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The advent of the optical fiber in the second half of the 20th century has had numerous

consequences not only for the advancement of telecommunication and information transfer tech-

nologies, but also for humanity as a whole. At the time of writing of this thesis, we live in a

world that is defined by unprecedented and unparalleled access to information made possible by

fiber optic cables that line the ocean beds. As the world becomes increasingly reliant upon the

internet, the demand for access is outgrowing the pace at which the capacity of our fiber optic

networks can be scaled up. In the past decade, a consensus has emerged among researchers in

academia and the industry that we are now approaching the fundamental classical capacity limit

of a conventional single mode fiber, namely the Shannon limit. This has spurred interest in mul-

timode fibers that allow for hundreds of spatial modes to co-propagate, potentially allowing for

at least an order of magnitude increase in capacity per fiber.

While multiplexing in the spatial domain has the potential to offer significantly higher ca-

pacities, linear and nonlinear mixing between the spatial modes of a fiber are expected to play



an important role in determining the capacity and performance of spatially multiplexed telecom-

munication systems. So far, multimode fibers have mostly been relegated to low-power short-

distance links, as a result of which nonlinear propagation effects in the presence of multiple

spatial modes has received relatively little attention. This thesis adds to a growing body of liter-

ature that is increasingly interested in uncovering the physics of multimodal propagation in the

nonlinear regime.

Although the need for spatial multiplexing is important factor driving research interest in

this topic, experiments in recent years have revealed a plethora of complex spatiotemporal non-

linear phenomena occurring in multimode fibers, including Kerr-induced beam self-cleaning,

parametric instability processes and the existence of multimode solitons. This has sparked great

interest in understanding multimodal nonlinearity from a fundamental and applied physics per-

spective. Nonlinear multimode fiber optics is also of central importance for the development of

high power fiber-coupled lasers as the larger core size of multimode fibers allow for far higher

power throughput than current state-of-the-art lasers based on single mode fibers.

Most literature reported thus far in multimodal nonlinear optics focuses on complex phe-

nomena occurring when hundreds of spatial modes co-propagate in the nonlinear regime. While

that has proven to be a fascinating field of study, there have not been many studies on experi-

mental investigation of intermodal nonlinear effects in the presence of a small number of spatial

modes. Furthermore, nonlinear phenomena in multimode fibers are ‘spatiotemporal’ in nature,

meaning that the spatial and time-domain waveforms are intertwined, and the two degrees of

freedom cannot be separated. Conventional measurement techniques are not capable of resolv-

ing such a multimodal beam in space and time simultaneously. Finally, most research involving

nonlinear optical effects has thus far focused on linearly polarized modes in conventional fibers,



and nonlinear effects involving vector orbital angular momentum modes remains relatively un-

derstudied.

In this thesis, we seek to study nonlinear optical effects involving a small number of se-

lectively excited scalar as well as vector spatial modes, and to develop experimental techniques

capable of resolving the output in both space, frequency and time. To this end, we design, pro-

totype and fabricate devices and methods aimed at exciting a small number of spatial modes of a

fiber. In particular, we adopt methods from integrated photonics such as focused ion beam milling

and metasurface devices to selectively excite modes of a fiber in an efficient manner. Spatial and

temporal resolution of the output beam is achieved by the development of a new technique that

involves raster-scanning of a near-field scanning optical microscopy probe, coupled with a high

speed detector, along the output end-face of the fiber.

Using these methods, we uncover and report our observations of spatiotemporal nonlinear

phenomena that are unique to multimodal systems. We first demonstrate nonlinear intermodal

interference of radially symmetric modes in step-index and parabolic index fibers. We then apply

the same spatiotemporal measurement technique to observe the Kerr-induced beam self-cleaning

phenomenon in a parabolic index fiber. And finally, we discuss our discovery of a spin-orbit

coupled generalization of the well-known nonlinear polarization rotation phenomenon.
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Preface

As its title suggests, this is a thesis on the study of spatiotemporal nonlinear optical effects

in multimode fibers. In order to describe a spatiotemporal phenomenon in a meaningful way, it

is desirable to be able to use graphic formats that are spatiotemporal in nature as well, such as

videos. Unfortunately, despite all the scientific and technological progress humanity has made

during the past half a century, we have not yet solved the most pressing problem of all: the lack

of a convenient, simple and universal method to embed videos and animations into PDFs.

As a result, the reader is advised to refer to the ‘Supplementary Videos’ published alongside

this thesis, which are referenced throughout this thesis. Although we have included static images

that show snapshots of simulated and experimentally observed spatiotemporal phenomena, the

video format is very helpful in making sense of the phenomena that we describe.
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This document is dedicated to my family.

“The audacity of hope.”
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Description of Supplementary Videos

Note 1: Supplementary Videos 1 & 2 were part of the following manuscript that we pub-
lished: Sai Kanth Dacha et al., Optica 7, 1796-1803 (2020) ©Optical Society of America.

Note 2: Supplementary Videos 3 - 6 were part of the following manuscript that we pub-
lished: Sai Kanth Dacha et al., Opt. Exp. Vol. 30, No. 11, 18481-18495 (2022) ©Optical Society
of America

• Supplementary Video 1: Experimental data showing spatiotemporally resolved nonlinear
pulse evolution for two linearly polarized radially symmetric modes excited in a few-mode
fiber. Each time-varying “pixel” in the video results from an experimental acquisition of
the time-domain waveform using a near-field scanning optical probe coupled with a single-
mode fiber.

• Supplementary Video 2: Numerical simulation of nonlinear pulse evolution for two lin-
early polarized radially symmetric modes excited in a few-mode fiber, obtained by inte-
grating the multimode nonlinear Schrödinger equations.

• Supplementary Video 3: Numerical simulation of nonlinear time-dependent rotation of
an unequal superposition of the L = ±10 spin-orbit anti-aligned (SOaa) modes of a hollow
ring-core fiber, obtained by integrating the multimode nonlinear Schrödinger equations.

• Supplementary Video 4: Numerical simulation of nonlinear rotation of time-averaged
lobe patterns resulting from an unequal superposition of the L = ±10 spin-orbit anti-
aligned (SOaa) modes of a hollow ring-core fiber, obtained by integrating the multimode
nonlinear Schrödinger equations. Note the opposite directions of rotation for the dominant
L = −10 SOaa case (left graphic) vs the dominant L = +10 SOaa case (right graphic).

• Supplementary Videos 5, 6: Experimentally measured power-dependent rotation of time-
averaged lobe intensity patterns for unequal superpositions of the L = ±10 spin-orbit
anti-aligned (SOaa) modes of a hollow ring-core fiber. Suppl. Vid. 5 shows the dominant
L = −10 SOaa case, while Suppl. Vid. 6 shows the dominant L = +10 SOaa case.
The direction of rotation can be seen to be opposite in the two cases, in agreement with
numerical simulation results shown in Suppl. Vid. 4.
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“Ετεή δε ουδέν ίδμεν, Εν βυθώ γαρ η αλήθεια”

“We know nothing in reality, for truth lies in an abyss”

— Democritus of Abdera (460 BCE to 370 BCE),

on the unknowability of objective reality from

subjective human perceptions alone.
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A Reflection on Diversity and Inclusion in Academia

I grew up in an unremarkable part of a moderately large city in India. My upbringing was

what one might describe as a typical lower-middle-class Indian upbringing of the late 90s and

early 2000s, which is code for deep socioeconomic hardships and not a lot of hope. My sister and

I were raised through what were particularly difficult times for my family. For nearly a decade

(although he still continues to do this), my father had to work 10+ hr days on all 7 days of the

week just to make ends meet, while my mother handled our education and upbringing. Neither of

my parents are college graduates, and they knew all too well the enormous disadvantage that my

sister and I would be at later in life if they didn’t invest in our education. And so they did, even if

at the cost of them having to work with no weekends off, and even if it meant that we never got to

travel or afford experiences of any kind. It goes without saying that I would not be here writing

this document if not for their hard work, and if not for their investment in my education.

When I got into IIT Madras for my undergraduate studies, I thought that that would mark a

completely new chapter for me and my family. It did, but it also didn’t. You see, when you grow

up for 17 years of your life in a mostly uninteresting environment but suddenly find yourself

surrounded by some of the smartest students in the country that come from a wide range of

backgrounds – many of who seem to be exceptionally smart and/or are from far more affluent

backgrounds than yours, even if only relatively – you begin to question if you really belong in

that new environment. That has been my experience anyway. “Surely I don’t belong with all

these smart kids that went to much better schools than I did and have seen much more of the

world than I had, right? I mean, that kid already has a personal computer of his own and knows
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Python programming. What good am I? Or that other kid that somehow already has many friends

here and feels like he really belongs here. I certainly don’t feel that way, so once again, do I

really belong here?”

As has been my experience, these types of thoughts have stuck with me throughout my

educational career. Be it at IIT Madras, at my undergraduate summer internship at Caltech, or

my stint here at the University of Maryland. Although I suspect that the overarching question of

belongingness is one that will continue to bother me wherever I go next, I have been incredibly

fortunate to have met people – classmates, professors, staff – at all of these places that have helped

me overcome these feelings, helped me feel like I belonged, and helped me grow as human being

and as a researcher. Even here in the U.S., many academic departments host a fair number of

Indian and other international students, postdocs and faculty members, and I am certain that that

goes a long way in making international students such as myself feel more welcome.

My moving to the U.S., though, has also opened my eyes to the complex legacy of racial

injustice and economic inequality in this country. As I learnt more and more about slavery, seg-

regation, the historic oppression and underrepresentation of people of African descent, I began to

understand better why it is that the people that I see in academic departments and at conferences

don’t look anything like the racially and ethnically diverse overall population of the U.S. I con-

tinue to find it a little strange that I see more people that have a similar “background” as mine

(i.e. upper caste Hindu Indian) in American academia than I see black American academics. All

of this has led me to not only question if I am complicit in perpetuating this problem, but it also

made me realize the deep systemic barriers that prevent so many black students (and also other

non-white folk) from succeeding in academia.

Admittedly, even at the time of writing of this thesis, I have only been part of American
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academia for six years, which is not a lot of time, but in these years alone, this country has wit-

nessed enormous unrest and activism against forces of discrimination, violence and oppression.

And I always found it strange that so many of us academics as well as academic institutions get

away with pretending that we are isolated from the rest of society, when in reality we are as

much part of the problem as any other institution. To me, it was telling that it took the massive

public unrest following the murder of George Floyd for academic institutions across the country

– and across the world – to take the problems of underrepresentation and systemic barriers more

seriously. Needless to say, racism extends well beyond academia and it is not for us to solve it by

ourselves, but as people that part of educational institutions, we are well-situated to help address

the problem in a meaningful way.

I am grateful that I got to pursue my graduate degree at the University of Maryland – among

many other reasons because this is a place that has taken a number of initiatives to address these

issues, and has been proactive about making people feel more welcome. However, much work

remains to be done. I for one have been heartened to see that numerous departments and research

institutes at UMD alone have set up committees and task forces to assess what steps can be taken

to ensure that people of all socio-economic backgrounds succeed.

Although my struggle with belongingness may have had a different origin than a black

student’s struggle with it, and although my people (upper caste Indian) are seemingly far better

represented in academia and elsewhere compared to many others, I have still known at an indi-

vidual level what it’s like to question if you would be missed if you left one day, and to wonder

whether you will ever see as much success as others. I would not wish that on anyone, let alone

the constant micro- (and sometimes overt) aggressions that black (and increasingly, east Asian)

peers of mine seem to face. During the past two years, I have sought to be part of initiatives
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that work toward making academic departments, institutes and research groups more welcom-

ing and inclusive spaces. In particular, I want to mention IREAP-ROLE, which is a team of

volunteer students, staff and faculty at UMD’s Institute for Research in Electronics and Applied

Physics (IREAP) that is working toward identifying and undertaking meaningful initiatives at the

research institute level to make this a more inclusive place for underrepresented racial and gender

minorities.

As a founding member of IREAP-ROLE, I have grown some as a human being and as a

researcher. I have had the opportunity to work alongside many others from who I have learnt a

great deal. Both through my interactions with my peers as well as through my time at IREAP-

ROLE, I have come to appreciate the very many ways, big and small, in which students, staff and

researchers of underrepresented races and genders face differential treatment, systemic injustices,

and at times blunt racism and sexism. Through this work, I have come to understand the role

of my own socioeconomic privileges in helping me get here today much better, and I received

a platform from which to advocate for better treatment of the graduate student body overall

while highlighting the many mental health and financial hardships faced by far too many of

us. Although the makeup of the committee has been fairly diverse, none of us has had a lot of

experience of organizing around this particular issue within the academic context, and so this has

made for a learning experience for all of us involved.

The point of me writing all this in my Ph.D. thesis is to highlight not only the importance

and urgency of the issue at hand, but also the long overdue initiatives that many are beginning

to work on. Education is the roadway to opportunity and a better life for many, especially for

those that come from communities that have not had the luxury of generational wealth or ample

socio-economic status. In my personal experience, the privilege and fortune of having access to
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decent education has unequivocally been a key enabler in helping me get here today.

I believe that as people that work in academia, we have not only a great responsibility but

also a great opportunity to play a key role in helping address the many injustices that our friends

and peers continue to face. Scientific research and modern university education are fundamentally

human endeavors. It is not a surprise that many major universities in the U.S., for example, have

complex legacies of exploiting slave labor in the past. However, what should be surprising is our

continued inaction in the face of clear evidence of injustice and wrongdoings. After all, aren’t we

supposed to be the custodians of evidence-based action?
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Chapter 1: Introduction

As late as nearly 70,000 years ago, Homo Sapiens was merely an unremarkable human

species confined to East Africa. At the time, we shared the planet with other human species,

including Homo Neanderthalis and Homo Erectus among numerous others. Over the next 60,000

years, however, the seemingly unremarkable Sapiens went on to grow in numbers and occupy all

corners of the world while our other human cousins faded away into extinction. The spectacular

success of our species is a conundrum that has captivated the interest of historians and biologists

for centuries. According to present day scientific consensus, the secret to our success appears to

lie in our unique ability to communicate efficiently. Historians have argued that part of what has

set Sapiens apart from all other human and non-human species is our ability to not only imagine

that which does not exist, but also then communicate this imagined reality effectively across very

large numbers through language and art.

