative to the filter time scales, wh → 0, as is clear from
equation (4.7) for the particular case of a low-pass filter where wh = e−τD/τL .
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Figure 4. Illustration of the coupling term in the space–time representation of delay systems (second term in equation (6.6))
(a) when τD ≈ τL and (b) when τD � τL when the coupling is implemented by a band-pass filter. The colouring indicates the
strength of the coupling h[k] from the shaded nodes (x(p)[n − 1]) to the node represented by the black rectangle (x(i)[n]). Red
shading represents positive coupling, blue negative coupling and white no coupling. In (a), the coupling spans two full time
steps (n − 1 and n − 2), and so this should not be considered a network. In (b), however, the coupling is significant over only a
small range (from p − k� to p) and so for almost all nodes i the coupling comes from nodes only at time step n − 1. Therefore,
this can be considered to be a network. (Online version in colour.)

In order to interpret C(i)[n], we perform a simple change of variables p = m − nN in
equation (4.5) to obtain

C(i)[n] = β

i∑
p=i+1−N

h[i − p]F(x(p)[n − 1]). (4.8)

Therefore, C(i)[n] is a coupling term: the summation ‘couples’ the values of x(p)[n − 1]
(weighted by h) to the value of x(i)[n − 1] to determine x(i)[n].

Equation (4.3) along with equations (4.7) and (4.8) now resembles a network equation: each
node i is coupled to all the other nodes through the coupling weights h. However, this should not
yet be considered a network. We recall that the superscript on x denotes a node index and must
be in the range [0, N − 1]; however, in equation (4.8) p runs from i + 1 − N to i, which can include
negative values. Physically, this means that the coupling summation runs over some x-values at
time n − 2 in addition to those from time n − 1. This is illustrated in figure 4a, where the black
rectangle denotes x(i)[n] and the shaded region denotes the x-values that are coupled to x(i)[n − 1]
by C(i)[n] to determine x(i)[n].

In cases where the delay τD = N�t is long (relative to the filter time scales), the filter impulse
response is significant for only a small range, from i − k� to i, where k� 	 N is a small number of
time steps (determined by the form of h[k]) above which h[k�] is negligible. For long delays, we
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Figure 5. Illustration of the adjacency matrices for (a) the low-pass filter and (b) band-pass filter. The adjacency matrix is
cyclically symmetric due to the time invariance of the filter. (Online version in colour.)

can approximate equation (4.3) as

x(i)[n] = whx(i)[n − 1] + β

i∑
p=i−k�

h[i − p]F(x(p)[n − 1]), (4.9)

where the superscript denotes the node number and the number in square brackets denotes the
discrete network time.

Equation (4.9) is now an exact correspondence with the standard network equation

x(i)[n] = G(x(i)[n − 1]) +
N∑

j=1

AijF(x(j)[n − 1]), (4.10)

where G(x) is a function that describes the self-feedback and Aij is the weighted network adjacency
matrix. By comparing equations (4.9) and (4.10), G(x)=whx. The filter impulse response h(t) is the
equivalent of the adjacency matrix; it determines the strength and topology of the coupling.

For concreteness in demonstration, we now present the adjacency matrices induced by two
simple but common impulse responses: the low-pass filter and the band-pass filter. The single-
pole low-pass filter response is given by equation (4.6). The adjacency matrix that corresponds
with this low-pass filter is given by

ALP
ij = β

�t
τL

{
e−(i−j)�t/τL if 0 ≤ i − j ≤ k�

0 otherwise
. (4.11)

A depiction of this adjacency matrix is shown in figure 5a. We note that all couplings are positive
and that the network is a directed ring. Another common type of filtering is the two-pole band-
pass filter, which has impulse response [42]

hBP(t) = (1/τL)e−t/τL − (1/τH)e−t/τH

1 − τL/τH
u(t), (4.12)

where τH is the high-pass filter time constant and τL is again the low-pass filter time constant,
depicted in figure 3b. This impulse response corresponds to the filtering in equation (2.2). The
corresponding adjacency matrix is

ABP
ij = β

�t
1 − τL/τH

{
τ−1

L e−(i−j)�t/τL − τ−1
H e−(i−j)�t/τH if 0 ≤ i − j ≤ k�

0 otherwise.
(4.13)

A depiction of this adjacency matrix is shown in figure 5b. We note that the network is
again a directed ring; however, some of the couplings are now negative. Time-invariant filters,
such as the two discussed above, will lead to ring networks, and the ring is directed due to
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Figure 6. Graphical comparison between two RC implementations: a classical RNN architecture (left), and a delay dynamics
based Reservoir. (Online version in colour.)

causality. However, networks with arbitrary topologies can be created by the introduction of a
time-dependent filter, as we discuss in §7.

