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Abstract: Quantum measurements that use the entangled photons’ polarization to encode
quantum information require calibration and alignment of the measurement bases between
spatially separate observers. Because of the changing birefringence in optical fibers arising from
temperature fluctuations or external mechanical vibrations, the polarization state at the end of a
fiber channel is unpredictable and time-varying. Polarization tracking and stabilization methods
originally developed for classical optical communications cannot be applied to polarization-
entangled photons, where the separately detected photons are statistically unpolarized, yet
quantum mechanically correlated. We report here a fast method for automatic alignment and
dynamic tracking of the polarization measurement bases between spatially separated detectors.
The system uses the Nelder-Mead simplex method to minimize the observed coincidence rate
between non-locally measured entangled photon pairs, without relying on classical wavelength-
multiplexed pilot tones or temporally interleaved polarized photons. Alignment and control is
demonstrated in a 7.1 km deployed fiber loop as well as in a controlled drifting scenario.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Entanglement is a quantum mechanical phenomenon in which the outcomes of spatially separated
measurements are dependent in a way that cannot be explained classically [1]. Entangled states
are essential ingredients in versions of quantum key distribution, quantum communication,
quantum teleportation and quantum computing. The control and characterization of entanglement
is essential in all of these applications [1–4].

Entanglement can be arranged between atoms, electrons, and even larger, more complex
physical systems, but the most convenient and practical method to transmit entangled states
is through photons, which can be conveyed over low-loss optical optical fibers [5,6], allowing
far greater spatial separation of the entangled measurements [7,8]. One of the most prevalent
methods to generate entangled photons is through spontaneous parametric downconversion
(SPDC) – a nonlinear optical process in which a single pump photon spontaneously splits into a
pair of lower-energy emitted photons [9–11]. While other types exist, in type II spontaneous
parametric downconversion, the two generated photons are orthogonally polarized. When the
SPDC process is tuned to degeneracy, the emitted photons are spectrally indistinguishable, but
orthogonally polarized. When these photons are split and transmitted to separate observers,
if the polarization state of one photon is measured, the result is completely indeterminate but
anticorrelated with the observed polarization state of the other photon.
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A significant obstacle for entanglement distribution through fiber is that the majority of
deployed fiber communication channels do not preserve the state of polarization of the optical
signal. Even if the input polarization state is known, the state that emerges from a span of
single-mode fiber is indeterminate and varies in time because of unpredictable and uncontrolled
variations in temperature, bending, and stress [12–16]. Observation of polarization entanglement
relies upon alignment and calibration of the measurement bases between the two separate
observers, which is hindered by these uncontrolled variations.

The problem of polarization alignment and stabilization is well-studied in classical fiber
transmission systems [17–22], but existing methods cannot be directly applied when the measured
signals are at the single-photon level. Moreover, if the photons are polarization-entangled, the
received photons in each fiber are statistically unpolarized, and polarization control cannot be
achieved from local measurements alone.

One solution to this problem is to interleave well-polarized alignment signals, either in time
or wavelength, that co-propagate with the quantum signal in the same fiber [23–28]. While the
injection of classical alignment signals, interleaved in time or wavelength, is a well-established
strategy that may offer faster alignment than the method described here, there are also drawbacks
that must be weighed, depending on the application. Time multiplexing can limit the bandwidth of
the transmitted quantum signal because of leakage of the pilot tone into the quantum signal when
repetition rates are too high. Wavelength multiplexing places similarly stringent constraints on
optical filtering, and is ultimately limited by polarization mode dispersion between the signal and
pilot wavelengths. Both methods add experimental complexity as they require pilot tone sources,
multiplexers, and detectors for integration, separation, and measurement of these classical signals
along with the quantum sources and detectors.

In QKD systems that employ the BB84 protocol, the transmitted photons are randomly
polarized, but not entangled. In this case, the polarization axes of the receiver can be aligned
locally by using only the sifted keys or basis reconciliation process, which requires only single-
photon measurements [29,30]. More recently, Shi et al. achieved polarization alignment in an
entanglement-based QKD system, by using a stochastic optimization algorithm to minimize
the quantum bit error rate between non-local receivers [31]. They report compensation in
under 20 minutes, which is sufficient for tracking slower polarization drifts in shorter spans of
underground deployed fiber. In addition, an alternative polarization alignment strategy using
Bayesian estimation was shown to work in low coincidence count, high shot noise regimes [32].