That may seem like a strange first paragraph of a Ph.D. thesis in optics, but the connections

between modern day scientific research in the optical sciences and the origins of our species run

deep. Evolution has shaped us to understand the world around us and adapt. Coupled with our

cognitive ability to ask existential questions, including that of our own origins, humanity has,

over time, increasingly invested in understanding the forces that shape the natural world. As

the modern field of physical sciences developed over the past half a millennium, scientists have
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grown to appreciate the critical role that the forces of the physical universe continue to play in

determining the very existence of life.

In particular, advances made since the days of James Clerk Maxwell in understanding one

of the four known forces of our universe – namely the electromagnetic force – have not only

answered many fundamental questions relating to the physical universe (and by extension the

existence of structures that support complex life in it), but have also led to a remarkable streak

of technological advancements that have altered our way of life dramatically. Within a span of a

few hundred years, humanity went from having no real means of communicating swiftly across

the vast planet that we have come to occupy to complete integration into our personal and social

lives a network of fiber optic cables that lines the ocean beds. At the time of writing of this

thesis, we are living through an age of unprecedented information access enabled in large part by

electromagnetic waves, and it may not be a stretch to suggest that this new artificial capability of

communication could prove to be as consequential as our natural ability did 70,000 years ago in

determining the future of our species and our societies.

1.1 Motivation

The foundational inventions that have in large part made modern telecommunication sys-

tems possible are the laser [1], the erbium-doped fiber amplifier (EDFA) [2], and low loss single

mode fibers (SMFs) [3] – two out of the three have been recognized by Nobel Prizes. The broad-

band amplification offered by the EDFA across the SMF’s low loss spectral window, coupled

with the development of advanced modulation formats and digital signal processing [4, 5], has

enabled communication systems with large bandwidth, long range and high data rates. Fiber op-
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tic systems therefore offered the capability to transmit large volumes of information across long

distances in a cost-efficient manner – something that traditional coaxial cable systems are not

capable of.

Fiber-based communication systems have proven to be a disruptive force not only within

the confines of the telecommunications industry, but they have unlocked the internet era and have

enabled a whole host of internet-based applications, services and businesses. As the technology

improved and the achievable data rates per fiber grew, so did its adoption for commercial applica-

tions. The past two decades have seen an unprecedented globalization of entire industries, which

has brought major changes to local and national economies. The possibility of on-demand 24×7

access to information, news, educational and entertainment streaming has created new businesses

and industries that did not exist merely 20 years ago. Concurrent advances in computing systems

has led to an explosion of new applications such as social media, cloud technology and dis-

tributed computing. The fiber optic enabled internet has also proven instrumental in modernizing

the banking sector, and has even enabled the creation and adoption of cryptocurrencies [6].

This is far from an exhaustive list of major transformations that the internet has enabled.

This remarkable success wherein we now have entire sectors of the economy dependent upon

this technology, however, has also meant that the demand for internet access has dramatically

gone up. With ever-increasing consumer demand for data-consuming applications such as video

streaming and gaming, the finite bandwidth of the current fiber optic systems is being swiftly

consumed.

Over the past two decades, researchers have progressively increased the information trans-

mission capacity per fiber by utilizing the different modulation dimensions of the electric field

propagating in an SMF: namely wavelength, polarization, amplitude, time and quadrature (i.e.
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phase) [5, 7–9]. However, the degree to which each of these modulation dimensions can be uti-

lized to increase the data rates is limited. For example, the polarization dimension is limited by

the fact that any electromagnetic wave has only two orthogonal polarization states. The num-

ber of spectral channels available via wavelength division multiplexing (WDM) is limited by the

spectral bandwidth of the fiber low loss window as well as the amplification bandwidth of optical

amplifiers.

In his seminal paper published in 1948, Claude Shannon showed that the information trans-

mission capacity of a memoryless channel scales in proportion to the bandwidth and to the log-

arithm of the signal-to-noise ratio (SNR) [10]. For a fixed bandwidth, channel capacity can be

increased by improving the SNR. Increasing the signal power transmitted through the channel

is one way of improving the SNR – and therefore the channel capacity – but only up to a cer-

tain point. As the signal power increases, the nonlinear response of the fiber medium becomes

increasingly important. Nonlinear distortions can in principle be corrected by way of digital sig-

nal processing, but can be computationally expensive and not always possible. As a result, the

growth of fiber optic technology over the past few decades has been matched by a simultane-

ous growth in the research area of nonlinear fiber optics (NLFO). Numerous research papers and

textbooks [11] have been written about this subject, and we will revisit key concepts from NLFO

throughout this thesis.

It has been reported that we are soon approaching a capacity crunch in long-haul commu-

nication networks owing to increased demand [12, 13]. The past decade has seen several demon-

strations of fiber transmission close to the Shannon limit for single-moded systems, as shown in

Fig. 1.1. Multiplexing in the spatial domain is expected to provide the necessary system capacity

growth required to match demand over the next few decades [12, 13]. As a result, the study of
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Figure 1.1: The evolution of transmission capacity in optical fibers (laboratory demonstra-
tions). Space division multiplexing is expected to provide the next big leap in capacity per fiber.
(Reprinted by permission from Nature Photonics: Richardson et al., Nat. Phot. 7, 354-362 (2013)
© Nature)

optical transmission physics in multimode fibers (MMFs) has received renewed interest.

Researchers have developed a variety of different fibers for the purpose of spatial multiplex-

ing. Broadly, they can be divided into two categories based on the number of cores: multicore

fibers (MCFs) and single-core MMFs. Strictly speaking, MCFs also fall within the category of

multimode fibers – i.e. fibers consisting of multiple spatial modes. However, it is helpful to make

the distinction between single and multicore fibers owing to the difference in the degree to which

the different spatial modes overlap. In this thesis, we will only focus on single core MMFs. We

will revisit the different kinds of MMFs that are currently under study as well as their spatial

mode properties in Chapter 2.

As in SMF systems, nonlinear impairments are also expected to play a significant role in
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MMF-based space division multiplexed (SDM) systems. Consequently, the field of multimode

nonlinear fiber optics (MMNLFO) has received considerable attention during this past decade.

Because of the added spatial degree of freedom (in addition to time, amplitude, wavelength, phase

and polarization), MMNLFO is considerably more complex than NLFO in SMFs, especially in

fibers that support hundreds of co-propagating spatial modes. However, this added complex-

ity has also made possible the observation of many unique phenomena occurring in MMFs that

do not have a known analog in SMF-based NLFO. For example, a Kerr-induced beam cleanup

phenomenon was recently reported [14, 15] wherein an initially speckled beam consisting of

hundreds of spatial modes in a graded-index (GRIN) MMF “self cleans” into a Gaussian-like in-

tensity pattern purely because of the fiber’s third order Kerr nonlinearity and in the absence of any

dissipative processes such as Raman scattering. Other experiments with a similar fiber uncov-

ered a phenomenon similar to the well-known modulation instability that occurs in SMFs, namely

spatiotemporal modulation instability [16]. In another recent experiment, the spatial self-imaging

property of the modes of a GRIN MMF was found to lead to ultra broadband supercontinuum

generation [17,18]. Similar to the case of SMFs, solitons have also been observed in multimoded

fibers [19,20]. Other studies have not only demonstrated the existence of multimode solitons, but

also reported the observation of supercontinuua resulting from dispersive wave generation in the

presence of multimode solitons [21, 22].

Many of these recently uncovered phenomena demonstrate the rich complexity in the

physics of MMNLFO. All of the phenomena referenced above were observed using off-the-

shelf commercially available equipment in commercially available fibers. In fact, these findings

demonstrate that multiple nontrivial and counterintuitive phenomena can occur in the exact same

fiber for only moderately different input excitation conditions. This diversity of possibilities
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should be exciting to the scientific community well beyond that of nonlinear fiber optics – in

fact well beyond that of optics itself. This may seem like a bold claim to make, but allow me to

elaborate.

First, as mentioned previously, developing an understanding of nonlinear propagation of

light in MMFs is of fundamental importance to future telecommunication systems. In particular,

understanding and controlling the nonlinear transformation of multimodal light over long dis-

tances of fiber propagation will enable not only compensation schemes to mitigate nonlinearity-

induced noise in MMF-based SDM systems, but it will also pave the way for the design and

development of new multimode light sources, multimode amplifiers, repeaters and frequency

converters. Notably, frequency converters and light sources based on multimodal nonlinearity is

also expected to be of significant importance to quantum communication networks [23, 24].

Secondly, ultrashort pulsed and supercontinuum light sources based on MMNLFO are ca-

pable of providing high energy pulses over a broad spectral range [17, 25, 26], all in a compact

device. In addition to all the typical use cases of ultrafast lasers, MMNLFO-based compact and

fiber-coupled sources would be of special interest for applications such as biomedical optics [27],

optical coherence tomography (OCT), frequency metrology, and prototyping and manufactur-

ing [28, 29].

Thirdly, MMNLFO is also of interest from a fundamental physics perspective beyond the

field of optics given the mathematical and analytical similarities shared by the theoretical frame-

works describing multimodal nonlinearity and those that describe Bose-Einstein Condensates

(BECs) and other condensation phenomena [30]. Specifically, multimodal nonlinearity can be

described by the well known Gross-Pitaevskii Equation [17] – an equation that is well known

to physicists studying BECs, bosonic gases and superfluids [30, 31]. From this perspective,
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MMNLFO can serve as a versatile experimental playground for understanding the physics of

various other systems.

In summary, the interest in MMNLFO comes from a variety of different perspectives and

applications that cut across several modes of research: fundamental, applied as well as product-

oriented. These reasons serve as motivation for the work that we have carried out over the past

few years in this research field. With this broad motivation in mind, the following section outlines

the specific goals of our work.

1.2 Research Objectives

Although the numerous phenomena referenced in the previous section do well to demon-

strate the rich complexity of nonlinear optical effects occurring in MMFs, it remains true that

MMNLFO is a relatively under-explored topic, especially compared to NLFO in SMFs. This

thesis is the result of a humble attempt to address some of the many research gaps in the field, as

well as to introduce new experimental tools and research perspectives while also shedding light

(pun intended) on the physics of fundamental intermodal nonlinear interactions between indi-

vidual modes. Although scientific research in the optical sciences is very often exploratory and

open-ended in nature (and it has certainly been that way in this case), it is possible nonetheless

to retrospectively come up with a list of broad research objectives that summarize the scope and

reach of this work.

1. Most literature in the field – including many (if not all) of the phenomena described in the

previous section – has thus far primarily focused on what I like to call the “macroscopic”

thermodynamic picture that involves complex effects with large-scale variations in the spa-
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tiotemporal field distribution. This is analogous to the classical thermodynamic study of

gases. A lot of the terminology and mathematics used to analyze and explain these phe-

nomena is, in fact, borrowed from classical thermodynamics (see [30, 32] for example). In

this work, we focus on the “microscopic” picture. More specifically, we seek to advance

the understanding of intermodal nonlinear interactions between a small number of spatial

modes. In the gas analogy, studying the microscopic picture is equivalent to studying the

interactions between individual gas molecules. Neither picture alone is sufficient in provid-

ing a complete understanding of a gas system. Understanding the physics of interactions

between individual gas molecules is imperative to being able to predict macroscopic dy-

namics. Similarly, the macroscopic picture alone is not sufficient in developing a complete

understanding of MMNLFO. Understanding the nonlinear interactions between individual

modes in a rigorous and quantitative manner wherein numerical models can be validated is

imperative to understanding and predicting the macroscopic picture of optical thermody-

namics. This forms our first research objective.

Although this aspect of MMNLFO has not received sufficient attention, there are several

new studies nonetheless that explore nonlinear interactions between individual fiber modes

such as self-phase modulation (SPM), cross-phase modulation (XPM) and four-wave mix-

ing (FWM) [33–36].

2. Our second research objective relates to the fact that most of the extraordinary phenomena

observed thus far (referenced above) have been measured using conventional experimental

techniques that do not resolve in space and time/frequency simultaneously. This would

not be a problem in SMF systems wherein the spatial dimension does not exist (i.e. there
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is only one spatial mode), leaving the time and frequency domains to be measured using

well-known techniques and commonly available instruments. This would also not be a

problem in cases where there are no temporal or spectral dynamics – such as in the linear

propagation regime in MMFs and other multimoded waveguides. In MMNLFO, however,

nonlinear dynamics occur within a single pulse duration across a 2-dimensional beam. As a

result, spatiotemporal and/or spatio-spectral measurement techniques are required in order

to accurately characterize these effects. In this work, we demonstrate new experimental

techniques to resolve the output beam in space and time simultaneously.

3. Our final research objective relates to orbital angular momentum (OAM) [37] fiber modes.

Most literature in the field studies nonlinear optical effects involving linearly polarized

(LP) modes in step-index and graded-index MMFs. In recent years, however, new kinds of

optical fibers have been developed that support stable propagation of fiber modes that carry

a well-defined OAM [38–40]. These fibers are of great interest for a variety of applications

ranging from classical and quantum communication to atomic physics. Nonlinear optical

physics involving OAM modes, however, remains understudied. An important thrust of

our research over the past couple of years has involved understanding the linear and non-

linear propagation properties of OAM modes in vortex fibers reported in [39]. Because of

the significant differences between the scalar LP modes and the circularly polarized (i.e.

vector) and complex OAM modes, we have sought to push the boundary of knowledge in

MMNLFO in the context of nonlinearly interacting vector modes.

While this list is not an exhaustive one, it serves its purpose of priming the reader to the

kinds of problems that we attempt to tackle in this work. We will revisit each of these broad
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research objectives in the upcoming chapters.

1.3 Organization of Thesis

This thesis focuses on the study of nonlinear pulse propagation in the presence of a small

number of interacting spatial modes. We explore multiple kinds of fibers as well as mode bases,

and report multimodal nonlinear phenomena that have not been reported before. Throughout

the process, we work out the theory, model the pulse propagation numerically, develop new and

custom-designed experimental tools, perform unique measurements of multimodal nonlinearity

and compare experimental observations with theory and simulations. This thesis is organized so

as to allow for a comprehensive description of this work in a systematic manner.

Chapter 1 covers the motivation, background and research objectives, and also lists relevant

literature.

Chapter 2 focuses on the basics of wave propagation. This includes a description of the

different kinds of optical fibers that we use and their mode properties, as well as a theoretical

description of nonlinear optics in MMFs. Some notes on numerical modeling tools are also

included.