Here, we make a note about the design of these network experiments and the choice of
�t relative to the time scales τL and τD. If �t < τL, the (time-invariant) filter impulse response
will couple the nodes in a cyclically symmetric adjacency matrix, with the coupling radius and
coupling strength determined by the form of the impulse response. If �t � τL, no coupling will
be induced by the filtering, and the system will consist of completely independent but identical
nodes. Further, the quantity τD/τL should be large for the network interpretation to hold in
general. If τD/τL is not large, then for a significant fraction of nodes the C(i)[n] includes terms
from both time n − 1 and time n − 2 as shown in figure 4a. The fraction of nodes for which this is
the case tends to zero as τD/τL → ∞.

5. Reservoir computing with delayed feedback
RC is a recently proposed brain-inspired processing technique, corresponding to a simplified
version of conventional recurrent neural network (RNN) concepts. It was independently
proposed in the machine learning community under the naming Echo State Network (ESN) [66]
and in the brain cognitive research community as Liquid State Machine [67]. It was later unified
with the now adopted name, RC [68,69]. The generic architecture of an RC system is thus rather
conventional (figure 6), consisting of:

— An input layer aimed at expanding the input information to be RC-processed onto each
node of the RNN;

— An internal network having a recurrent connectivity thus potentially possessing complex
internal dynamics depending on the spectral radius of its connectivity matrix;

— And an output layer intended to extract the computed result from the global observation
of the network response, typically performing a linear combination of the different
internal state variables of the network.

The most important difference of RC compared to conventional RNN consists in the restriction
of the learning process (i.e. finding the optimal synaptic weights for the nodes and layer
connectivity) to the output layer only. The input layer and the internal network connecting
weights are usually set at random and remain fixed during both training and operation. This
makes the learning phase of RC much more computationally efficient than in RNN (since learning
is reduced to a linear regression problem in RC). In many situations, the effective computational
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power of RC has been found comparable, or in some cases even better than, their standard RNN
counterpart.

One major technological challenge of neuromorphic computing is however to imagine and
design a physical hardware implementing its specific concepts, instead of translating them into
algorithms to be programmed in standard, however structurally unmatched, digital processors.
The generally recognized poor energy efficiency of artificial intelligence (involving dedicated
supercomputers, or energy greedy computer farms) is indeed related to the fact that brain
computing concepts have to be adapted into Turing von Neumann machines, whose architecture
and principles of operation are actually very far from what we have learned from the brain.
Up to now, there is essentially no other easily available and dedicated computing platform
capable of efficiently running artificial intelligence techniques. Turing von Neumann machines
are practically the only effectively working solution today for investigating AI.

An essential problem when one wants to design a dedicated hardware implementation of
neural network processing concepts is the difficulty to physically fabricate a well-controlled three-
dimensional dynamical network, as nature easily does with any brain. Based on the assumption
that what matter are the dynamical complexity and the high phase space dimension, but not
the internal structure itself of the reservoir network, the EU project PHOCUS (PHOtonic liquid
state machine based on delay CoUpled Systems) started in 2010 with the objective to demonstrate
the RC implementation suitability of nonlinear delay dynamics. Delay dynamics have thus been
proposed as a way to replace a neural network architecture in the implementation of the RC
concepts, with a first successful demonstration through an electronic delay system mimicking the
Mackey–Glass dynamics [30]. To do so, extensive use of the space–time analogy of delay dynamics
was made in order to properly adapt the RC processing rules previously used in networks of
dynamical nodes (and effectively always programmed or simulated with digital processors).

Figure 6 shows on the left a standard network-based RC processing (ESN), whereas the right
figure displays its analogue based on nonlinear delayed feedback dynamics for the reservoir. The
experimental set-up first proposed for photonic RC is precisely the one depicted in figure 1b, in
which an external signal is superimposed at the rf input port of the Mach–Zehnder.