We report here an experimental method for both polarization alignment and tracking that uses
a simplex optimization algorithm based on non-local coincidence measurements to acquire and
stabilize the observation of polarization-entangled photons. The method requires no temporal or
spectral interleaving of classically polarized signals, and we confirm that when measured locally,
the received photons carry no signature of the polarization state. Experimental results show
that the method achieves alignment within approximately 160 seconds, to target states placed
arbitrarily on the Poincaré sphere. The system is shown to dynamically adapt to variations in the
opposite (uncontrolled) fiber channel. We finally demonstrate the successful operation of the
system over a 7.1 km deployed fiber link. This method could find applications in key distribution,
quantum networking, quantum teleportation, and quantum measurement.

2. Experiment

Figure 1 shows the experimental apparatus used to demonstrate non-local polarization alignment
and control. Polarization-entangled photons are generated using Type II spontaneous parametric
downconversion in a periodically-poled potassium titanyl phosphate (PPKTP) waveguide (AdvR,
Inc.). The PPKTP waveguide is pumped with a 772.2 nm, continuous-wave external cavity
diode laser (Newport TLB-7100), which generates ∼ 1 × 106 pairs of orthogonally-polarized,
wavelength-degenerate photons per second [33,34]. An anti-reflection coated silicon wafer and
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1550 nm long pass filter are used to extinguish any residual pump light and other noise. Because
of the birefringence of both the PPKTP waveguide and the polarization maintaining (PM) output
fiber, the downconverted photons acquire a differential group delay, making them distinguishable
[35]. The downconverted photons are separated in a polarizing beamsplitter, with a controllable
time delay stage in one arm to equalize the timing.
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Fig. 1. Diagram of experimental setup used to demonstrate non-local polarization control.
Entangled photons are generated through spontaneous parametric downconversion in a
periodically poled potassium titanyl phosphate (PPKTP) waveguide, followed by longpass
and bandpass filters (LPF, BPF) to extinguish the pump signal and ensure spectral indis-
tinguishability (Fig. 2). The photons are transmitted to spatially separated receivers (Alice
and Bob), which each record the photons after polarizing beamsplitters (PBS). Piezoelectric
polarization controllers (PC) adjust the polarization state in each channel. A time-correlating
single-photon counting (TCSPC) instrument records the coincidence rate.

Figure 2(a) shows the spectra of the spontaneously-generated x- and y-polarized photons,
measured after the polarization beamsplitter. A pair of matching 1.2 nm tunable bandpass filters
(OZ Optics) were used to extinguish the distinguishable spectral tails caused by asymmetry in the
phase matching conditions. The time delay (τ) was adjusted by co-polarizing and combining the
channels and recording the Hong–Ou–Mandel (HOM) interference, which shows 96% extinction
in the coincidence rate, confirming the indistinguishability of the photons, as shown in Fig. 2(b).
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Fig. 2. a) Spontaneous parametric downconversion spectrum from PPKTP waveguide
before and after the bandpass filters (BPF), showing down converted signal (H polarized)
and idler (V polarized) photons. b) Measured Hong-Ou-Mandel interference, demonstrating
indistinguishability when the two combined, filtered photons are co-polarized and coincident.
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To generate entangled photons, the polarization controllers in the arms of the source interfer-
ometer are then adjusted so that the two photons arrive at the (non-polarizing) 50:50 beam splitter
with orthogonal polarizations. A variable attenuator is used to equalize the powers in the two
polarization states, in order to eliminate any partial polarization component for the transmitted
photons. After the beam splitter the entangled photons are then transmitted, optionally through a
fiber span, to the receivers.

The two spatially separated receivers (here denoted Alice and Bob) each include a piezoelectric
fiber-based polarization controller (General Photonics PolaRITE III), polarization beamsplitter
and a pair of superconducting nanowire photon-counting detectors with quantum efficiencies of
80% [Opus One, Quantum Opus LLC.]. Because the nanowire detectors have a polarization-
dependent efficiency, an additional manual polarization controller (not shown) is inserted between
the polarizing beamsplitter output and the photon counter to maximize the quantum efficiency.
The electronic signals are time-tagged and correlation measurements are processed in real time
by a time-correlating single-photon counting (TCSPC) instrument [HydraHarp 400, PicoQuant
LLC.] with timing resolution up to 1 ps, which enables measurement of the pairwise coincidence
rate between spatially separate detectors. Due to detector and electronic jitter, a coincidence
window of 100 ps is used for signal detection. By using a small coincidence window, we improve
the signal-to-noise ratio by ignoring the unpaired detection events that do not temporally coincide
with our downconverted photons. A computer records the coincidence rate in real time and uses
the resulting measurement to control one or both of the piezoelectric polarization controllers.