In Chapters 3-6, we describe a number of experiments that we have carried out throughout

the course of my Ph.D. In each of these chapters, we discuss the new experimental tools that we

built, and the well-known tools and techniques that we adapted for our purposes, to help shed

light on the unique spatiotemporal nature of multimodal nonlinear effects.

In Chapter 3, we describe our very first experiments examining spatially-resolved power-

dependent temporal interference patterns observed when multiple radially symmetric modes of a
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parabolic GRIN fiber co-propagate in the nonlinear regime.

In Chapter 4, we observe a similar effect in a step-index FMF, except with these experi-

ments being much more controlled and rigorous, allowing for quantitative comparison between

simulation and experiment. We discuss a unique phase mask technique that we implemented to

control the modes that were excited, and also describe the new spatiotemporal characterization

tool that we developed to report the first spatiotemporal measurements of multimodal nonlinear-

ity.

In Chapter 5, we briefly turn our attention back to parabolic GRIN fibers to discuss Kerr-

induced beam self-cleaning. Although detailed study of such phenomena involving hundreds of

spatial modes has not been the focus of this thesis, we nevertheless discuss measurements that

we performed wherein we implement our spatiotemporal characterization tool to measure this

phenomenon in a spatially and temporally resolved manner.

In Chapter 6, we discuss our work on examining nonlinear optical effects involving OAM

fiber modes. We first describe our discovery and experimental observations of a spatiotemporal

generalization of the well-known nonlinear polarization rotation effect.

Finally, Chapter 7 offers some concluding perspectives and a brief discussion on potentially

interesting future directions for this work.
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Chapter 2: Wave Propagation in Multimode Optical Fibers

2.1 Overview

In this chapter, we review the basics of nonlinear wave propagation in multimode fibers. In

Section 2.2, we first present a description of the spatial mode theory beginning from Maxwell’s

Equations, and discuss a general method for solving for the spatial modes of a circularly sym-

metric fiber. Because this is a topic that is well-covered in several textbooks, we won’t dwell on

the details, but instead focus on providing a concise summary of the mathematical background

needed to understand the research undertaken, highlighting the aspects that are unique to the

multimode case.

We will then discuss random linear mode coupling, what causes linear coupling and how

it can be understood and minimized. We then describe the different types of optical fibers used

in this work, and describe their spatial mode properties. This will also give us an opportunity

to discuss the different mode representation bases and the differences between different bases.

Although the choice for the mode basis may not be too important in understanding the “macro-

scopic” effects, it is crucial for gaining meaningful insight into the intermodal nonlinear interac-

tions at the individual mode level. We close the section with a note on mode solving tools.

In Section 2.3, we review some basics of nonlinear optical physics in fibers before dis-

cussing analytical modeling of nonlinear pulse propagation in MMFs. We introduce the nonlin-
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ear Schrödinger equations (NLSEs) for multiple co-propagating spatial modes, and go over the

different nonlinear effects that can be described by the χ(3) tensor. We conclude the chapter by

briefly discussing numerical tools for solving coupled NLSEs.

2.2 Spatial Modes

For the discussion presented here on general mode theory, [41, 42] are excellent resources;

the former consists of a beginner-friendly description of mode theory, whereas the latter provides

a more complete and rigorous version. For the discussion on OAM mode theory, we will mostly

follow [42] and [43].

2.2.1 Waveguide Mode Theory

Electromagnetic (EM) waves propagating in a medium can be mathematically described

using 3-dimensional vectors for the electric and magnetic fields, E⃗(x, y, z) and H⃗(x, y, z), where

x, y and z represent the cartesian coordinates. In a waveguide, E⃗ and H⃗ can be broken down

into two parts: one that represents the fraction of the EM wave guided along the waveguide, and

another that represents the fraction that is radiated from of the waveguide. The guided portion

can then be expressed as a weighted sum of a finite set of bound spatial modes in the waveguide.

These modes can be thought of as similar to the modes of a guitar string, or the wave functions of

an electron in a potential well. They represent transverse resonances of the EM fields within the

waveguide boundaries. They are derived as the solutions to the source-free Maxwell’s equations.

Denoting the electric and magnetic fields describing the jth mode by Ej(x, y, z) and Hj(x, y, z),

and taking advantage of the translational invariance (i.e. cylindrical symmetry) of an optical fiber,
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Ej and Hj can be expressed as follows:

Ej(x, y, z) = ej(x, y)eiβjz (2.1a)

Hj(x, y, z) = hj(x, y)e
iβjz (2.1b)

where βj is the z eigenvalue of Maxwell’s equations in the waveguide, and is known as the

propagation constant of the jth mode. Note that in this representation, for the sake of succinct-

ness, we have dropped the time dependence of the fields e−iω0t, where ω0 is the carrier frequency

of the EM wave. Note additionally that although the z dependence of the EM fields is factored

out as eiβjz, the remaining parts ej(x, y) and hj(x, y) are still 3-dimensional vectors and have

components along the z axis. Further, having identified z as the propagation axis, it is useful to

separate out the transversal and longitudinal components as follows:

ej(x, y) = et,j(x, y) + ez,j(x, y)ẑ (2.2a)

hj(x, y) = ht,j(x, y) + hz,j(x, y)ẑ (2.2b)

We start our analysis from the vector wave equations listed below. Chapter 30 in reference

[42] consists of a full derivation of these wave equations beginning from Maxwell’s equations:

{∇2
t + n2k2 − β2

j }ej = −{∇t + iβj ẑ}{et,j.∇tln(n
2)} (2.3a)
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{∇2
t + n2k2 − β2

j }hj = −∇tln(n
2)× {(∇t + iβj ẑ)× hj} (2.3b)

where n = n(x, y) is the refractive index profile of the fiber cross section, k = 2π/λ is the

free-space wavenumber, λ is the free-space wavelength of light, ∇t (with the subscript t) refers

to the gradient operator along the transverse coordinates (i.e. x and y), and ẑ is the cartesian unit

vector along the z direction.

By substituting Eqs. 2.2 into the source-free Maxwell’s equations, the transversal and

longitudinal components of the electric and magnetic fields can be expressed in terms of each

other as follows [42]:

et = −
(
µ0

ε0

)1/2 1

kn2
ẑ × (βht + i∇thz) (2.4a)

ht =
(
ε0
µ0

)1/2 1

k
ẑ × (βet + i∇tez) (2.4b)

ez =
i

β
(∇t.et + (et.∇t)ln(n

2)) (2.4c)

hz =
i

β
∇t.ht (2.4d)

where we have momentarily dropped the index j for simplicity. The term ∇tln(n
2) in

Eqs. 2.3 and 2.4 incorporates polarization phenomena due to the waveguide structure. In order

to see this, consider the case of an EM wave propagating in an unbounded medium of uniform

refractive index everywhere (n(x, y) = n1; i.e. effectively free space). Substituting ∇tln(n
2) = 0

into Eqs. 2.4 yields the following expressions for the longitudinal field components: ez = i
β
∇t.et
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and hz = i
β
∇t.ht. Both of these components are equal to 0 in a uniform medium, as the field

components in a uniform medium have no dependence on x and y by definition of uniformity.

Put simply, the modal fields in a uniform medium are transverse electromagnetic (TEM)

waves, and their transversal components satisfy the relation ht = (ε0/µ0)
1/2n1ẑ × et in accor-

dance with Eqs. 2.4. The propagation constant can further be found to be a constant β = n1k,

independent of et (i.e. the state of polarization of the beam). In a wave-guiding structure, how-

ever, ∇tln(n
2) ̸= 0, and the modes are no longer TEM waves. Eqs. 2.3 also suggest a dependence

of the right hand side (and thereby βj) on the transverse electric field vector et, i.e. the polariza-

tion of the beam. In other words, the dependence of a mode’s linear propagation properties on its

polarization results from the presence of a non-uniform cross-sectional refractive index profile.

This is to say that even a circularly symmetric fiber can, in principle, be birefringent. Although

this might sound like a stretch at first sight, as we will see later, specialized fiber designs take

advantage of this polarization dependence to create a large effective index difference between

modes that have identical intensity profiles but opposite polarizations in a circularly symmetric

fiber [39, 43].

Eqs. 2.3 give us a qualitative appreciation of the connection between a mode’s state of

polarization and its linear propagation properties, but further insight can be gained by solving Eqs.

2.3 for a given refractive index profile. However, the full vector wave equations are difficult to

solve analytically for most refractive index profiles, and a perturbative approach is often adopted

to analyze the modal fields of optical fibers. Such an approach comprises of setting ∇tln(n
2) = 0

in the right hand side of Eqs. 2.3 – i.e. solving the so called “scalar wave equation” (SWE) –

and then adding a corrective term to the modal fields and propagation constants. (It is worth

noting that for fibers with piecewise uniform refractive index profiles, ∇tln(n
2) = 0 everywhere
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except at the boundaries. For such cases, the scalar wave equation simply assumes that the field

and its gradient are continuous everywhere, and the vector wave method is different only in that

appropriate boundary conditions are applied when solving Maxwell’s equations.)

Similar to perturbative approaches from quantum mechanics that the reader might be fa-

miliar with, this approach is valid when the “perturbation” from the case for which the scalar

wave equation is fully valid – namely propagation in a uniform medium – is small. Suppose that

the index profile of the fiber were to be expressed as:

n2(x, y) = n2
co(1− 2∆f(x, y)) (2.5)

where nco is the core refractive index, ∆ = (1/2)(1 − n2
cl/n

2
co) is the index height param-

eter, ncl is the cladding refractive index and f(x, y) describes the index profile function. The

perturbative approach is valid in the regime of ∆ ≪ 1, which holds true for most commercially

available optical fibers. This is known as the “weakly guiding approximation” (WGA). In the

WGA, the transversal mode field profiles are given by the solutions to the SWEs solved with

appropriate boundary conditions. However, the first order correction addresses the longitudinal

components as well as the modal propagation constants. Unlike in the uniform medium case, the

longitudinal components are non-zero but small in comparison to the transversal components.

They are given by Eqs. 2.4 but with the ∇tln(n
2) terms absent:

ez,j =
i

β
∇t.et,j (2.6a)

hz,j =
i

β
∇t.ht,j (2.6b)
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Additionally, unlike in a uniform medium, the propagation constants are not independent

of the modal field polarization. The 0th order approximation for βj in the WGA is given by β̃j ,

which satisfies the SWEs

{∇2
t + n2k2 − β̃2

j }et,j = 0 (2.7a)

ht,j = n
(
ε0
µ0

)1/2

ẑ × et,j (2.7b)

The perturbative “polarization correction” to the propagation constant is given by [42, 43]:

δβ ≈ a(2∆)3/2

2V

∫
A∞(∇t.et)et.∇tf(x, y)dA∫

A∞ e2tdA
(2.8)

where we have once again dropped the modal index j for simplicity of notation. V =

(2πa/λ)(n2
co − n2

cl)
1/2 is the waveguide parameter, a is a typical linear dimension in the fiber

cross-section (typically the core radius), and
∫
A∞ represents integration over an infinite cross-

section.

We now consider the case of a circular fiber. The refractive index profile can be expressed

in cylindrical coordinates r and ϕ as:

n2(R) = n2
co(1− 2∆f(R)) (2.9)

where R = r/a, and nco is the maximum index (typically that of the core). As men-

tioned before, under the WGA, the transverse field components et and ht are obtained by solv-
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ing the SWE. When written in cylindrical coordinates, the terms in ∇2
t suggest separable so-

lutions for the transverse components ex(r, ϕ) and ey(r, ϕ) of the form Ψ = Fl(r) cos(lϕ) and

Ψ = Fl(r) sin(lϕ), where l = 0, 1, ... is the azimuthal mode order and Fl(r) satisfies the follow-

ing differential equation [42]:

(
d2

dr2
+

1

r

d

dr
+ k2n2(r)− l2

r2
− β̃2

)
Fl(r) = 0 (2.10)

This can be written in dimensionless form by defining Ũ = a(k2n2
co − β̃2)1/2:

(
d2

dR2
+

1

R

d

dR
+ Ũ2 − l2

R2
− V 2f(R)

)
Fl(R) = 0 (2.11)

The polarization correction terms can then be expressed (see Tables 2.1, 2.2 and 2.3) in

terms of two integrals that are defined as follows:

I1 =
(2∆)3/2

4aV

∫ ∞

0
RFl

dFl

dR

df

dR
dR

/∫ ∞

0
RF 2

l dR (2.12a)

I2 =
l(2∆)3/2

4aV

∫ ∞

0
F 2
l

df

dR
dR

/∫ ∞

0
RF 2

l dR (2.12b)

For a given refractive index profile specified by f(R), the radial equation Eq. 2.11 can be

solved to obtain the radial part of the modal solutions. For simple refractive index profiles such

as the step profile, Eq. 2.11 can be solved analytically. For more complex profiles, however,

numerical tools are needed to solve for the modes (see Sections 2.2.6 and 2.2.7).

Before we introduce the modes, a couple of notes on notation. First, the radial equation

Eq. 2.11 can have multiple solutions depending upon the refractive index profile described by
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f(R) and the value of the azimuthal mode index l. The radial solutions for a given value of l are

labeled by the radial index m. Each mode therefore is specified by two indices, l and m. Second,

we follow the conventional hybrid mode notation used in Reference [42]. For any l ̸= 0 and

for a given m, there are 4 possible modes, arising from two orthogonal azimuthal solutions and

two orthogonal polarization states. These modes are labeled as EH or HE depending upon the

relative magnitudes of the E and H fields describing the mode. Modes within each EH or HE

group are further classified into “even” or “odd” modes based on whether the azimuthal variation

of the ex is described by a cos or sin. (The even and odd mode classification can also be done

based on the azimuthal function of ey without loss of generality.) Furthermore, for the special

case of l = 1, the z component of either the electric or magnetic fields of two of the modes come

out to be 0. These modes are appropriately labeled “transverse electric” (TE) and “transverse

magnetic” (TM). Using Eqs. 2.6, 2.7 and 2.8, we are now ready to introduce the mode fields in

terms of the radial parts Fl and azimuthal parts cos(lϕ) and sin(lϕ). Table 2.1 lists the modes for

the special case of l = 0, and Tables 2.2 and 2.3 list the modes for l ≥ 1.