(a) Input layer
The input information in standard RNN is expanded into the network according to spatial
multiplexing: the coordinates of the original input vector v[n] ∈ R

Q is expanded through the
multiplication with the input connectivity matrix WI ∈ R

N × R
Q. Each node i = 0 · · · N − 1 of the

network is thus receiving an input signal u(i)[n]:

u(i)[n] =
Q∑

q=1

wI
iq vq[n]. (5.1)

When one is making use of a delay dynamics instead of network of nodes, time division
multiplexing is naturally adopted to address the virtual nodes i distributed in time all along the
recurrence time T. The required temporal waveform which will need to be injected into the delay
dynamics, reads as follows:

u(t) =
N−1∑
i=0

⎡
⎣ Q∑

q=1

wI
iq vq[n]

⎤
⎦ p�t(t − nT − i�t), (5.2)

where p�t(t) is a sample and hold function. It is a temporal window being unity from time t = 0 to
t = �t and zero everywhere else. The duration �t is the sampling period, or differently speaking,
also the temporal spacing between two virtual nodes in the recurrence time interval T. The scalar
signal u(t) is practically programmed in an arbitrary waveform generator, it has the shape of a
piecewise constant signal for each sample i = 0 · · · N − 1 of each time slot of duration �t. When
dividing u(t) into sequences of N samples, and stacking horizontally these vectors of length N for
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each consecutive discrete time n, one obtains the space–time representation of the input signal, as
depicted in figure 2c.

(b) Reservoir layer
A transient dynamic is then triggered in the reservoir due to the injection of the information signal
u(i)[n] or u(t). For the ESN, this transient is ruled by the following discrete time update rule, from
time (n − 1) to time n:

x(i)[n] = F

⎡
⎣ N∑

j=1

wR
ij x(j)[n − 1] + ρ · u(i)[n]

⎤
⎦ , (5.3)

where WR ∈ R
N × R

N is the internal connectivity matrix of the Reservoir. F[·] is a nonlinear
function (usually a sigmoïd, e.g. a hyperbolic tangent, in classical ESN), and ρ is a scaling factor
weighting the input signal defined in equation (5.1).

In the case of a delay reservoir, the update rule is similar to equation (2.1), except the delay
dynamics is now non-autonomous. The input waveform defined in equation (5.2) is indeed
superposed on the delayed feedback. It is thus contributing directly to a nonlinear transient in
the delay dynamics phase space, with a contributing weight ρ:

x(t) = h(t) ∗ F(x(t − τD) + ρ · u(t)) =
∫ t

−∞
h(t − t′)F

[
x(t′ − τD) + ρ · u(t)

]
dt′. (5.4)

One could notice that the delay reservoir, compared to the discrete-time ESN, is continuous in
time. The definition of virtual spatial nodes, and their discretization, is experimentally introduced
through the sampling period �t from equation (5.2). The adjacency matrices represented in
figure 5a,b then correspond to the internal connectivity matrix WR used for the ESN.

The time scale �t is very important as it has to be properly tuned with respect to the internal
short time τL of the delay dynamics. Optimal processing efficiency of the delay reservoir is
empirically found for �t � τL/5. This highlights a compromise between:

— �t should not be too short, otherwise adjacent nodes have nearly identical dynamical
behaviour because they are too strongly coupled through the delay dynamics inertia
(the reservoir response to the input data would also be too small in amplitude, since
it would be strongly filtered; this has detrimental signal-to-noise ratio impacts in the RC
processing);

— the adjacent nodes could be too decoupled when �t is too large; if they would be too far
one from each other, they would allow each stepwise transition of the input information
to reach an asymptotic state independently of the farther past.

(c) Output layer
The last operation in RC concerns the read-out layer, consisting of a linear combination of the
reservoir internal states x(i)[n]. This step aims to provide the expected computational result. The
read-out operation generates an output vector y[n] ∈ R

M, which components read as follows for
the ESN:

ym[n] =
N−1∑
i=0

wO
mi x(i)[n]. (5.5)

The same equation holds in the case of a delay reservoir, where however the node state x(i)[n]
corresponds to the extraction of a virtual node state in the delay reservoir, through the sampling
of x(t). The signal defined by equation (5.4), is sampled to provide x(tk), with tk = k · �t, k being
defined as in equation (4.1).

The coefficients of the linear combination (i.e. the elements wO
mi of the read-out matrix

WO ∈ R
M × R

N) are determined by a learning task. In the case of supervised learning, one
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Figure 7. Graphical illustration of the RC processing steps in the case of a speech recognition task, performed with an
optoelectronic delay oscillator used as a Reservoir with 400 virtual nodes. Each input cochleagram consists of 86 frequency
components, the (colour encoded) energy content of which is evolving over the duration of the spoken digit (this duration Nl
amounts here to 88 steps in n). (Online version in colour.)

simply applies a ridge regression to an ill-posed problem for a set of known data couples,
{(reservoir responsel = Al, target read − outl = B̃l), l = 1 · · · L}. This corresponds to a training set of
L couples of temporal data (evolution of the discrete time n), each having a duration Nl.
Al ∈ R

N × R
Nl is thus the concatenation of the reservoir state vector {x(i)[n] | i = 0 · · · N − 1, n =