3. Theory

The output entangled photon pair state emerging from the beam splitter can be expressed as:

|Ψout⟩=
1
2
(|xa⟩|yb⟩−|ya⟩|xb⟩+|xa⟩|ya⟩+|xb⟩|yb⟩) (1)

where, for example, the leading term |xa⟩|yb⟩ describes an x-polarized photon transmitted to
Alice’s port and a y-polarized photon transmitted to Bob’s port. The first two terms in (1)
represent the case when pairwise orthogonally polarized photons are transmitted to Alice and
Bob, respectively, while the final terms represent the possibility that both photons go to either
Alice or Bob. Because our experimental measurements are conditioned on coincidences between
Alice and Bob, these final terms are excluded through post-selection [35–37]. The post-selected
state then simplifies to the |Ψ−⟩ Bell state,

|Ψ−⟩=
1
√

2
(|xa⟩|yb⟩−|ya⟩|xb⟩) (2)

The fiber connecting to Alice transforms the polarization state of the optical signal, so that an
initially x-polarized state will, in general, emerge from the fiber as elliptically polarized, and
conversely, an emerging linear polarization state would correspond to an elliptically-polarized
launch state. This transformation between the input and output states can be described by a
complex unitary matrix (Jones matrix) Ua and its inverse:⎡⎢⎢⎢⎢⎣

|ha⟩

|va⟩

⎤⎥⎥⎥⎥⎦ = Ua

⎡⎢⎢⎢⎢⎣
|xa⟩

|ya⟩

⎤⎥⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎢⎣
|xa⟩

|ya⟩

⎤⎥⎥⎥⎥⎦ = U†
a

⎡⎢⎢⎢⎢⎣
|ha⟩

|va⟩

⎤⎥⎥⎥⎥⎦ (3)

where |ha⟩ and |va⟩ denote the two output states that get separated and detected by the polarizing
beamsplitter and photon detectors. The matrix U†

a describes how these output states are mapped
back into an equivalent elliptical polarization basis at Alice’s fiber input. A general form for a
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unitary matrix (ignoring the common phase associated with transmission) is:

U†
a=

⎡⎢⎢⎢⎢⎣
ax −a∗y
ay a∗x

⎤⎥⎥⎥⎥⎦ (4)

where the first column of U†
a is a complex unit vector (Jones vector),

ã ≡

⎡⎢⎢⎢⎢⎣
ax

ay

⎤⎥⎥⎥⎥⎦ , |ax |
2 + |ay |

2 = 1 . (5)

The vector ã defines the input polarization state that would be fully transmitted into the “h”
output of Alice’s polarization beamsplitter. A polarizing beamsplitter that is preceded by a
unitary transformation is thus equivalent to an elliptical polarization beamsplitter, that splits the
incident light along an axis defined by the Jones vector ã.

The complex, two-dimensional Jones vector ã can be translated into a real, three-dimensional
Stokes vector a,

a =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
a1

a2

a3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣
|ax |

2 − |ay |
2

axa∗y + a∗xay

i(axa∗y − a∗xay)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, a2

1 + a2
2 + a2

3 = 1 (6)

that is easily visualized as a vector on the Poincaré sphere. a, and its temporal variations can
also be measured experimentally by transmitting a classical linearly polarized signal through the
fiber and recording the output state on a polarimeter. Bob’s channel undergoes a similar, but
different polarization transformation, described by analogous Jones and Stokes vectors b̃ and b
that characterize the polarization rotation occurring in Bob’s fiber.