Table 2.1: l = 0 Modes of a Circular Fiber. (Reproduced with permission from Optical Waveg-
uide Theory by Snyder, A. W. and Love, J. D. (1983) © Springer)

Mode et ht ez hz δβ

HEev
1m x̂F0 nco

(
ε0
µ0

)1/2

ŷF0 i (2∆)1/2

V
G0 cos(ϕ) inco

(
ε0
µ0

)1/2
(2∆)1/2

V
G0 sin(ϕ) I1

HEodd
1m ŷF0 −nco

(
ε0
µ0

)1/2

x̂F0 i (2∆)1/2

V
G0 sin(ϕ) −inco

(
ε0
µ0

)1/2
(2∆)1/2

V
G0 cos(ϕ) I1

21



Table 2.2: Transverse Components of l ≥ 1 Modes of a Circular Fiber. (Reproduced with
permission from Optical Waveguide Theory by Snyder, A. W. and Love, J. D. (1983) © Springer)

Mode et ht

HEev
l+1,m (x̂ cos(lϕ)− ŷ sin(lϕ))Fl nco

(
ε0
µ0

)1/2

(x̂ sin(lϕ) + ŷ cos(lϕ))Fl

HEodd
l+1,m (x̂ sin(lϕ) + ŷ cos(lϕ))Fl −nco

(
ε0
µ0

)1/2

(x̂ cos(lϕ)− ŷsin(lϕ))Fl

TM0,m (l = 1) (x̂ cos(ϕ) + ŷ sin(ϕ))F1 −nco

(
ε0
µ0

)1/2

(x̂sin(ϕ)− ŷ cos(ϕ))F1

TE0,m (l = 1) (x̂ sin(ϕ)− ŷ cos(ϕ))F1 nco

(
ε0
µ0

)1/2

(x̂ cos(ϕ) + ŷ sin(ϕ))F1

EHev
l−1,m (l > 1) (x̂ cos(lϕ) + ŷ sin(lϕ))Fl −nco

(
ε0
µ0

)1/2

(x̂ sin(lϕ)− ŷ cos(lϕ))Fl

EHodd
l−1,m (l > 1) (x̂ sin(lϕ)− ŷ cos(lϕ))Fl nco

(
ε0
µ0

)1/2

(x̂ cos(lϕ) + ŷ sin(lϕ))Fl
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Table 2.3: Longitudinal Components of l ≥ 1 Modes of a Circular Fiber. (Reproduced with
permission from Optical Waveguide Theory by Snyder, A. W. and Love, J. D. (1983) © Springer)

Mode ez hz δβ

HEev
l+1,m i (2∆)1/2

V
G−

l cos((l + 1)ϕ) inco

(
ε0
µ0

)1/2
(2∆)1/2

V
G−

l sin((l + 1)ϕ) I1 − I2

HEodd
l+1,m i (2∆)1/2

V
G−

l sin((l + 1)ϕ) −inco

(
ε0
µ0

)1/2
(2∆)1/2

V
G−

l cos((l + 1)ϕ) I1 − I2

TM0,m (l = 1) i (2∆)1/2

V
G+

1 0 2(I1 + I2)

TE0,m (l = 1) 0 inco

(
ε0
µ0

)1/2
(2∆)1/2

V
G+

1 0

EHev
l−1,m (l > 1) i (2∆)1/2

V
G+

l cos((l − 1)ϕ) −inco

(
ε0
µ0

)1/2
(2∆)1/2

V
G+

l sin((l − 1)ϕ) I1 + I2

EHodd
l−1,m (l > 1) i (2∆)1/2

V
G+

l sin((l − 1)ϕ) inco

(
ε0
µ0

)1/2
(2∆)1/2

V
G+

l cos((l − 1)ϕ) I1 + I2

where I1 and I2 are defined in Eqs. 2.12, and G±
l is defined as G±

l = dFl

dR
± l

R
Fl.

As an interesting aside, the TE, TM, EH and HE modes can be visualized in the ray picture

in the form of meridional and skew rays. Chapter 11 in Reference [42] provides a discussion on

this.
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2.2.2 Linear Mode Coupling & Mode Basis States

Before we begin a discussion on the types of multimode fibers used in this work and their

spatial modes, it is worth taking a pit stop to discuss the role of the polarization correction terms

to the modal propagation constants Eqs. 2.8. Recall from Section 2.2.1 that there are 4 possible

modes for a given value of l and m as listed in Tables 2.1, 2.2 and 2.3. For the case of l > 1,

as Table 2.3 shows, the two HE modes are degenerate with each other, and similar is true for

the two EH modes. This degeneracy arises from having equal values of δβ. However, the two

mode pairs are not degenerate with each other. In other words, for a given value of l > 1 and m,

there are 4 modes that can be divided into two mode pairs where the modes of a particular pair

are degenerate with each other. The propagation constant difference between the two mode pairs

is given by δβEH − δβHE = 2I2.

In an ideal fiber with no imperfections, two spatial modes would not mix with each other

even if they were degenerate with each other, owing to the orthogonality of the modes. That

is to say that if light were coupled into one spatial mode of an ideal fiber, then it would stay

in that spatial mode for infinitely long propagation lengths. Optical fibers in the real world,

however, consist of deformations and perturbations that cause coupling between the different

spatial modes [44–46].

Intuitively, the mixing of modes in a real world can be understood as follows. The spatial

modes discussed here are mathematical constructs to describe the resonant modes of an ideal

fiber. However, these constructs are only approximate not only because we have made numerous

simplifying assumptions (for example the WGA), but also because we have not incorporated any

transversal or longitudinal random perturbations into our model. Of course, incorporating these
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perturbations accurately into a numerical model is impractical if not impossible, because these

perturbations might be drastically different from one fiber to another, and also depend sensitively

on the physical geometry in which the optical fiber is laid out. Put differently, the mathematical

constructs of spatial modes are almost always developed for ideal fibers that operate with no

external perturbations. These constructs, therefore, do not fully accurately describe the true EM

field resonances of a real-world fiber. As a result, the presence of real-world perturbations shows

up as “coupling” between our imperfect mathematical constructs.

Mode coupling was first studied in the early 1970s when MMFs were used for optical

communication [44–46]. In recent decades, interest in SDM in MMFs has revived an interest in

the topic. Mode coupling has been studied using two models: the field coupling model and the

power coupling model [47]. The field coupling model accounts for the complex-valued modal

fields, while the power coupling model only accounts for real-valued modal powers. A deeper

discussion on theoretical approaches to modeling mode coupling is beyond the scope of this

thesis, especially as many questions remain unanswered in the field, and at this point we do best

to cite other works (see References [43, 47, 48]) that carry a more complete review of available

literature. However, we discuss here a particular aspect of modal coupling that is important for

our work.

It has been shown phenomenologically that the amount of mode coupling depends upon

the effective index separation of any two modes as ∝ ∆n−p
eff where p > 4 [46]. Other works have

modeled the efficiency of mode coupling as ∝ e∆βz [49, 50]. Whichever model may be more

accurate, it has been shown conclusively that a small effective index separation leads to higher

coupling among modes [45].

In order to see why this is the case, it is worth recalling that a conventional cylindrically
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symmetric single-mode fiber supports two degenerate polarization modes. Although the two

polarization modes would not couple in an ideal fiber with no perturbations, they do couple in real

fibers, leading to an uncontrolled evolution of the polarization state of light in SMFs. Polarization

maintaining fibers (PMFs) address this issue by introducing a strong birefringence corresponding

to an index difference between the polarization states of ≈ 10−4 (in conventional SMFs, this

difference is ≈ 10−7 [7]). The large difference in propagation constants (i.e. effective indices)

because of strong birefringence means that the relative phase between the two polarization states

rapidly increases as light propagates through the fiber. More accurately, so long as the beat length

corresponding to the birefringence is much shorter compared to the typical spatial disorder length

scale, the coupling remains minimal.

2.2.2.1 LP Mode Basis

As we noted above, for a given l > 1 and m, the modes of a circularly symmetric fiber can

be divided into two mode pairs whose difference in propagation constants is given by 2I2. For

most commercially available fibers, this leads to an effective index difference between the two

mode pairs that is of the order of 10−5, which turns out to be sufficient to couple the two mode

pairs [51]. The modes resulting from this coupling can be seen by neglecting the polarization

correction term Eq. 2.8 altogether. When this is done, there is no constraint on the field directions,

and the modes can now be expressed in linear polarized form as, for example, Fl(r) cos(lϕ)x̂

instead of the forms shown in Table 2.2. These form the so called linearly polarized “LP ” fiber

modes.

Fig. 2.1 (from Reference [51]) illustrates this phenomenon. The LP modes can be ex-
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pressed in terms of the HE and EH mode basis, up to a normalization constant, as follows:

LPlm,ax̂ = HEev
l+1,m + EHev

l−1,m (2.13a)

LPlm,bx̂ = HEodd
l+1,m + EHodd

l−1,m (2.13b)

LPlm,aŷ = HEodd
l+1,m − EHodd

l−1,m (2.13c)

LPlm,bŷ = EHev
l−1,m −HEev

l+1,m (2.13d)

Note that for l = 0, the LP and the HE-EH mode bases are equivalent, and the LP0m

modes are indeed true modes of the fiber. For l > 0, however, LPlm modes are not true modes of

the fiber. This is because the constituent HEl+1,m and EHl−1,m modes are not truly degenerate.

In other words, although the LP modes (resulting from transformations of Eqs. 2.13) can be used

as a representational mode basis, they do not constitute a set of true propagation modes. In fact,

the LP21,a “mode”, for example, has a z-varying field and intensity pattern because of the beat

length between the HE and EH modes. This behavior is highly unlike a true propagation mode

of a fiber. One must therefore be careful in assessing whether or not LP modes form a good

mode basis to describe multimodal propagation in a fiber.

2.2.2.2 OAM Mode Basis

As we discussed above, for conventional fibers such as step-index and parabolic index

fibers, the LP modes basis arises from the near degeneracy of all 4 modes for a given l and m.

However, it has been shown in recent years that the refractive index profile of the fiber n(r) can
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Figure 2.1: Intensity profiles of first order mode group in a fiber. Arrows describe the local state
of polarization. (Top row) Vector modes that are the exact solutions for a fiber. (Bottom row)
Unstable LP modes commonly obtained at a fiber output. Specific linear combinations of pairs
of top row modes yield specific LP modes. (Reprinted by permission from Optica Publishing
Group: Ramachandran et al., Opt. Lett. 34, 2525-2527 (2009) © Optica Publishing Group))

be tailored to break this near degeneracy. In other words, the two HE and EH mode pairs in

conventional step and parabolic index fibers have effective indices separated by only ≈ 10−5.

With a specially designed n(r), however, this separation has increased by nearly a hundred fold

to ≈ 10−3 [38, 39, 51]. These fibers are referred to in literature by various names: vortex fibers,

ring core fibers (RCFs) and OAM fibers. The name “ring core” refers to the ring shaped refractive

index profile that these fibers consist of, and the name ’OAM’ arises from the fact that the most

natural basis set of propagation modes in these fibers consist of a well-defined orbital angular

momentum per photon. We will revisit these fibers and their spatial modes in more detail in

upcoming sections, but for now, we introduce the OAM mode basis.

Although light propagating in a given fiber can be expressed using any basis set, the most

natural choice is often one that best describes the unique properties of the fiber and its modes.

For RCFs, this is the OAM basis. The OAM basis is defined by the following transformations

(up to a normalization constant):
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Vl,+ = HEev
l+1 + iHEodd

l+1 (2.14a)

V−l,− = HEev
l+1 − iHEodd

l+1 (2.14b)

Vl,− = EHev
l−1 + iEHodd

l−1 (2.14c)

V−l,+ = EHev
l−1 − iEHodd

l−1 (2.14d)

where l > 0. We have momentarily dropped the radial index m for simplicity, but specify

that all modes involved are of the same radial index m. The subscripts ±l now refers to the

topological charge, which signifies the OAM content of the mode as we will explain below. The

subscripts + and − signify right and left circular polarization (LCP and RCP) states of the modes.

The key difference between the hybrid HE/EH mode basis and the OAM mode basis is

the phase relationship between the transverse and longitudinal mode components. In the hybrid

mode basis, the transverse components can be constrained to be purely real-valued, in which case

the longitudinal fields are purely imaginary (or vice versa). As a consequence, in cases where

one can ignore the longitudinal fields, the hybrid modes are locally linearly polarized (albeit with

spatially varying orientation of the linear polarization, unlike the LP modes that are uniformly

linearly polarized). In the OAM mode basis, however, the transverse fields are locally circularly

polarized, leading to a different phase relationship between the transverse and longitudinal fields

compared to the hybrid mode case.

In order to see that the modes in Eqs. 2.14 have a well-defined OAM, it is instructive to

first note that the transversal and longitudinal components of these modes all contain an azimuthal
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variation e±lϕ. This can be seen using Eqs. 2.6 together with Eqs. 2.14. Additionally, one can

calculate the time-averaged OAM flux for each mode given by the spatial integral:

⟨ΦM ⟩ =
∫ ∫ 〈

M⃗ .d⃗A
〉

(2.15)

where the angular momentum density M is given by:

M⃗ =
1

c2
r⃗ × (E × H) =

1

c2
r⃗ × S⃗ (2.16)

where S⃗ denotes the Poynting vector. We will not show the derivation here, but it has been

shown that < ΦM > for a mode in the OAM basis is proportional to (±l± 1) [43], where the ±1

refers to the two possible states of circular polarization, i.e. “spin angular momentum” (SAM).

Each photon in such a mode has an orbital angular momentum of ±lh̄ [37]. Note that this is a

unique property of the OAM mode basis, and the HE-EH modes do not have a well-defined

orbital angular momentum.

The first two modes specified in Eqs. 2.14 are the so called “spin-orbit aligned” (SOa)

modes, while the last two form the “spin-orbit anti-aligned” (SOaa) modes. The terms ‘aligned’

and ‘anti-aligned’ refer to the relative alignment or anti-alignment of OAM and SAM. Because

the two HE (or EH) modes are degenerate with one another, the two SOa (or SOaa) modes are

degenerate with each other as well.