1 · · · Nl}, and B̃l ∈ R
M × R

Nl is the same concatenation for the corresponding target vectors ỹ[n].
The learning requires one to consider all reservoir responses Al for the different elements of the
training set, which are gathered into a matrix A (of dimension N × (

∑
Nl)). The RC outputs WOA

are expected to provide the correct corresponding answers B̃ (of dimension M × (
∑

Nl) where, B̃
is the concatenation of the target matrices B̃l): B̃ = WOA. The ridge regression can be applied to
solve this ill-posed problem, through the following formula giving the optimal read-out matrix:
WO

opt = B̃ AT (A AT − λI)−1, where the superscript T holds for the matrix transposition operation,
λ is the small regression parameter, I is the N × N identity matrix, and the matrix inversion can
be calculated through a Moore–Penrose algorithm.

RC has already achieved many successes, revealing its computational potential both in ESN
numerical simulations [70,71], and also in physical hardware implementation. Successful physical
hardware implementations have been based on delay dynamics [30,31,60,72–74], but also more
recently they have employed real spatially extended photonic systems [75,76].

Figure 7 illustrates the previously described RC processing steps, in the case the processing of a
classification problem (speech recognition), as performed with an optoelectronic delay dynamical
system [31]. It makes an extensive use of the space–time representation for delay dynamical
systems.

6. The continuum limit
Networks can also be realized using the space–time representation in the case of fully analogue
delay lines, such as those that rely on the finite propagation speed of light. Such a system can
also be well approximated by the discrete-time systems discussed in §3 by taking the limit
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that �t/τD → 0 [32,33]. In these situations, time is continuous, so we return to the space–time
representation given by equation (3.2). This allows us to think of a continuum of nodes that are
labelled by their position σ and evolve in discrete time n.

The realization of a network follows very much along the lines of §3, but in continuous time
rather than discrete. Therefore, the summations will be replaced by integrals, and we will have
to account for the drift δ in the space–time representation. What follows is an elaboration of the
presentation contained in [33].

We begin by analysing equation (2.1) from the perspective of the space–time representation
by setting t = nT + σ , where n is an integer that counts the number of drift-corrected delays
T = τD + δ that have passed since the origin, and σ ∈ [0, T] is the node’s position in pseudo-space.
Re-writing equation (2.1) with this change of variables results in

xn(σ ) = β

∫nT+σ

−∞
h(nT + σ − t′)F

(
x(t′ − τD)

)
dt′. (6.1)

We can then separate the integral into two domains as follows:

xn(σ ) = Sn(σ ) + Cn(σ ), (6.2)

Sn(σ ) = β

∫ (n−1)T+σ

−∞
h(nT + σ − t′)F

(
x(t′ − τD)

)
dt′ (6.3)

and Cn(σ ) = β

∫nT+σ

(n−1)T+σ

h(nT + σ − t′)F
(

x(t′ − τD)
)

dt′. (6.4)

Further insight into the meaning of Sn(σ ) can be provided by a concrete example, so that we can
evaluate the integral. Here we consider the simplest filter, a single-pole low-pass filter described
by h(t) = τ−1

L e−t/τL u(t) (equation (4.6)). In this case, equation (6.3) becomes

Sn(σ ) = βe−T/τL xn−1(σ ). (6.5)

The meaning of Sn(σ ) is now clear: it is a self-feedback term (from the state x at the spatial position
σ at discrete time n − 1 to the state at the spatial position σ at discrete time n) with a strength
determined by the form of h(t).

In order to interpret Cn(σ ), we make a change of variables t′′ = t′ + δ − nT:

Cn(σ ) = β

∫ σ+δ

σ−τD

h(σ + δ − t′′)F
(

xn−1(t′′)
)

dt′′. (6.6)

Therefore, Cn(σ ) is a coupling term: the integral ‘couples’ the values of xn−1(t′′) to the value of
xn−1(σ ) to determine xn(σ ).

When the delay τD is long (relative to the filter time scale), the filter impulse response is
significant for only a small range, from σ − � to σ + δ, where � 	 τD is a short time (determined
by the form of h(t)) above which h(t) is negligible. For long delays, we can approximate
equation (6.6) as

Cn(σ ) ≈ β

∫ σ+δ

σ−�

h(σ + δ − t′′)F
(

xn−1(t′′)
)

dt′′. (6.7)