With these definitions, the probability that Alice and Bob both detect horizontally polarized
photons can then be calculated as

P(ha, hb) = |⟨ha |⟨hb |Ψ
−⟩|2 (7)

where we use (3, 4) to express

|ha⟩=a∗x |xa⟩+a∗y |ya⟩, |hb⟩=b∗x |xb⟩+b∗y |yb⟩

Upon substitution into (7), this yields, after algebraic simplification,

P(ha, hb) =
1
2
|︁|︁axby − aybx

|︁|︁2 = 1
2

(︂
1 −

|︁|︁ã∗ · b̃
|︁|︁2)︂ (8)

The inner product of two Jones vectors ã∗ · b̃ can be related to the inner product of their
corresponding Stokes vectors [38], |︁|︁ã∗ · b̃

|︁|︁2 = 1
2
(1 + a · b) (9)

which gives a simple expression for the coincidence probability

P(ha, hb) =
1
4
(1 − a · b) = 1

4
(1 − cos θab) (10)

where θab represents the angular separation between polarization bases a and b on the Poincaré
sphere, as shown in Fig. 3. The coincidence rate between horizontal and vertical channels, is,
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analogously, found to be:

P(ha, vb) =
1
4
(1 + a · b) = 1

4
(1 + cos θab) (11)

These simple relationships are a generalization of the well-known result that for linearly
polarized measurements of entangled photons, the coincidence rate depends only on the relative
difference between their polarization axes. When a and b are matched, the coincidence rate is
zero, as expected. When a and b are anti-aligned on the Poincaré sphere (which corresponds to
orthogonal bases), the coincidence rate is 1/2, because the photons may emerge from the other
pair of orthogonal output channels with equal probability.
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Fig. 3. Alice’s and Bob’s horizontal measurement Stokes vectors, a and b on the Poincaré
sphere. The joint probability of detection from the shared entangled state (2) is expressed in
Eq. (10) as a function of the interior angle θab.

An important consequence of Eq. (10) is that while non-local measurements are required to
measure the coincidence rate, the adjustment needed to minimize the coincidence rate only needs
to be performed at one location, i.e., Alice may adjust a to any target state b in order to minimize
(10).

This simple unitary matrix transformation describes a static, spectrally uniform polarization
transformation, and ignores fiber impairments like chromatic dispersion, polarization mode
dispersion, and polarization-dependent loss. These effects become increasingly significant for
longer fiber spans, or if the photons occupy a broader spectral bandwidth. If left uncompensated
or imbalanced between the channels, transmission imperfections will alter the density matrix of
the two-photon state and impair the observation of coincidences between the channels [39].

The polarization adjustment is achieved using piezoelectric fiber polarization actuators [19],
which offer electric polarization control with negligible fiber insertion loss, an important
advantage over liquid crystal actuators, electrooptic actuators, or rotating waveplates. The
piezoelectric actuators provide four successive squeezing elements that produce a strain-induced
fiber birefringence, nominally oriented at 0◦, 45◦, 0◦, and 45◦. Each actuator produces a
retardance in proportion to the applied voltage, which can be visualized on the Poincare sphere as
an adjustable rotation about the axes S1 or S2 (in the reference frame of the piezoelectric actuator.)

In principle, if Alice’s PBS is adjusted to be 45◦ relative to the axis of the final piezoelectric
actuator (i.e., if the PBS is oriented along S1), then it would be possible to achieve complete
alignment of a to b by using only the two piezoelectric stages of the actuator [21]. In practice,
however, this condition is difficult to achieve. We therefore use three piezoelectric stages, which
ensures full coverage of the Poincaré sphere regardless of how the PBS is aligned. The fourth
actuator could be employed to achieve reset-free actuation [17], but was not used here.
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We chose to employ the Nelder-Mead simplex algorithm [40] to minimize the measured rate
of coincidence detection, by adjusting the piezoelectric polarization controller at Alice. The
algorithm creates a four-vertex tetrahedral simplex in the 3D space defined by the voltages on
three actuators. The Nelder-Mead method is agnostic to the actuation mechanism, and does
not rely on a mathematically-predictive model to determine the actuation voltages. Because
it iteratively refines the actuator voltages in order to minimize the coincidence rate, it can be
executed continuously in order to track sufficiently slow changes in the minimization condition.
The Nelder-Mead algorithm is implemented through python’s scipy library [41].