2.2.3 Types of Multimode Fibers

Here, we briefly introduce the different kinds of MMFs that are available commercially

and/or are of interest at a research level. Fig. 2.2 shows illustrations of cross-sectional structure
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and corresponding refractive index profiles of some commonly used optical fibers, all of which

are capable of guiding multiple spatial modes simultaneously. These fibers, and others that we

haven’t listed here, all have unique linear and nonlinear mode propagation properties. The differ-

ences in their modal properties arise from a number of factors, including cross-sectional structure

and size, refractive index profile, number of cores, and in some cases the light guiding mechanism

itself.

Although the study of linear and nonlinear propagation in these fibers makes for a very

interesting research area, in this work we only focus on single core circularly symmetric fibers

such as the step and graded-index FMF/MMFs and hollow RCFs. These fibers were chosen

owing to their relevance to a broad range of topics including long-range telecommunication,

spatial division multiplexing, high power fiber laser development and quantum optical science.

We now focus our attention on each of the three fibers studied in this work, depicted in Fig.

2.2(a)-(c). We discuss the mode properties in these fibers and show numerically generated mode

images.

2.2.4 Step-Index FMF

A step-index multimode fiber consists of a cross-sectional refractive index profile that has

a step-like function, as shown in Fig. 2.2(a). Because the step profile consists of two regions of

constant refractive index each (namely core and cladding), Eq. 2.11 can be solved analytically to

analyze the modes. We begin by noting that the refractive index profile of a step-index fiber is

expressed as:
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Figure 2.2: Different kinds of MMFs/FMFs and their refractive index profiles, of which (a)-(c)
were used in this work. (a) Step-index FMF, (b) parabolic index MMF, (c) hollow ring-core fiber,
(d) multicore fiber, (e) photonic crystal fiber, (f) hollow core fiber

n2(R) =


n2
co, for 0 < R < 1

n2
cl, for R > 1

(2.17)

where, as before, R = r/a. Eq. 2.11 can then be rewritten as:

R2d
2Fl

dR2
+R

dFl

dR
+ (Ũ2R2 − l2)Fl = 0, for 0 < R < 1 (2.18a)

R2d
2Fl

dR2
+R

dFl

dR
− (W̃ 2R2 + l2)Fl = 0, for R > 1 (2.18b)
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where Ũ2 = a2(k2
0n

2
co−β̃2), W̃ 2 = a2(β̃2−k2

0n
2
cl) and Ũ2+W̃ 2 = V 2. Guided modes in the

fiber correspond to β̃ such that nclk0 < β̃ ≤ ncok0. This follows from the bounds on the refractive

index of the fiber itself ncl ≤ n(r) ≤ nco, and from the fact that for a non-absorbing waveguide,

the maximum phase velocity cannot exceed the maximum speed of light in the waveguide struc-

ture without losing power to radiative losses [41, 42].

The solutions to Eq. 2.18(a), for 0 < R < 1, can be identified to be the Bessel functions of

the first and second kind Jl(S) and Yl(S), where S = ŨR. The Yl(S) solution can be rejected by

noting that |Yl(S)| → ∞ as S → 0 (i.e. when R → 0). Similarly, the solutions to Eq. 2.18(b), for

R > 1, can be identified to be the modified Bessel functions Kl(S
′) and Il(S

′) where S ′ = W̃R.

However, Il(S ′) can be rejected as well, since Il(S
′) → ∞ as S ′ (i.e. R) → ∞. That leaves us

with the following solutions for Ψ(r, ϕ):

Ψ(r, ϕ) =


Anorm

Jl(Ũ)
Jl(Ũr/a) cos(lϕ) or A

Jl(Ũ)
Jl(Ũr/a) sin(lϕ), for 0 < r < a

Anorm

Kl(W̃ )
Kl(W̃ r/a) cos(lϕ) or A

Jl(W̃ )
Kl(W̃ r/a) sin(lϕ), for r > a

(2.19)

where we have assumed continuity at r = a, and Anorm is a normalization constant. Im-

posing the condition of continuity at dΨ/dr at r = a leads to

Ũ
J ′
l (Ũ)

Jl(Ũ)
= W̃

K ′
l(W̃ )

Kl(W̃ )
(2.20)

where J ′
l and K ′

l represent first derivatives of Jl and Kl with respect to r. Although we

will not show the full derivation here (see Reference [41]), the equation above can be rewritten

in terms of the normalized propagation constant b = W̃ 2/V 2 to yield:
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V (1− b)1/2
Jl−1[V (1− b)1/2]

Jl[V (1− b)1/2]
= −V b1/2

Kl−1[V b1/2]

Kl[V b1/2]
(2.21)

where l ≥ 1. For l = 0:

V (1− b)1/2
J1[V (1− b)1/2]

J0[V (1− b)1/2]
= V b1/2

K1[V b1/2]

K0[V b1/2]
(2.22)

Eqs. 2.21 and 2.22 are transcendental in b, and the solutions to them give universal curves

for the dependence of b on V . For a given value of l ≥ 0, the number of modes supported by the

fiber is given by the number of solutions to Eq. 2.21 or 2.22. The total number of modes supported

in the fiber is obtained by simply counting the number of modes supported for increasing values

of l ≥ 0. For step index fibers with a large a, an approximate number of available spatial modes

(including polarization degeneracy) is given by [52]:

N ≈ V 2

2
(2.23)

Note that Eqs. 2.19 only provide an equation for Ψ(r, ϕ), which in our notation simply

refers to a cartesian component of the transverse part of the mode, i.e. ex or ey. It does not specify

the phase relation with which these components superpose to give rise to the modal electric field.

However, as we mentioned in Section 2.2.2, the effective index separation between the different

HE and EH mode pairs is low enough for the modes to mix in practical fibers, resulting in the

LP modes. We therefore adopt the LPlm basis for step-index MMFs for the purposes of this

work.

For the specific work that we describe in subsequent chapters, we adopt a step-index few
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mode fiber with a core diameter of 2a = 20 µm. This fiber is often called a “few” mode fiber

as opposed to a “multi” mode fiber because the number of spatial modes allowed in this fiber at

typical laser wavelengths is in the 10s as opposed to 100s.

0 4 8 12 16
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x10-3 20 µm

LP01 LP02 LP03

LP11a LP11b
LP12a LP12b

LP21a LP21b
LP22a LP22b

(a) (b)

Figure 2.3: Linearly polarized spatial modes of a 2a = 20 µm step-index FMF. (a) Distribution of
modal effective indices relative to fundamental mode (x̂-polarized modes only), (b) Numerically
generated intensity profiles of some x̂-polarized LP modes. Arrows represent the local state of
polarization.

Fig. 2.3(b) shows the intensity profiles of the x̂-polarized LPlm modes of the step-index

FMF used in this work. The arrows all point along the x coordinate, and the opposite facing

directions denotes opposite phase of the electric field. Fig. 2.3(a) shows a plot of modal effective

indices. Notice that the only modes with the same propagation constant are those with the same

l and m. This is unlike what happens in parabolic index fibers, as we will soon see. This is an

important property of step-index fibers that has implications for nonlinear phenomena by way of

phase matching and group velocity mismatch.
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2.2.5 Parabolic Index MMF

A graded index (GRIN) fiber has a core refractive index profile that varies with the radial

coordinate r as follows:

n2(R) =


n2
co

(
1− 2∆Rq

)
, for 0 < R < 1

n2
cl, for R > 1

(2.24)

where q is usually designed to be equal to 1.98 to minimize intermodal dispersion. How-

ever, for the purposes of theoretical analysis, it is useful to set q = 2, thereby giving us the

parabolic index MMF. It is helpful to make yet another simplifying assumption to solve for the

modes easily, namely extending the parabola to infinity and simply working with:

n2(r) = n2
co(1− 2∆R2) (2.25)

where R is allowed to be > 1 [41].

Similar to the case of step-index fibers, the modes of a parabolic index fiber are obtained

by inserting the refractive index profile Eq. 2.25 into Eq. 2.11. We will not show the derivation

here, but only list the final solution. (References [41,42] carry a full discussion, for the interested

reader.) The radial solution to Eq. 2.11 for the parabolic index profile is given by:

Fl(r) = rle−ζ2r2/2Ll
m−1(ζ

2r2) (2.26)

where Lk
n(κ) are the associated Laguerre polynomials, and are given by:
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Lk
n(κ) =

n∑
p=0

Γ(n+ k + 1)

(n− p)!Γ(p+ k + 1)p!
κp (2.27)

ζ is given by:

ζ =
(
n1k0

√
2∆

a

)1/2

=

√
V

a
(2.28)

with k0 = 2π/λ0 representing the free space wavenumber at the laser wavelength λ0.

Similar to the case with step-index fibers, the HE and EH modes for commercially avail-

able GRIN fibers are found to be nearly degenerate as well, facilitating strong mixing between

the 4 HE and EH modes for a given l and m. We therefore adopt the LP mode basis once again.

The modal propagation constants evaluate to:

β̃lm = k0nco

(
1− 2(2m+ l − 1)

k0nco

√
2∆

a

)1/2

(2.29)

By defining M = 4m + 2l − 2 as the principal mode number, we see that the modes with

the same principal mode number have the same propagation constant. The modes of a parabolic

index fiber can be binned into mode groups, with modes in each group consisting of the same

propagation constant and group velocity. Furthermore, another interesting feature of the parabolic

index profile is seen by approximating β̃lm as follows:

β̃M ≈ k0nco

(
1− M

2k0nco

√
2∆

a

)
(2.30)

Fig. 2.4(b) shows the intensity profiles of a select few x̂-polarized LP modes of a 2a = 62.5

µm GRIN fiber. Fig. 2.4(a) shows the distribution of modal effective indices (which relate to the
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propagation constants as neff = β̃/k0) as a function of the mode number. Together with Eq.

2.30, the plot shows not only that modes of different l and m can have the same propagation

constant, but that the difference in propagation constants between the different mode groups is

constant.

Mode #
0 10 20 30

0

-2

x10-3

-4

-6

-8

ǻ
Q e

ff
62.5 µm

LP01 LP03 LP05

LP11a LP11b
LP15a LP15b

LP31a LP31b
LP35a LP35b

'HJHQHUDWH�
PRGH�JURXSV

(a) (b)

Figure 2.4: Linearly polarized spatial modes of a 2a = 62.5 µm parabolic GRIN MMF. (a)
Distribution of modal effective indices relative to fundamental mode (x̂-polarized modes only),
(b) Numerically generated intensity profiles of some x̂-polarized LP modes.

This is a remarkable feature that has profound consequences for nonlinear phenomena in

parabolic index MMFs. For example, the distribution of propagation constants helps phase match

many four wave mixing (FWM) processes that would not be phase matched in step-index fibers.

This is an important reason why complex nonlinear phenomena such as the Kerr-induced beam

self-cleaning [14, 15] is only observed in parabolic GRIN fibers and not in step-index fibers.

Similarly, the equal spacing of modal propagation constants gives rise to a well-known periodic

self imaging effect as depicted in Fig. 2.5, where the multimodal beam exhibits a periodicity in its

transverse profile as a function of z. The period is given by zsi = 4πk0nco

√
a/2∆. This has been

shown to cause a nonlinear instability phenomenon known as geometric parametric instability
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(GPI) [17].
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Figure 2.5: Illustration depicting periodic self imaging occurring in a parabolic index GRIN fiber.
By contrast, this phenomenon does not occur in step-index fibers with an irregular distribution of
modal propagation constants. zsi represents the self imaging period.

2.2.6 Hollow Ring Core Fiber

The final type of fiber that we study here is the so called hollow ring core fiber. As shown

in Fig. 2.6(a), these fibers have a unique refractive index profile. This is a specialty fiber that is

not available commercially, and the fiber used in this study was designed and provided by Prof.

Siddharth Ramachandran’s group at Boston University, and fabricated by OFS-Fitel LLC (see

References [26, 39]).

The sharp drop in refractive index of the fiber core medium from ≈ 1.5 to 1 (i.e. air)

creates the necessary index gradient to produce an index separation between the HE and EH

mode pairs that is much larger than what would be obtained in a conventional solid-core fiber.

The index profile of this fiber produces a strong dependence of the modal propagation constant on

the complex vectorial spatial mode according to Eqs. 2.3 and 2.8. We emphasize the term complex

because of the complex nature of the OAM modes described in Eqs. 2.14. For an OAM mode of

a given topological charge ±l, Eqs. 2.3 and 2.8 yield different propagation constants depending
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upon the mode’s state of polarization, which is described by the complex phase relation between

the cartesian components. Equivalently, for a mode of a given state of circular polarization (LCP

or RCP), the propagation constant depends upon the sign of the topological charge. This is known

as the “spin-orbit coupling” effect [39, 40]. This leads to the aforementioned grouping of the 4

modes of a given l and m into spin-orbit “aligned” and “anti-aligned”.

Fig. 2.6(b) shows the intensity, polarization and phase profiles for a set of 4 OAM modes

with l = 2 and m = 1. We have adopted a modified notation SO±l
a(a) to describe a spin-orbit

(anti-)aligned mode with a topological charge ±l (l > 0), and we have dropped the radial index

m for simplicity. These modes images were generated using a numerical vector finite difference

mode solver described in [53].
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Figure 2.6: Orbital Angular Momentum modes of a hollow ring-core fiber. (a) Optical micro-
graph of the fiber cross section, and the cross-sectional refractive index profile of the fiber, (b)
Numerically generated intensity and phase profiles of l = 2, m = 1 OAM modes. The top row
images show intensity profiles, where the overlaid circular arrows depict the helicity of polariza-
tion. The bottom row images show the spatial distribution of phase, which provides the OAM.
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2.2.7 A Note on Mode-Solving Tools

The spatial modes of simple refractive index profiles, like the step-index and parabolic

index fibers, can be solved for analytically using the WGA. Analytical solutions exist for other

index profiles that can be analyzed under the WGA as well. Reference [42] carries a discussion

on modal analysis for circularly asymmetric fiber cross-sections such as homogeneous function

profiles and separable profiles, and also provides methods for incorporating material anisotropy.

For refractive index profiles where the WGA may not hold, however, numerical mode-

solving tools are extremely useful in generating and visualizing the spatial modes. For the hol-

low RCF used in this work, we used the publicly available vector finite-difference mode-solver

described in Reference [53]. However, vector finite-difference solvers are typically developed

for integrated photonics waveguides and therefore work using the cartesian coordinate system.

While this makes them universally applicable for integrated waveguides as well as fibers, care

must be taken to use such mode-solvers in the fiber context, specifically in imposing the correct

mode symmetry boundary conditions depending upon the fiber’s refractive index profile.