Equations (6.6) and (6.7) reveal the network structure that results from viewing the system with
long delay through the space–time representation. The system can be interpreted as a continuum
of discrete-time nodes whose position (node index) is given by σ . Each node is coupled to its
neighbours within a distance � on the left and δ on the right through the system’s impulse
response h(t), as shown in figure 4. Importantly, the coupling term in equation (6.7) includes
only nodes from time step n − 1 for almost all nodes σ since � 	 τD. Indeed, in the limit
τL/τD → 0, the fraction of nodes whose input coupling spans two time steps vanishes. It is clear
from equation (6.7) that h(t) determines both the coupling strength and the coupling width. The
particular form of h(t) plays a crucial role in the types of dynamics that the system can exhibit.
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7. Chimeras in systems with delayed feedback
Chimeras and RC surprisingly share a temporal and a spatial coincidence. They were
‘temporally’ discovered and invented, respectively, in the early 2000s [38,66,67], and they were
‘geographically’ connected to delay dynamics during the Delayed Complex Systems conference
DCS’12, a decade later. Since delay dynamics had demonstrated the ability to emulate a virtual
network of neurons in RC applications, a straightforward challenge was to also confirm the
relevance of this network emulation for the experimental observation of chimera patterns.
Moreover, chimeras had just been experimentally discovered in 2012, in set-ups modelled by
spatio-temporal equations [6,7]. A chimera state in a delayed dynamical system was first observed
in 2013 [54], illustrating that networks of dynamical nodes can indeed be emulated by a delayed
dynamical system.

A chimera is an unexpected solution arising in a homogeneous network of identically coupled
oscillators. A chimera is a symmetry breaking solution: Even though the network is structurally
homogeneous (identical oscillators and coupling topology) the network is split into two groups.
In one group, the oscillators behave coherently, while the oscillators in the other group behave
incoherently. One of the models used to numerically explore chimera solutions is the network of
continuously distributed coupled Kuramoto oscillators, defined as follows:

∂φ

∂t
= ω0 +

∫
G(x − ξ ) · sin[α + φ(t, x) − φ(t, x − ξ )] dξ . (7.1)

This governs the dynamics of the phases φ(t, x) of the oscillators that are continuously distributed
in space, ω0 being their natural angular frequency. Oscillators have coupled phases according to
a sine nonlinear dependency of the coupling (with an important coupling offset α), depending
on the relative phase difference between the two coupled oscillators at position x and x − ξ . Each
phase coupling is weighted by a distance-dependent factor G(x − ξ ), which is typically vanishing
beyond a certain coupling distance (sometimes referred as to the coupling radius) defined by the
shape of G(·). The phase dynamics is thus ruled by the contribution of the coupling with all the
other oscillators, as the integral term in equation (7.1) covers the entire space of the network.
Chimera solutions of such an equation typically consist of coherent clusters, in which oscillators
in the same cluster are synchronized with the same phase, and incoherent clusters, in which
oscillators are completely desynchronized with chaotically fluctuating phases.

It is then interesting to compare qualitatively the integral term in equation (7.1), with the
one derived in equation (6.7). As previously discussed and as it can be also inferred from the
comparison with the network of Kuramoto oscillators, one can clearly identify the specific role
of h(t), when it is considered in the space–time representation of the delay dynamical variable
xn(σ ) as derived in equations (6.2)–(6.6). The impulse response h(t) clearly controls the coupling
strength and the coupling distance within the virtual network of dynamical nodes. The nonlinear
function F(x) plays the role of the nonlinear coupling between the amplitudes of the virtual nodes.

Figure 8 reports typical chimera patterns obtained experimentally with nonlinear delay
dynamics. It shows both the temporal waveform during growth and stabilization of the pattern,
as well as the space–time representation in the (σ , n)-plane, with colour encoding of the waveform
amplitude. The space–time picture clearly shows the sustained chimera pattern along the
horizontal virtual space domain. It consists of a flat plateau (blue colour) surrounded by a chaotic
sea (red and orange colours), with which it coexists, filling in a balanced and stable way the shared
spatial domain. The figure also shows two possible solutions (single-headed and two-headed
chimera), obtained with the same experimental parameters, but produced from different noisy
initial conditions. Depending on the temporal parameters (hence the properties of the coupling
function h(t) as depicted in figure 3b, e.g. the actual values of τL and τH relatively to τD), one can
obtain a highly multistable dynamics of chimera patterns [33].