4. Polarization alignment

An example of the convergence between Alice’s and Bob’s horizontal measurement bases can be
seen in Fig. 4. Alice’s three voltages, Fig. 4(a), change as they iterate through the Nelder-Mead
algorithm minimizing the coincidence rate between Alice’s and Bob’s horizontal detectors,
cyan line in Fig. 4(b). The initial simplex begins around half the half-wave voltage for each
piezoelectric actuator, denoted Vπ . After thirty measurements the extinction ratio between the
coincidences of the two detectors being minimized (ha, hb) and the coincidences of the detectors
being maximized (ha, vb) raises above 90%. It is important to note that Bob’s and Alice’s count
rates, Fig. 4(c), remain constant even though Alice’s polarization controller is changing and
Bob’s remains fixed. This observation confirms that the alignment is reliant on the non-local
entangled measurement, and that the local single photon signals do not carry any polarization
signature.

To assess the robustness of our alignment algorithm, we used a second piezoelectric actuator
in Bob’s channel to manually set the target basis (b), and then allowed the alignment algorithm
to automatically adjust Alice’s basis (a) to match. Bob’s measurement basis was pre-established
by back-propagating a classical 1550 nm CW laser through one of the PBS exit ports and
recording the resulting polarization state on a polarimeter inserted at the 50/50 beamsplitter.
Bob’s piezoelectric voltages were then manually adjusted (and recorded) in order to map his
polarization basis to the six nodes of the Poincaré sphere, ±S1,±S2,±S3, as shown in the insets of
Fig. 5. After re-connecting the entangled photon source and photon counters, we cycled through
these six pre-configured target states, each time starting Alice at the same initial condition of
VAlice = [Vπ/2, Vπ/2, Vπ/2].

The cyan traces in Fig. 5 plot the measured coincidence rate between Alice’s ha photon and
Bob’s hb photon, showing successful convergence with an extinction ratio of 95% within 160
seconds in all cases. The error bars indicate the statistical spread obtained from 20 independent
trials. The dark blue traces show the complementary coincidence rate between ha and vb photons,
which is maximized when the P(ha, hb) is minimized.

The algorithm assumes polarization entanglement between the two detected photons, which
means that while coincidences are measured non-locally, the relative alignment and tracking can
be actuated entirely at one observer (Alice), even if the opposite channel is drifting or changing.
We therefore expect this relative alignment method to fail when this entanglement is impaired
or destroyed. To test this, we used the variable delay line to introduced a 500 ps temporal
delay between the signal and idler photons prior to the 50/50 beamsplitter, which destroys the
polarization entanglement. The orange (and red) traces in Fig. 5 show that in this case, the
algorithm is unable to consistently minimize (and maximize) the coincidence rate between Alice
and Bob, except for the case of b = ±S3, which we presume was coincidentally close to the case
of Bob’s axes being aligned to the signal and idler axes of the PPKTP nonlinear crystal.

Quantum measurements often require coordinated observation of coincidence rates along
multiple, non-orthogonal directions. Although the method presented here successfully aligns
the polarization bases of two spatially separate observers, it does not simultaneously align the
non-orthogonal polarization axes. While simultaneous alignment could be achieved by adding
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Fig. 4. Representative example showing the adaptive alignment of Alice’s measurement
basis to minimize the observed coincidence rate. (a) The three voltages applied to Alice’s
piezoelectric polarization controller, which change as they iterate through the Nelder-Mead
algorithm. (b) The Nelder-Mead algorithm finds the minimum of the measured ha and hb
photon coincidence rate, seen in cyan. Conversely, the joint photodetection between the
ha and vb photons rises to a maximum, seen in blue. (c) The single photon count rates
remain unchanged for both Bob and Alice throughout the alignment process, indicating no
polarization dependence within those signals.

additional polarization beamsplitters and detectors, or by multiplexing classical pilot tones in
wavelength or time [23], a more common and economical approach is to sequentially cycle
through different detection bases, which could be pre-determined using the alignment method
presented here, as demonstrated in Fig. 5.
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Fig. 5. Automatic alignment of Alice’s polarization basis, observed for six different target
states of Bob’s measurement basis (b), distributed as the six poles on the Poincaré sphere. In
all cases, Alice’s polarization controller starts at V = [Vπ/2, Vπ/2, Vπ/2]. Time averaging
and standard deviations are shown from 20 identical runs for each configuration. Coincidence
counts for Bob’s two detectors (hb, vb) with Alice’s (ha) detector for both entangled (τ = 0
ps) and non-entangled (τ = 500 ps) photons are shown in cyan, blue, orange, and red
respectively. Each initial configuration of Bob’s hb measurement direction is shown to the
right of every panel.