Commercial numerical mode solving tools are also available. Lumerical’s MODE Solu-

tions®is a useful finite-difference eigen-mode solver for calculating the modes of an arbitrary

fiber index profile, including high index contrast profiles such as the hollow RCF, and is typically

integrable with their finite-difference time domain propagation simulation tools.

Reference [54] discusses a full vectorial mode solver based on a discrete Hankel Transform,

and also contains a brief review of other tools available, including recently developed ones, for

the interested reader.
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2.3 Multimodal Pulse Propagation Physics

Having established the concepts of spatial modes, in this section, we delve into linear and

nonlinear propagation of optical pulses in multimode fibers. While most fundamental concepts

introduced here will be familiar to those that are familiar with single mode fiber nonlinear optics,

as we will see in Chapter 4, the added spatial dimension brings about unique phenomena that do

not have an analog in SMFs.

We first review pulse propagation in the linear regime, and discuss material and waveg-

uide dispersion, differential group delay and group velocity dispersion. We then introduce the

fundamentals of nonlinear optical physics in the context of optical fibers, and present the nonlin-

ear Schrödinger equations. We conclude the chapter with a discussion on self-phase modulation

(SPM), cross-phase modulation (XPM), four-wave mixing (FWM) and phase matching consid-

erations for FWM.

2.3.1 Linear Propagation Effects

2.3.1.1 Material Dispersion

Light propagating through a dielectric medium interacts with the bound electrons in the

medium in a frequency dependent manner. That is to say that each frequency component of light

travels with a different speed in the medium. This frequency dependence of light propagation in

a material is captured by expressing the speed of light in the medium in terms of its frequency-

dependent refractive index:
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v(ω) =
c

neff (ω)
=

k0c

β(ω)
(2.31)

where c is the vacuum speed of light, neff (ω) represents the frequency-dependent effec-

tive refractive index of the medium, k0 is the vacuum wave number and β(ω) is the frequency-

dependent propagation constant. v(ω) is known as the phase velocity, as it refers to the speed at

which a plane wave – which is a monochromatic EM field of constant phase – propagates through

the medium.

An optical pulse consists of a spectrum of frequencies of light propagating together. The

information carried by the pulse travels at the group velocity, which is defined as follows [7]:

vg(ω) =
(
dβ

dω

)−1

=
c

d(ωn)/dω
=

c

ng

(2.32)

where ng is the group index:

ng(ω) =
d(ωn)

dω
(2.33)

For a given medium, n(ω) can be approximated using the well-known Sellmeier equation:

n2(ω) = 1 +
∑
i=1

Biω
2
i

ω2
i − ω2

(2.34)

where ωi are the resonance frequencies of the medium and Bi are the material constants.

These parameters are estimated from experimental knowledge of material absorption resonances

[7].
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2.3.1.2 Waveguide Dispersion

The material dispersion effects outlined above reflects the frequency dependence of light

propagation in any material, including the core of an optical fiber, and therefore applies to all

modes propagating in a fiber in a similar manner. In addition to this effect, the waveguiding

nature of an optical fiber also introduces a variation in propagation time and propagation constant

from one spatial mode to another. This is known as waveguide dispersion, and can be understood

intuitively using the ray picture as arising from the difference in ray paths traced by the modes.

This can be seen, for example, in the dependence of the modal propagation constant β̃lm in a

parabolic GRIN fiber on the azimuthal and radial indices l and m in Eq. 2.29.

2.3.1.3 Modeling Chromatic Dispersion

As mentioned above, optical pulses propagating in a multimode waveguide are subject to

two different kinds of dispersion: material dispersion and waveguide dispersion. The combined

effects of these are modeled via a Taylor series expansion of the modal propagation constant

around the frequency of interest ω0:

β(p)(ω) = n(ω)
ω

c
= β

(p)
0 + β

(p)
1 (ω − ω0) +

1

2
β
(p)
2 (ω − ω0)

2 + ... (2.35)

where the superscript (p) refers to the propagation constant of mode p. Note that the mode

index p is merely a substitute for specifying the double indices l and m, for ease of notation. We

will adopt this simpler mode indexing from now on, and specify the l and m where needed. In

the equation above, nth Taylor coefficient β(p)
n is given by:
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β(p)
n =

(
dβ(p)

n

dωn

)
ω=ω0

(2.36)

Each of the Taylor coefficients has a physical significance. β(p)
0 is the propagation constant

of the mode at frequency ω0. Note that at ω = ω0, β(p)(ω0) = β
(p)
0 is same as the propagation

constant that we denoted as ˜βlm in Section 2.2.1.

β
(p)
1 , the first order coefficient, is the inverse of group velocity, as we saw in Eq. 2.32. Each

mode has a different group velocity vg, as a result of which a multimodal optical pulse spreads

temporally as it propagates through a fiber. This is known as differential group delay (DGD).

The second order coefficient β(p)
2 indicates the frequency-dependent variation of the group

velocity around ω = ω0. This is referred to as group velocity dispersion (GVD). β2 > 0 is

commonly known as the “normal” dispersion regime, while β2 < 0 is known as the “anomalous”

dispersion regime. The sign of β2 signifies whether the β2 term contributes to the spreading or

compression of an optical pulse. As a result, the regime of dispersion at the operating wavelength

is known from SMF NLFO to be crucially important to many nonlinear optical dynamics. For

example, in SMF systems, solitons occur only in the anomalous dispersion regime as the effects of

GVD and Kerr nonlinearity balance each other. Similarly, the appearance of spectral sidebands

arising from modulation instability in the single mode propagation regime only occurs in the

anomalous dispersion regime [11]. (Note, however, that this is no longer true when multiple

spatial modes co-propagate [34, 36].)

For the purposes of this thesis, we only limit our discussion to the second order Taylor

expansion. Third and higher orders of dispersion, in most cases, only need to be included when

operating close to the zero dispersion wavelength of a fiber, where β2 = 0 [11]. In our work,
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we are justified in neglecting higher orders as we operate far away from the zero dispersion

wavelength.

2.3.1.4 Propagation Losses

As with any waveguide, light propagating in a multimode fiber undergoes attenuation due

to scattering and material absorption. This is typically modeled by allowing the medium’s index

of refraction to have a nonzero imaginary part:

n = nre − inim (2.37)

where nre and nim are the real and imaginary parts of the refractive index. The field atten-

uation parameter is then given by [7]:

α = k0nim (2.38)

such that the field magnitude after propagation through a length Lprop is given by E(L) =

E0e
−αLprop . This attenuation parameter can be expressed in dB units as αdB = 8.686α [7]. At the

wavelengths that we operate at (1064 nm and 1550 nm), αdB < 1 dB/km, and the typical fiber

lengths in our experiments are only a few meters. As a result, the net attenuation experienced by

the propagating EM wave is negligible for our purposes.
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2.3.2 Nonlinear Pulse Propagation

2.3.2.1 Optical Nonlinearity

In classical electrodynamics described by Maxwell’s equations, two electromagnetic waves

pass through each other unaffected. This is also largely true of the quantum electrodynamic

description of light, where two photons can interact in vacuum only when mediated by other

(virtual) particles [55]. How, then, does one understand the light-light interaction that is charac-

teristic of every nonlinear optical phenomenon? How do we explain, for example, cross-phase

modulation where one light beam modulates the phase of another?

Admittedly, the way that I have phrased these statements is somewhat ambiguous. This is

intentional, as it drives home the key point that is at the heart of nonlinear optics: the propagation

medium serves as a “mediator” of sorts, facilitating light-light interaction. From this perspec-

tive, it is clear that the relationship between the electric field and the induced polarization in the

medium is of central importance. In general, the induced polarization vector P̃ depends upon the

electric field vector Ẽ, in the frequency domain, as [11]:

P̃(ω) = ε0χ̃
(1)(ω).Ẽ(ω) (2.39)

where χ̃(1) is known as the linear susceptibility tensor. Note that we have used the ∼ on top

of the polarization and electric field vectors to denote the fact that the vectors are in the frequency

domain, and so as to not confuse them for the time domain vectors we introduced in Section 2.2.1.

In the Einstein summation notation, the equation above can be rewritten as:
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P̃j = ε0χ̃
(1)
jk Ẽk (2.40)

The susceptibility tensor relates to the refractive index of the medium as:

n2(ω) = 1 + χ̃(1)(ω) (2.41)

In the time domain, the relationship between the polarization and electric field vectors is

no longer a simple product, but is rather described by a convolution integral:

Pj(t) = ε0

∫ ∞

−∞
χjk(τ)Ek(t− τ)dτ (2.42)

where χ(τ) and χ̃(ω) are Fourier transforms of each other.

It is clear from Eq. 2.40 that the relationship between the induced polarization vector and

the electric field vector is a linear one. While this relationship holds when the optical intensity

is low, the most general relationship between the two vectors involves the addition of higher

order terms – for example, quadratic and cubic products of the electric field. On a physical level,

the classical anharmonic oscillator model [11, 56] serves as a useful tool in understanding the

nonlinear relationship between P̃ and Ẽ. (Strictly speaking, however, the anharmonic oscillator

model is not an accurate description of the physics, and a semi-classical picture wherein the

electric field is treated classically and the atoms in the medium quantum mechanically is a more

accurate description. Reference [56] carries a discussion on this, for the interested reader.)

The more general relationship between P̃ and Ẽ, therefore, is given by:
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P̃ = ε0(χ̃
(1) · Ẽ + χ̃(2) : ẼẼ + χ̃(3)...ẼẼẼ + ...) (2.43)

where χ̃(n) is the nth order susceptibility tensor, and the products depicted by ·, : and
...

represent tensor products. In general, χ̃(n) is a tensor of rank (n + 1) describing the nth order

nonlinear relationship between P̃ and Ẽ.

As mentioned before, χ̃(1) describes the linear response of a material, including refractive

index n(ω) and attenuation α. χ̃(2) describes second order nonlinear effects such as second

harmonic generation, and sum- and difference-frequency generation [11]. χ̃(3) represents third

order nonlinear processes such as third harmonic generation, self- and cross-phase modulation

and four-wave mixing.

In centrosymmetric materials such as SiO2 (which is the most commonly used material for

the core of an optical fiber), the second order nonlinear susceptibility tensor χ̃(2) is zero. As a

result, third order nonlinearity is the most significant contributor to the nonlinear response of the

material [11, 56]. Although higher order responses exist, they can safely be neglected for the

types of fibers and peak powers of optical pulses used in this work. We can therefore express the

polarization in the fiber medium as a sum of the medium’s linear and nonlinear (i.e. third order)

contributions:

P̃ = P̃L + P̃NL (2.44)

where P̃L = ε0χ̃
(1) · Ẽ and P̃NL = ε0χ̃

(3)...ẼẼẼ. In the Einstein summation notation, the

third order nonlinear polarization can be expressed as:
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P̃
(3)
j = ε0χ̃

(3)
jklmẼkẼlẼm (2.45)

2.3.2.2 Intensity Dependent Refractive Index

Before we begin our discussion on the multimode nonlinear Schrödinger equations, we

briefly review a well-known nonlinear effect known as ‘nonlinear refraction’. As we mentioned

before, the induced polarization in a medium can be expressed as being proportional to the electric

field in the medium according to Eq. 2.40. The proportionality constant is related to the refractive

index as Eq. 2.41.

It turns out that this can also be done in the presence of χ̃(3) terms as follows:

P̃ = ε0(χ̃
(1) + χ̃(3)|Ẽ|2)Ẽ (2.46)

The difference here is that the proportionality factor is no longer a constant, and depends

upon the intensity (which is proportional to |Ẽ|2). Following the definition of linear refractive

index in Eq. 2.41, we can now define the intensity dependent – i.e. nonlinear – refractive index:

n(|E|2) = n+ n2I (2.47)

where n2 is known as the nonlinear index coefficient for cubic nonlinearity, and it is pro-

portional to χ̃(3).
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2.3.2.3 Generalized Multimode Nonlinear Schrödinger Equations

Having discussed the basic description of a medium’s nonlinear response, we switch gears

and begin our discussion of nonlinear propagation of a multimodal optical pulse. Pulse propa-

gation in SMFs has been studied for decades using the nonlinear Schrödinger equation (NLSE)

for a slowly varying pulse envelope [11]. Over time, additional terms were included to the single

mode NLSE to describe higher order dispersion and stimulated Raman scattering (SRS) [57,58],

as well as the frequency dependence of the medium’s nonlinear response by way of a time deriva-

tive operator called the self-steepening term [59]. This resulted in a modified NLSE, referred to

in literature as the ‘generalized’ NLSE (GNLSE).

In a landmark paper published in 2008, the single mode GNLSE was extended to the case

of multiple co-propagating and nonlinearly interacting spatial modes in a fiber [60], resulting in

the generalized multimode nonlinear Schrödinger equations (GMMNLSEs). The GMMNLSEs

are derived by inserting Eq. 2.44 into Maxwell’s equations:

∇× E = −µ0
∂

∂t
H (2.48a)

∇× H = ε0n
2 ∂

∂t
E +

∂

∂t
PNL (2.48b)

where PNL is the time domain cubic nonlinearity polarization vector, and is given by:

PNL(x, y, z, t) = ε0χ
(3)E(x, y, z, t)

∫ ∞

−∞
R(t− t′)|E|2dt′ (2.49)
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where we have assumed that the material’s cubic nonlinear response is χ(3)(t) is near in-

stantaneous [11] – i.e. represented by a time-invariant tensor χ(3) and delta functions in time,

which were integrated over to result in Eq. 2.49. This assumption typically amounts to ne-

glecting the contributions of molecular vibrations to χ(3)(t), i.e. Raman scattering, which are

typically slower. However, for silica fibers, the Raman response occurs over a time scale of 60-

70 fs, yielding this assumption to be approximately correct for pulses longer than ∼ 1 ps [11].

For such cases, the response function R(t) is expressed as:

R(t) = (1− fR)δ(t) + fRhR(t) (2.50)

where hR(t) is the Raman response function and fR is its fractional contribution to R(t).

For silica fibers, fR ≈ 0.18.