To comment more into the details under which conditions chimera solutions can be obtained
in delay dynamics, it is worth mentioning that indeed h(t) requires a bandpass profile. There
are many different arguments to explain this requirement. The first is related to the carrier
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Figure 8. Experimental record of single- and two-headed chimera solutions generated in delay dynamics. The two central
graphs show the space–time representation of the chimera solution, as they grow and are then stabilized. The side graphs, left
and right, are temporal waveforms showing parts of the chimera solution, during the initial transient (birth of the chimera from
the noisy background; lower time-traces, covering a fewhundreds of time recurrences in the delayed feedback loop), and during
the stabilized part at the end of the full record (upper time-traces; covering approximately two recurrent times T = τD + δ).
(Online version in colour.)

waveform of a chimera pattern over the virtual spatial domain [n(τD + δ); (n + 1)(τD + δ)], which
is necessarily a stable period-1 (delay) carrier waveform, and not a period-2 carrier waveform
as usually concerned in the period-doubling bifurcation cascade typically known for delay
dynamics. To allow for such a stable period-1 carrier waveform, the band-pass character for h(t)
is necessary (stable period-1 pattern have been analysed e.g. in [77]), since the low-pass one is
known to lead to unstable period-1 pattern, as was reported in [25] about the ‘coarsening’ of any
forced initial pattern in the virtual spatial domain. Last but not least, one could also mention
that with a fixed τL, the impulse response with τH (band-pass) necessarily exhibits a broader
width than without the presence of τH (low-pass). This remark is in line with the known fact that
chimera states are favoured when the coupling range is extended (i.e. beyond the classical case of
nearest-neighbour coupling only, which does not allow for chimera states).

There are also specific requirements on the nonlinear coupling function F(x) for obtaining
chimera solutions. This is illustrated in figure 9, where both the nonlinear function profile is
represented, and next to it, with the same vertical scaling, the temporal chimera waveform. From
the standard fixed point analysis for a nonlinear map defined by the same function F(x), one can
notice the following:

— The nonlinear function operates around an average value centred along a positive slope
of F(x), between two extrema, where an unstable fixed point for the map is located
(middle black circle);

— The high amplitude chaotic part of the chimera waveform corresponds to the sharp
maximum of F(x), and it develops a chaotic motion along this maximum, essentially on
the negative slope side and centred around an unstable fixed point (upper-right black
circle);

— The low amplitude plateau of the chimera waveform corresponds to a stable fixed point
(lower-left black disc) of the map, along a weak negative slope, thanks to the presence of
a broad minimum.

This remark points out that F(x) must have an asymmetric shape that results in a sharp
maximum and a broad minimum. This was experimentally obtained in [33] with the Airy function
provided by a low finesse Fabry–Pérot resonator, which is providing a nonlinear transformation
of the wavelength of a dynamically tunable laser diode, into the output optical intensity of the
Fabry–Pérot.

The space–time representation was recently found not to be restricted to a single virtual space
dimension. Indeed, adding a second delay much larger than the first one, and acting in parallel to
it, enabled two-dimensional chimera to be obtained in delay systems. Among various solutions
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Figure 9. Features of the nonlinear coupling function for obtaining chimera patterns in delay dynamics. Left: nonlinear
function profile F(x), with a dotted first bisector line highlighting the fixed points for a map xn+1 = F(xn). Right: amplitude
correspondence in the temporal chimera waveform x(t). (Online version in colour.)

observed in this two-delay system, one could observe chaotic islands surrounded by a calm sea,
or its contrary, a flat plateau island in the middle of a chaotic sea [78].

8. Arbitrary networks of coupled maps
Section 3 described the realization of circularly symmetric networks in a single nonlinear
system with delayed feedback. In these experiments, the network nodes were time slots of
length �t, where �t 	 τD, and the coupling between nodes was due to the inherent bandwidth
of the electronics. This inherent bandwidth was described using a time-invariant infinite
impulse response filter; the time invariance results in a circularly symmetric network. However,
equation (4.2) does not require the impulse response to be time-invariant. In this section, we
describe recent work that uses a digital filter with a time-varying impulse response to realize
arbitrary networks in an experimental delay system [34].

There are two modifications of previous systems necessary in order to obtain a network with
arbitrary topology: (a) the inherent circularly symmetric coupling due to the (time-invariant)
bandwidth limitations of the system must be removed, and (b) the desired coupling must be
implemented by an appropriately designed filter with a time-dependent impulse.

(a) Removing the inherent circularly symmetric coupling
There are two convenient options for removing the inherent circularly symmetric coupling due
to the time-invariant bandwidth limitations of the system.