5. Alignment accuracy

Simulations of our experiment allow us to examine how experimental parameters affect the
Nelder-Mead algorithm’s ability to align Alice’s and Bob’s measurement bases. Under stationary
conditions, the degree of polarization alignment and attainable extinction ratio in the coincidence
rates depends on the integration period per measurement, T , and two counting rates, rp representing
the maximum rate of pair detection (when θab = π), and ra the background accidental coincidence
rate. In experiments and simulations, the algorithm seeks to minimize the total measured
coincidence count,

N = Np + Na (12)

where, using the result from (10), we model Np as a Poisson-distributed random variable with
mean rpT (1 − cos θab) and Na as an independent Poisson-distributed random variables with
mean raT . Taken together, the number of coincidences, N, measured in an integration interval, T ,
can be modeled by a discrete Poisson distribution with a mean that depends on the misalignment
angle θab

pN(k) = P(N = k) =
(r(θab)T)k

k!
e−r(θab)T , r(θab) = rp (1 − cos θab) + ra . (13)

To assess the impact of quantization noise and integration time on alignment, we conducted
a series of Monte Carlo numerical simulations using different values of rp, ra and T . The
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simulations employ the same Nelder-Mead algorithm as the experiments and the polarization
actuators were modeled as three successive variable retarder waveplates oriented at 0◦, 45◦, and
0◦. After converging to a coincidence minimum, we evaluate the angular deviation between
Alice’s final polarization state a and Bob’s target state b as θerror = cos−1(a · b). θerror is then
averaged over 100 uniformly distributed target states on the Poincaré sphere for each data point.
Fig. 6(a) shows the simulated alignment error θerror as a function of the integration time T , for
rp = 800 pairs/s and ra = 60 pairs/s, which correspond to one set of experimental conditions
considered here. With these data rates we chose five seconds as a compromise between a low
polarization alignment error angle and a fast total alignment time.
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Fig. 6. (a) Simulated alignment error as a function of the integration period T , assuming
Poisson counting statistics for the coincidence detection rate (13). (b) Alignment error as a
function of the average pair detection level rpT and the average accidental coincidence count
raT . The lines indicate contours of constant signal-to-noise (coincidence-to-accidental)
ratios. The points marked (i) and (ii) correspond to the experimental data rates of the
deployed and in-lab fiber spans respectively.

Figure 6(b) shows the average alignment error as a function of rpT and raT . As expected, for a
fixed average background count level (raT), the alignment accuracy improves with increasing
average pair count (rpT). Conversely, for a fixed average pair count, increasing the average
background count decreases the alignment accuracy. The diagonal lines are contours of constant
coincidence-to-accidental ratio (rp/ra), indicating the performance that can be achieved by
adjusting the integration period T alone, when the count rates are otherwise fixed. The two
data points, (i) and (ii), within Fig. 6(b) mark the experimental conditions used for the deployed
fiber loopback configuration (with T = 20 seconds) and for back-to-back conditions (with T = 5
seconds), respectively. Though not shown here, the simulations produced an extinction ratio
approaching ra/rp, provided the method converges.

6. Polarization tracking

To evaluate the capability of the method in a real fiber transmission system, we used a 7.1 km
deployed dark fiber link composed of a metropolitan buried SMF-28 single-mode fiber in a
loopback configuration. Figure 7(a) shows an optical time domain reflectometry (OTDR) trace
of the fiber span, which has a net insertion loss of 4.2 dB, and a total round-trip delay of 34.6 µs.
Prior to alignment, we used a classical laser and polarimeter to observe the polarization evolution
in this loop over a typical 72 hour period, and observed an average drift rate of 0.1◦ per hour in



Research Article Vol. 31, No. 2 / 16 Jan 2023 / Optics Express 2326

the interior angle between the initial Stokes vector and the Stokes vector at later times. When the
7.1 km loop was inserted into Bob’s channel, our tracking algorithm was able to quickly align
Alice’s detector basis and maintain alignment over a 4 hour period, as shown in Fig. 7(b).
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Fig. 7. (a) Optical time-domain reflectometry (OTDR) data of the deployed 7.1 km fiber
span inserted into Bob’s channel, to evaluation polarization tracking method. (b) Measured
coincidence rate between Bob’s hb detector and Alice’s ha detector, before and after enabling
the alignment algorithm.