The electric field E at some longitudinal position z can be expressed in terms of the bound

modes of a multimode fiber according to Eq. 2.1 as:

E(x, y, z, t) =
∑
p

ep(x, y)Ap(z, t)e
−iωt (2.51)

where the ei(β
(p)
0 z) accumulation of z-dependent phase is absorbed into the definition of the

slowly-varying pulse envelope Ap(z, t) for the pth mode. As before, Ep(x, y, z) refers to the full

electric field vector corresponding to mode p, ep(x, y) is the modal electric field profile describing

the transversal variation of the transverse and longitudinal components.

The GMMNLSEs are obtained by substituting Eq. 2.51 into Eq. 2.49. We will not show

the derivation here as it is beyond the scope of this thesis, but the reader is encouraged to review

the derivations in References [60] and [61]. The GMMNLSEs are given by:
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∂zAp(z, t) = i
(
β
(p)
0 + i(β

(p)
1 − β

(1)
1 )∂t +

∑
n≥2

in
β(p)
n

n!
∂n
t

)
Ap(z, t) + i

n2ω

c
N (2.52)

where β(p)
n is, as before, the nth order Taylor expansion coefficient of β(p), ∂z and ∂t de-

note the partial derivatives with respect to z and t respectively. Note that the subtraction terms

involving β
(1)
0 and β

(1)
1 signify that the equations are written in the frame of reference of the

fundamental mode. The nonlinear term N is given by:

N = N1 + N2 (2.53)

where:

N1 =
∑
hkm

2Q
(1)
phkmAp(z, t)

∫
R(t′)Ak(z, t− t′)A∗

m(z, t− t′)dt′ (2.54a)

N2 =
∑
hkm

Q
(2)
phkmA

∗
p(z, t)

∫
R(t′)Ak(z, t− t′)Am(z, t− t′)e2iω0t′dt′ (2.54b)

where the overlap integrals Q(1)
phkm and Q

(2)
phkm are, in general, frequency dependent, and are

expressed as:

Q
(1)
phkm(ω) =

ε20c
2n2

co

∫ ∫
(e∗p(x, y, ω) · em(x, y, ω))(ek(x, y, ω) · e∗h(x, y, ω))dxdy

12Np(ω)Nh(ω)Nk(ω)Nm(ω)
(2.55a)

Q
(2)
phkm(ω) =

ε20c
2n2

co

∫ ∫
(e∗p(x, y, ω) · e∗h(x, y, ω))(em(x, y, ω) · ek(x, y, ω))dxdy

12Np(ω)Nh(ω)Nk(ω)Nm(ω)
(2.55b)
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where Nj(ω) is the mode normalization constant defined as:

∫ ∫
(ej(x, y, ω)× h∗

k(x, y, ω)) · ẑdxdy = 2δjkN
2
j (ω) (2.56)

Eq. 2.52 is the full GMMNLSE that includes Kerr and Raman nonlinearities as well as

higher order dispersion terms up to an arbitrary order. Self-steepening terms were neglected as

we do not work with ultrashort pulses and only focus on nanosecond pulses in this thesis. We now

further simplify Eq. 2.52 by making the following assumptions that apply for the experiments

that we report in Chapter 4:

• Firstly, we neglect the contribution by stimulated Raman scattering as we work with very

short (∼ 1 m long) fibers and nanosecond pulses with peak powers below ∼ 15 − 20 kW.

This amounts to setting fR = 0 in Eq. 2.50.

• Because we work in a regime where the output optical spectra that we report in Chapter 4

remain narrow and the majority of the power remains at the input laser frequency ω0, we

evaluate the modal field profiles ej as well as the overlap coefficients Q
(1)
phkm and Q

(2)
phkm

only at ω0.

• We also limit our discussion to the second order Taylor coefficient of dispersion β
(p)
2 as we

operate far from the zero dispersion wavelength of our fiber [11].

• And finally, we adopt the following mode normalization:

∫ ∫
|ep(x, y)|2dxdy = 1 (2.57)
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where we follow the dot product convention for a general 3 dimensional vector with com-

plex components v:

|v|2 = v∗ · v = |vx|2 + |vy|2 + |vz|2 (2.58)

With this mode normalization, the instantaneous optical power (in Watts) in the pth mode

at some position z along the fiber is given by:

PWp(z, t) =
neff,pcε0

2
|Ap(z, t)|2 (2.59)

where we denote optical power by PW to avoid confusion with the notation for the induced

polarization P from Section 2.3.2.1. Note that the relation in Eq. 2.59 is different from what is

typically used in literature and in SMF NLFO, where the instantaneous power is given simply by

|Ap(z, t)|2. This is a result of the way in which we have chosen to normalize the spatial modes in

Eq. 2.57. Either picture is equally correct so long as the mode normalization and the expression

for instantaneous power are consistent with each other.

We now rewrite the simplified GMMNLSEs that we use for the remainder of this thesis,

based on the aforementioned simplifications:

∂zAp(z, t) = i
(
β
(p)
0 + iδβ

(p)
1 ∂t −

β
(p)
2

2
∂2
t

)
Ap(z, t) + i

n2ω0

c
NphkmA

∗
hAkAm (2.60)

where δβ
(p)
1 = β

(p)
1 − β

(1)
1 . The nonlinear term Nphkm is now given by:
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Nphkm =
2

3

∫ ∫
(e∗p · em)(ek · e∗h)dxdy +

1

3

∫ ∫
(e∗p · e∗h)(ek · em)dxdy (2.61)

where, as mentioned before, ej are now assumed to not depend on ω.

We now discuss the significance of the various terms that emerge from NphkmA
∗
hAkAm,

before concluding the chapter with a note on numerically solving the GMMLSEs Eqs. 2.52 and

2.60.

2.3.2.4 Self-Phase Modulation

We first examine the role of the NphkmA
∗
hAkAm terms that take the shape |Ap|2Ap. In

order to understand the significance of the |Ap|2Ap terms, it is helpful to consider the single

mode propagation regime. For the purpose of this illustration, we also assume that the pulse has a

narrow bandwidth so as to allow us to neglect cross-coupling terms between different frequencies.

The NLSE including Kerr nonlinear effects then reduces to:

∂zA = −i
β2

2
∂2
tA(z, t) + i

n2ω0

cAeff

|A|2A (2.62)

where Aeff refers to the effective area of the single spatial mode, and is simply the inverse

of Nphkm for p = h = k = m. To see the effect of |A|2A term, let us neglect for a moment the

β2 term. That leaves us with:

∂zA = i
n2ω0

cAeff

|A|2A (2.63)

This equation can be solved analytically upon recognizing that |A|2(z, t) is a constant as a
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function of z. This can be shown by calculating the derivative d
dz
|A|2 and seeing that it is equal

to 0. The analytical solution to the single mode NLSE above then simply becomes:

A(z, t) = A(0, t)eiγ|A|2z (2.64)

where γ = n2ω0

cAeff
. As the solution shows, the |A|2A term results in a phase modulation of

A(z, t). In other words, the pulse modulates its own phase – as a result of the nonlinear response

of the material – as it propagates through the fiber. This is known as ‘self phase modulation’

(SPM).

SPM has the effect of introducing a chirp in the pulse. This is seen by recognizing that

|A|2(t) is time-varying for non-square pulses. As a result, the pulse at some position z acquires a

time-dependent phase given by Γ(t) = γ|A|2(t)z. The total phase of the pulse, upon adding the

contributions from the ei(ω0t−βz) term that we factored out becomes:

Φ(t) = Γ(t) + ω0t− βz (2.65)

The instantaneous frequency is then given by the time derivative of the phase. This yields:

Ω(t) = ∂tΦ(t) = ω0 + ∂tΓ(t) (2.66)

Unless the pulse has a shape such that ∂tΓ(t) ∝ ∂t|A|2(t) = 0, this result shows that SPM

has the effect of not only chirping the pulse in the time domain, but also that of adding new fre-

quencies in the spectral domain. It is worth emphasizing that the additional frequencies generated

due to SPM are only generated because the nonlinear coefficient of the material n2 ̸= 0. Also, the
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additional frequencies generated due to nonlinearity are dependent upon the instantaneous power

given by PW (t) ∝ |A|2(t), where, as before, we denote the power in the signal by PW . This

dependence on power is a signature of all nonlinear effects, including SPM.

2.3.2.5 Cross-Phase Modulation

Having discussed the effect of SPM arising from the |Ap|2Ap terms in the NLSE, we now

examine the role of |Ah|2Ap terms where h ̸= p. Similar to the SPM terms, the |Ah|2Ap terms

result in a phase modulation of Ap. However, in this case, the modulating phase is given by:

Γp(t) = 2γ′|Ah|2(t)z (2.67)

where γ′ = n2ω0

c
Nhhpp, and the multiplicative factor 2 arises from the fact that multiple

combinations of phkm can yield to the same Nphkm values as well as to |Ah|2Ap terms. Here,

because the phase of one spatial mode is modulated by the power in a different mode, this phe-

nomenon is known as ‘intermodal cross phase modulation’, or simply ‘cross phase modulation’

(XPM). Note that a similar effect also occurs between two co-propagating beams that are at dif-

ferent frequencies or in orthogonal polarization states, for example in SMFs [11].

It is also worth noting that intermodal XPM cannot lead to the exchange of energy between

two modes because of the same arguments as we used in the SPM case – namely that d
dz
|A|2p can

still be shown to be equal to 0.

58



2.3.2.6 Intermodal and Intramodal Four Wave Mixing

All other terms remaining in the NLSE that do not take the form of SPM or XPM terms are

commonly referred to as “four wave mixing” (FWM) terms. This is because these terms can lead

to the interaction of 4 potentially different waves through the NphkmA
∗
hAkAm terms. Unlike the

SPM and XPM terms, however, FWM terms can lead to the exchange of energy between different

spatial modes.

FWM terms can take the form, in the NLSE for ∂zAp, of A∗
hAkAm where h ̸= k ̸= m,

or more commonly, A∗
pA

2
h where h ̸= p. In the presence of such terms, it can be shown that

d
dz
|A|2p ̸= 0, meaning that energy can flow out of or into the interacting modes from or to other

modes.

In order to see the conditions under which FWM terms lead to exchange of energy, it is

useful to perform the variable substitution Ap(z, t) → Ap(z, t)e
iβ

(p)
0 z. We will not dwell on the

derivation here, but the nonlinear terms in the NLSEs Eq. 2.60 can be shown to then take the

form NphkmA
∗
hAkAme

i∆βphkmz [62], where the ∆βphkm is referred to as the ‘phase mismatch’

and is given by:

∆βphkm = β
(k)
0 + β

(m)
0 − β

(p)
0 − β

(h)
0 (2.68)

For some ∆βphkm ̸= 0, there is “beat length” for the nonlinear FWM term that is given

by 1/∆βphkm. If the propagation length z is such that ∆βphkmz ≫ 1, then the ei∆βphkmz term

amounts to a rapidly varying phase term that averages out to 0. In other words, the A∗
hAkAm term

corresponding to that ∆βphkm is not phase matched.
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Note that in reality, the phase mismatch term is more accurately given by:

∆βphkm = β
(k)
0 + β

(m)
0 − β

(p)
0 − β

(h)
0 +∆βNL (2.69)

where the term ∆βNL accounts for the fact that all the β
(p)
0 s are usually calculated in the

low power regime, but at higher powers the index profile of the fiber itself – and by extension

the propagation constants of the modes that it supports – is modified by the nonlinearity via the

intensity-dependent index change discussed in Section 2.3.2.2. However, in most cases, this term

can be neglected at either low input powers or if the resulting change in propagation constants

for all 4 modes cancel out.

Note that in the above, we have assumed that we are working with long optical pulses that

are spectrally narrow. In such a case, all the FWM processes involve multiple spatial modes.

This is known as ‘inter-modal four wave mixing’ (IMFWM). In the presence of spectrally broad

pulses, however, FWM processes can occur all within one spatial mode but involve different

frequencies, or with different frequencies from different spatial modes. In such as case, the

FWM process needs to be matched in phase as well as energy, requiring:

ω1 + ω2 − ω3 − ω4 = 0 (2.70a)

∆β = β0(ω1) + β0(ω2)− β0(ω3)− β0(ω4) + ∆βNL = 0 (2.70b)

where we adopt a simple numbering of the 4 waves involved, to avoid confusion with the

phkm notation that we have thus far used for spatial modes all at the same frequency.
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Within the scope of this thesis, we do not focus on this type of intramodal + intermodal

FWM, as we work with spectrally narrow pulses, but References [63,64] are recommended read-

ings on this subject.

2.3.2.7 Raman Scattering

Although we do not investigate nonlinear phenomena in this work in a regime where the

Raman terms play a significant role, it is worthwhile to discuss it here nevertheless. When a

photon is incident on a molecule in a given propagation medium, the molecule can scatter the

photon in an inelastic manner – i.e. in a manner that does not conserve the energy of the photon.

This results in the photon that emerges from the collision to have a lower energy (equivalently,

frequency) as compared to the incident photon. This process is known as Raman scattering.

As we mentioned in Sections 2.3.2.1 and 2.3.2.3, this process is modeled by the delayed

Raman response function h(t). By its inelastic nature, Raman scattering is a dissipative process.

It has been demonstrated that Raman scattering is at the core of many nonlinear phenomena,

for example single mode and multimode Raman solitons [65, 66] and Raman beam cleanup in

parabolic GRIN fibers [67].

2.3.3 Tools for Solving the NLSEs

Numerically solving the coupled NLSEs Eqs. 2.52 or 2.60 can be greatly useful in gain-

ing insight into the many complex processes that are allowed by the equations. For the work

presented in this thesis, we have developed and adopted a numerical code that can solve for

the spatial modes of a fiber with any given refractive index profile, and simulate the nonlinear
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propagation by solving Eqs. 2.60 using the well-known split-step Fourier method (SSFM). Open

source code packages for SSFM are available [68].

SSFM involves integrating half a step of the linear terms in the frequency domain, then

performing a Fourier transform and integrating the nonlinear terms in the time domain, then

performing an inverse Fourier transform and integrating another half a step of the linear terms

in the frequency domain. Because of the availability of numerical Fourier transform algorithms

using the discrete Fourier transform (DFT) on most programming platforms including Python

and MATLAB®, such as the fast Fourier transform (FFT) algorithm, the SSFM is a very efficient

method when working with a small number of modes (∼ 1-30).

In the presence of higher number of modes, the number of cross-coupling terms scales as

the 4th power of the number of modes. This is because the nonlinear coupling terms in Eqs.