(I) Perhaps the most straightforward way to remove the coupling due to the bandwidth
limitations of the system is to extend the �t described in §5. This can be done in the pulsed
laser system described by equation (2.3) by choosing the pulse repetition rate fr = N/τD 	 1/τL.
In this case, the filter response decays before the next pulse arrives, and so the system reduces to
the N-dimensional map:

x[k] = βF
(
x[k − N]

)
, (8.1)

where k is the discrete time. This map equation requires the specification of N different initial
conditions, but the trajectory of each initial condition is completely independent of the trajectories
of the others. Therefore, (8.1) can be thought of as a set of N completely independent but truly
identical oscillators using the space–time representation:

x(i)[n] = βF
(
x(i)[n − 1]

)
, (8.2)

where i = k mod N is the oscillator number and n is the network time.
(II) An easier-to-implement experiment that displays the same map dynamics is obtained by

using a CW laser and sample-and-hold electronics that are clocked at a rate fr. Synchronously
clocked shift registers have long been used to implement delays in experimental set-ups because
of the ease of varying the delay [30,33,34,37,41,43,53,65]. Such a system can also be described by
equation (2.3). However, in previous experiments, the clock rates have typically been chosen so
that the discrete-time nature of the digital delay line minimally impacts the dynamics; that is, the
sampling time �t = 1/fr has typically been much smaller than any other dynamical time scale,
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and so the digital delay line is a good approximation of an analogue delay. In these cases, the
experiment is well described by equation (2.1). Here, we intentionally choose a sampling time
that is much longer than the other dynamical time scales in the system, but still shorter than the
time delay τD = N�t. With this choice of clock rate, the dynamics of the system is well described
by equation (8.2).

(b) Implementing the desired adjacency matrix
The systems described in the last few paragraphs create N identical, uncoupled nodes using a
single delayed dynamical system. In order to couple the nodes together in a network, we must
implement a filter that can be described by a time-varying impulse response. This is easiest to do
with a digital filter, since in this case we are not restricted by what can be easily implemented by
analogue components.

It is convenient to implement both the delay and the digital filter on a single device such as a
field-programmable gate array (FPGA). In this case, the filter can be acausal in the sense that we
can implement the following:

x[k] =
(k+N−i−1)∑

m=−∞
h[k − m; k]F

(
x[m − N]

)
, (8.3)

where the impulse response h is explicitly written as a function of the discrete time k to denote
that it is varying in time. The acausality of the filter is necessary in order to permit couplings to
node i from nodes j > i.

The impulse response of the digital filter necessary to implement a given network is
determined by the adjacency matrix Aij that describes the network as follows:

h[m; k] =

⎧⎪⎪⎨
⎪⎪⎩

β if m = k

σAij if m �= k and m = k − i + j

0 otherwise,

(8.4)

where i = k mod N and j is an integer between 0 and N − 1.
When the digital filter described by the impulse response in equation (8.4) is implemented and

equation (8.3) is written in the space–time representation, we obtain

x(i)[n] = βF
(
x(i)[n − 1]

) + σ
∑

j

AijF
(
x(j)[n − 1]

)
, (8.5)

which describes a network of discrete-time oscillators that are coupled by the arbitrary adjacency
matrix Aij.

There are two adjustments, then, that need to be made to the systems described in §4 in order
to realize an arbitrary network of coupled oscillators in a single delay system:

(a) Time must be discretized in such a way as to break the nearest-neighbour coupling that
would otherwise be induced by the bandwidth limitations of the system.

(b) A filter with a time-dependent impulse response must be used in order to obtain a
network topology that is not cyclically symmetric. This filter must also be acausal to allow
for the construction of all possible networks (e.g. to couple node N − 1 to node 0).

(c) Experimental examples
This technique has been used to implement arbitrary networks in an optoelectronic feedback loop
[34]. An illustration of our experiment is shown in figure 10a. Light of constant intensity is emitted
from a fiber-coupled CW laser. The light passes through an electro-optic intensity modulator,
which serves as a nonlinearity. The light is converted to an electrical signal by a photodiode and
sampled at a frequency fr by the FPGA via an analogue to digital converter (ADC). The FPGA
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Figure 10. Experimental schematic for realizing arbitrary networks using a single nonlinearity with temporal multiplexing (a)
through a single delay and time-dependent filtering (b) throughmultiple time delays that are switched on and off in time. Both
illustrations are different ways of viewing the same experiment. (Online version in colour.)

implements the delay and the time-dependent digital filtering, and outputs the feedback electrical
signal through a digital to analog converter (DAC). This signal is amplified and fed back to the
modulator, completing the feedback loop.

One example of a network that can be implemented using this experimental technique
is shown in figure 11a. Clearly, the network is not rotationally symmetric, so it cannot be
implemented by a time-invariant filter. Figure 11b shows experimental time series measured
from the system depicted in figure 10. If we reorganize this time series according to the space–
time interpretation given by equation (4.1), we obtain figure 11c, which clearly shows cluster
synchronization: nodes 0, 1, 8 and 9 form one synchronized cluster, and nodes 2–7 form the other
synchronized cluster.