Because the drifts experienced in our deployed fiber are slow, we tested the tracking capability
of our method by introducing a controlled drift in Bob’s measurement basis using the piezoelectric
actuator. Again using a classical laser and polarimeter, the first three piezoelectric stages in Bob’s
actuator were adjusted such that remaining actuator caused the polarization to trace a great circle,
thus providing the maximum amplitude of drift. The voltage across the fourth actuator controls
the rotational angle θB seen in Fig. 8(b). This actuator was then programmed with a sawtooth
waveform with an voltage amplitude of Vπ and a slope corresponding to 180◦/hr (shown by the
green curve in Fig. 8(a)) which is nearly three orders of magnitude faster than what was observed
in the 7.1 km deployed fiber. An additional manual polarization controller then projects this great
circle into the nodes of Bob’s PBS. Figure 8 shows the great variability in coincidence counts
observed during the first two hours when the alignment and tracking algorithm was disabled, and
the subsequent minimization of the coincidence rate over a 2 hour period after the algorithm is
enabled.

The main bottleneck in the algorithm’s total alignment time and tracking speed is the
coincidence count integration time, which determines the rate at which the coincidence rate can
be sampled and the polarization setting updated. As shown in Fig. 6, the integration period
required for accurate alignment also depends upon the counting rate, which decreases with the
link loss and detection efficiency.

To assess the tracking capability of our system, we extended the Monte Carlo simulations
to model the case when the target polarization state b(t) steadily traverses a great circle on the
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Fig. 8. Alice tracking Bob’s drifting measurement base. a) Coincidence counts between
Alice’s and Bob’s horizontal detectors when Bob’s measurement base drifts at a speed,
ωB = ∆θB/∆t = 176.1◦ per hour. b) An example of a great circle sweep of Bob’s
measurement base where the rotation angle θB(t) is controlled by the voltage.

Poincaré sphere. While the tracking capability also depends upon the noise levels and numerical
parameters of the algorithm, for the experimental rates considered here, simulations reveal that
the algorithm could maintain alignment provided the target was moving slower than 0.5◦ per
integration period.

The timescale of polarization drift in optical fibers depends upon the length of the fiber, as well
as the deployed environment (spooled, aerial, buried or subsea). For the 7.1 km length buried
fiber considered here, the drift rate was well below this limit, even for integration periods as long
as 20 s. The forced drifting measurements in Fig. 8 show successful tracking when the target is
drifting 0.25◦ per measurement period.

7. Conclusion

In this paper we report a way to use non-local correlations of an entangled state to orient
and dynamically track two spatially separated measurement bases. We present a theory for
the coincidence rate for arbitrarily polarized measurement bases, which generalizes the more
commonly used result from linearly polarized bases. The alignment routine uses the Nelder-Mead
algorithm to manipulate the polarization controller of one individual to minimize the joint
coincidence counts between separate observers. The experimental implementation acquires
alignment and minimizes the coincidence rate within approximately 160 seconds.

The alignment strategy is confirmed to work for arbitrary initial orientation of the two observers’
measurement bases, and can achieve alignment by minimizing coincidences even when the
underlying photon count rates are observed to be statistically unpolarized. The method relies on
the entangled state |Ψ−⟩, and we show that when the entanglement is broken, the method fails to
converge.

In addition to acquiring alignment to a stationary basis, the method is able to dynamically
track and stabilize the measurement of entanglement over a 7.1 km deployed fiber loop over
several hours of operation, and also under a controlled drifting environment.

Our method relies only on the entangled state, and does not employ classical polarized pilot
tones, temporal multiplexers, wavelength filters or additional polarimetry in order to achieve
alignment. This technique could find applications in quantum key distribution, teleportation,
entanglement swapping, or locality-violation experiments. Although these applications may
require a series of coordinated sequential measurements between receivers, the polarization
alignment and tracking method presented here lays the groundwork for more sophisticated
alignment methods demanded by future quantum measurement systems.
Acknowledgments. During the final stages of publication, we learned of a contemporaneous manuscript that
includes polarization basis alignment using non-local measurements of entangled photons [42].
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