This network is particularly interesting because it displays an unexpected type of cluster
synchronization [35]. It had previously been shown that nodes that could be permuted among
each other by a symmetry operation could form synchronous clusters [8]. Later, it was shown
that in some cases, symmetry clusters could be combined to form non-symmetric synchronous
clusters. This was shown first in Laplacian networks [79] then later in more general networks
[80]. Figure 11a is a simple example of such a network, as nodes 3 and 6 cannot be permuted with
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nodes 2, 4, 5 or 7; yet, the red cluster still synchronizes, as shown in figure 11c. These experiments
confirm the stability of such so-called equitable partition cluster synchronization [35].

As mentioned in §7, a chimera state is a dynamical state of a network in which the nodes split
up into a coherent set and an incoherent set despite the fact that they are all identical and coupled
identically [38,39]. The chimeras in §7 were observed in a network with circularly symmetric
coupling and many nodes. Using the system shown in figure 10, we were able to observe a
chimera state in a 5 node globally coupled network [34]. The experimental results are shown in
figure 12. The globally coupled network and associated adjacency matrix are shown in figure 12a.
The colours denote the set of synchronized nodes: the blue nodes (0,2,3) are in the coherent set,
and the red and black nodes are desynchronized both with the blue nodes and with each other.
All nodes are truly identical. Figure 12b shows the time series, where the dotted lines denote the
increments of the network time step n. Figure 12c shows the space–time representation of the
time series, which clearly shows that nodes 0,2 and 3 are synchronized, and nodes 1 and 4 are
desynchronized from all nodes. Linear stability calculations confirm that these chimera states are
linearly stable [34].
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There is an alternative (but equivalent) way to view the technique used to create arbitrary
networks that does not involve acausal filtering. This perspective is described in detail in [34].
Here, the acausal filter is replaced by multiple delays that are switched on and off as a function of
time in order to implement the desired network. The idea of using multiple time delays to create
a more interesting network was pioneered for the purpose of RC [37]; however, in this case, each
delay was always switched on, resulting again in a circularly symmetric network (albeit with
longer range connections than with a single delay). Switching the additional delays on and off
in time breaks the time-invariance (and therefore circular symmetry of the network) and allows
an arbitrary network topology. The time-dependent switching is determined according to the
following recipe:

1. The time delay of length N is always switched ON. This is the feedback time delay and is
multiplied by β. This delay is modelled by the first term in equation (8.5).

2. Time delays of length N + i − j are switched ON if Aij = 1, where i = k mod N is the active
node. These time delays determine the coupling and are summed then multiplied by σ .
This is modelled by the second term in equation (8.5).

3. All other time delays are switched OFF.

Digital time delays and switches are easily implemented in FPGA, making this a particularly
powerful implementation because the networks are easy to reconfigure. A schematic of such an
experiment is shown in figure 10b.

9. Conclusion and outlook
The realization of networks of coupled oscillators is a challenging experimental task because of
the difficulty and expense of obtaining, coupling and measuring a large number of identical
oscillators. In this paper, we have reviewed recently developed techniques that overcome
these obstacles by implementing the network in a single nonlinear delay system through
temporal multiplexing. These techniques offer the additional benefit, impossible in other network
implementations, that the oscillators are truly identical since they are all implemented in the
same physical hardware. These delay networks were first developed for their vast potential as
a physical implementation of RC with low cost and high speed. In addition to these important
information processing applications, delay networks are also opening up entirely new avenues of
research in basic experimental science, as exemplified by the observation of novel one- and two-
dimensional chimera states and cluster synchronization. These techniques, first conceived only in
2011, are still in their infancy and continue to stimulate basic and applied research.

Future work might explore the use of experimental arbitrary networks for hardware-based
reservoir computing, where a time-dependent filter impulse response might allow for the use of a
shorter time delay and therefore for faster information processing. This technique can also be used
for the experimental study of a variety of fundamental questions of network dynamics, including
the impact of targeted perturbations on network dynamics [81,82], the effect of heterogeneities
on network dynamics [83,84], the control of network dynamics [85] and the impact of noise on
network dynamics.

While the delay systems themselves are often continuous-time systems, the space–time
representation causes delay networks to be discrete in time. Research is currently under way to
allow the realization of continuous-time networks in a single delay by adopting the multiple time
delay implementation of arbitrary networks, shown in figure 10b. Importantly, this technique is
not reliant on opto-electronics: one could replace the optics with any system of interest. This might
be useful for building prototypes for large networks of coupled oscillators when the oscillators
are expensive, such as in the case of power grids. It may also allow for the experimental study of
large networks of truly identical oscillators in situations where the oscillators are rarely identical
in practice (e.g. biological systems such as neurons). This permits the study of the impact of
heterogeneity on the network dynamics.
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