2.52 contain 4 indices. In such cases, it becomes computationally advantageous to simulate the

nonlinear propagation using the (3+1)D GNLSE involving the full 3-dimensional electric field

vector (discussed, for example, in [17]). Note that solving the (3+1)D equation is also most useful

when working with spectrally broad pulses. In the modal equations, one has to solve for modes

as various different frequencies and calculate cross-coupling terms for all possible combinations

of spatial modes and frequencies. This is avoided by simply solving for the nonlinear evolution

of the full (3+1)D electric field and resolving for modes as needed at the end of the propagation.

In other cases, however, when the number of spatial modes present is large but the optical

spectrum is not necessarily broad, it can still be helpful to solve the coupled NLSEs in an efficient

manner. This is useful, for example, in simulating the Kerr-induced beam cleanup effect reported

in References [14, 15]. For such use cases, a GMMNLSE solver based on a Massively Parallel

Algorithm has been reported in Reference [69] and is publicly available.
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Chapter 3: Time-Domain Interference Patterns of Nonlinearly Interacting LP0m

Modes of a Parabolic GRIN MMF

3.1 (Re-)motivation

As we mentioned in Chapter 1, one of the main objectives of our research has been to

probe the interactions between a small number of spatial modes. There continue to be a number

of research efforts across the globe that continue to examine the “macroscopic” thermodynamic

effects involving a large number of modes, but one of the deliberate choices that we have made

throughout the course of our work has been to ask the more fundamental questions: can we

experimentally verify and validate the basic theory underlying this research field? Can we pro-

duce experimental measurements that can be directly – and at times quantitatively and not just

qualitatively – compared with numerical simulations and analytical predictions? Are there new

physical nonlinear phenomena that are unique to multimode fibers that we can observe even in

the presence of a small number of modes? Can we design controlled experiments that help us

better understand the effects of each of the terms in GMMNLSEs Eqs. 2.60?

Of course, as is true with a good part of research in the optical sciences, a lot of what we

have done has also been quite exploratory. But these questions have served as useful guiding

principles for us in determining the types of experiments in which we are interested. This could
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also serve as a valuable perspective for the reader with which to analyze the work presented in

Chapters 3-7.

3.2 Chapter Overview

Having established the theoretical framework and numerical tools for understanding spa-

tiotemporal nonlinear optical effects occurring in multimode fibers in Chapter 2, in this and the

next few chapters, we will describe our work on experimental investigation of power-dependent

spatiotemporal effects in the three types of fibers that we alluded to in Chapter 2: parabolic GRIN

MMF, step-index FMF and hollow RCF.

In this chapter, we discuss our very first experiments that involved nonlinearly interacting

radially symmetric LP0m modes of a parabolic GRIN fiber. We first write down the coupled

NLSEs, based upon the GMMNLSEs that we developed in Section 2.3.2.3, and discuss our ex-

perimental methodology. As we will see in Chapter 4, this experiment laid the foundation for the

novel tools that we developed for subsequent experiments. In some sense, therefore, the short-

comings of the experiments reported in this chapter serve as motivation for the improved version

of our experiment that we discuss in Chapter 4. Having outlined the theory and the experimen-

tal methodology, we then conclude the chapter by comparing numerical simulation results with

experimental findings.

3.3 Coupled NLSEs

One of the first questions that we asked for our first experiment was: what is the easiest way

to excite a combination of spatial modes in an MMF in such a way that the mode superposition
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can be controlled to some degree? The answer was to work with the radially symmetric LP0m

modes of the fiber, as a combination of these can be excited by aligning the axis of the fiber’s

input end-face with that of a focused Gaussian laser beam. The mode superposition is controlled

by adjusting the spot size of the free-space beam, i.e. by controlling the focal length of the

focusing lens.

Note: Although we use the LP mode notation to denote the radially symmetric modes that

we describe in Chapters 3 and 4, we reiterate that for l = 0, the LP modes are completely

equivalent to the hybrid modes denoted by HE and EH modes (see Table 2.1). It is only for

l ̸= 0 that, as we discussed in Chapter 2, the LP modes are not true propagation modes of

the fiber. Our choice to use the LP0m mode notation here, as opposed to the fully equivalent

HE1m notation, is purely for convenience and for denoting the fact that we work with linear

polarized light throughout the experiments and analysis.

In order to get a sense for what we should expect to see when we excite a combination of

the radially symmetric LP0m modes in a parabolic GRIN fiber, we revisit the coupled NLSEs first

in the linear domain and then in the nonlinear domain. In the absence of any nonlinearity, i.e. at

low input powers, we neglect the nonlinear Nphkm terms in Eqs. 2.60 to get:

∂zAp(z, t) = i
(
δβ

(p)
0 + iδβ

(p)
1 ∂t −

β
(p)
2

2
∂2
t

)
Ap(z, t) (3.1)

The δβ
(p)
1 term represents DGD. In the presence of multiple co-propagating spatial modes,

it models the temporal broadening of a pulse arising from DGD. The β
(p)
2 term represents group

velocity dispersion (GVD), and it changes the phase of each spectral component present in the

initial optical pulse. Although this term does not by itself modify the pulse spectrum, it often

leads to the temporal broadening of pulses. The remaining first terms in the equations represent
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propagation constant mismatch between the modes. For any arbitrary number of spatial modes

propagating in a parabolic GRIN fiber, the (approximately) uniform spacing of modal propagation

constants shown in Fig. 2.4 leads to the spatial profile exhibiting a periodic oscillation in its

spatial profile along the z direction. This is illustrated in Fig. 3.1. The periodicity of this self-

imaging phenomenon is given by the self-imaging distance zsi = πa√
2∆

. As mentioned previously,

this self-imaging phenomenon has been shown to lead to unique nonlinear phenomena such as the

geometric parametric instability, where the self-imaging effect leads to a Kerr-induced refractive

index grating along the z direction [17].

z
2a

L
f  ~ mm

z
si � ��ʌ�įȕ

0
(p)

Figure 3.1: Illustration of the self-imaging effect in a parabolic GRIN fiber. For conditions in
which all terms in the coupled NLSEs except for the propagation constant mismatch terms can
be neglected, the spatial beam pattern exhibits a periodic oscillation along z.

As before, we perform the variable transformation:

A′
p(z, t) = Ap(z, t)e

−iβ
(p)
0 z (3.2)

The GMMNLSEs can then be rewritten as:
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∂zA
′
p = (−δβ

(p)
1 ∂t − i

β
(p)
2

2
∂2
t )A

′
p + i

n2ω0

c
NphkmA

′∗
hA

′
kA

′
me

i∆βphkm (3.3)

where, as before, ∆βphkm = β
(k)
0 + β

(m)
0 − β

(p)
0 − β

(h)
0 . For an input mode combination

that consists of only the LP0m modes, the surviving terms are the ones for which ∆βphkm = 0

(phase matching) as well as Nphkm ̸= 0. Upon imposing the resulting selection rules, we obtain

the following coupled NLSEs:

∂zA
′
p = (−δβ

(p)
1 ∂t − i

β
(p)
2

2
∂2
t )A

′
p + i

n2ω0

c
(Npppp|A′

p|2 + 2
∑
h̸=p

Npphh|A′
h|2)A′

p (3.4)

Note that the uniform spacing of the propagation constants can sometimes phase match

other terms as well, however, it is worth reiterating that the spacing of propagation constants is

only approximate. A more exact calculation reveals that the spacing is non-uniform, and FWM

terms “average out” if the product ∆βphkmz ≫ 1. For our experimental parameters, we found

this to be true.

The resulting coupled equations, Eqs. 3.4, consist of only the SPM and XPM terms. This

can be shown to mean that d
dz
|Ap|2 = 0 – in other words, there is no permanent energy exchange

between the spatial modes. Furthermore, we can momentarily neglect the δβ
(p)
1 and β

(p)
2 terms to

write down a simple analytical solution. This is justified for our experimental parameters as we

work with short fiber lengths and long pulses – a regime in which the effects of DGD and GVD

are minimal [11]. Specifically, the dispersion length can be estimated as:
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LD = T 2
0 /|β2| (3.5)

where T0 is the width of the optical pulse, and we have dropped the index p from the

modal GVD parameter as all modes in this fiber have approximately equal β2. (This can be

seen from differentiating Eq. 2.30 twice with respect to frequency ω.) For our fiber modes, we

find that β2 ≈ −27.95 fs2/mm. For a pulse width T0 ≈ 2 ns, LD evaluates to the order of 108

meters, which is much larger than the fiber length Lf ≈ 40 m. In other words, the impact of

the β
(p)
2 terms can be neglected. Similarly, the temporal spread arising from DGD, estimated as

δβ
(p)
1 Lf , evaluates to ≈ 1 ps, which is much smaller than the width of the optical pulse used in

our experiments, which is ≈ 2 ns.

With these simplifications, the analytical solution is given as:

A′
p(z, t) = A′

p(0, t)e
iΓp(t)z (3.6)

In terms of Ap(z, t), we have:

Ap(z, t) = Ap(0, t)e
iβ

(p)
0 zeiΓp(t)z (3.7)

where:

Γp(t) =
n2ω0

c
(Npppp|Ap|2 + 2

∑
h̸=p

Npphh|Ah|2) (3.8)

The modes therefore acquire a nonlinear phase shift that is proportional to the square mag-

nitudes of the pulse amplitudes. More specifically, each mode acquires a different nonlinear phase
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shift that is determined by the input power distribution in the modes and the different Npppp and

Npphh parameters. In Fig. 3.2, we illustrate an example result of a spatiotemporal overlap of two

modes. We show what the on-axis pulse might look like for two spatially overlapping modes that

have acquired different nonlinear phase shifts. The instantaneous phase with which the pulses

interfere varies with time, resulting in time-domain fringes.
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Figure 3.2: Illustration of the creation of time-domain interference fringes arising from differen-
tial nonlinear chirps acquired by overlapping spatial modes in a parabolic GRIN fiber. We show
an example case for two overlapping LP0m modes. The inset images show the numerically cal-
culated mode intensity profiles. The instantaneous phase with which the pulses in the two modes
overlap varies with time, resulting in the time dependence.

3.4 What Does ‘Spatiotemporal’ Mean?

In order to better appreciate the spatiotemporal nature of this phenomenon, it is helpful

to write down the expression for the full spatiotemporal field profile emerging from the fiber

using Eq. 2.51. Upon dropping the eiω0t term from Eq. 2.51 for simplicity, and upon using the

transverse mode profile functions for LP modes ex,p(x, y) = Ψp from Section 2.2.5, we have:

E(x, y, z, t) =
∑
p

Ψp(x, y)Ap(z, t) (3.9)
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Upon using the analytical solution Ap(z, t) from Eq. 3.7, we can rewrite this equation as:

E(x, y, z, t) =
∑
p

Ψp(x, y)Ap(0, t)e
iβ

(p)
0 zeiΓp(t)z (3.10a)

E(x, y, z, t) =
∑
p

Ψp(x, y)
√
ηpA0(t)e

iβ
(p)
0 zeiΓp(t)z (3.10b)

where A0(t) describes the input pulse amplitude of the free-space beam that we launch into

the fiber and ηp represents the fraction of the overall power that is launched into the pth spatial

mode. In other words:

Ap(z = 0, t) =
√
ηpA0(t) (3.11)

Notice that in the absence of the nonlinear term, i.e. if Γp = 0, the terms on the right hand

side of Eqs. 3.10 can be separated into spatial and temporal parts as E = A0(t)(
∑

pΨp(x, y)
√
ηpe

iβ
(p)
0 z).

In other words, the spatial pattern does not depend upon time, and the temporal shape is indepen-

dent of the spatial coordinates.

However, this separation is not possible when Γp ̸= 0. The A0(t) can of course still be fac-

tored out, but the remaining terms in the summation would still depend upon all four coordinates:

x, y, z as well as t. That is to say that the spatial pattern depends upon time, and the temporal

shape of the pulse depends upon where in the transverse coordinates the pulse is measured. This

intermingling of spatial and temporal coordinates is unique to multimode fiber nonlinear optics,

and is at the heart of what causes these effects to be spatiotemporal.

In the following section, we discuss the results of our experiments that conclusively demon-
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strate this spatiotemporal nature.

3.5 Experiments

In Fig. 3.3(a), we show a simplified schematic of our experimental setup. For our initial

experiments, we used a fiber-based master oscillator power amplifier (MOPA) laser manufactured

by NuPhoton®. The laser generated ∼ 2 ns optical pulses at 1550 nm with energies in the order

of µJ, i.e. peak powers of the order of kW. The Gaussian laser beam is focused onto the input

end-face of a 2a = 62.5 µm parabolic GRIN fiber with a spot size of approximately 49 µm. The

fiber’s input end-face was placed on a translation stage to allow for fine-tuning of the relative

displacement between the fiber axis and the incident Gaussian beam. Upon careful alignment,

the beam was aligned to be incident on-axis, which is expected to excite a combination of 9 LP0m

with the power distribution shown in Fig. 3.3(c).
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Figure 3.3: (a) Experimental setup for measuring time-domain interference fringes arising from
nonlinearly interacting LP0m modes of a parabolic GRIN fiber. (b) (Blue) time-domain measure-
ment of the optical pulse launched into the fiber, (Red) parabolic fit. (c) Calculated launch modal
powers of the combination of LP0m modes.
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At the output end of the MMF, we sampled the output spatiotemporal profile at various

lateral displacements x by using a lensed fiber that has a collection spot size of ≈ 2.5 µm.

We translate the lensed fiber across the MMF’s output end-face to measured the time domain

waveform at various values of x using a high bandwidth sampling oscilloscope.

3.6 Results and Discussion

As we discussed before, we can make the following predictions based on Eq. 3.10:

1. The measured temporal pulse profile would depend upon the transverse coordinates x and

y

2. Equivalently, the spatial intensity pattern varies with time t

In Fig. 3.4, we demonstrate the variation of the measured pulse profile with the transverse

coordinates. The pulse emerging from the fiber was sampled at various values of x, for input

pulse energies of ≈ 5.2 µJ, corresponding to a peak power of ≈ 4kW, for two cases of fiber

lengths, 20 and 40 meters.

Firstly, these measurements demonstrate the spatial variation of the pulse shape, as pre-

dicted by Eq. 3.10. For the Lf = 20 m case, for example, the pulse at x = 0 shows distinct

temporal fringes with a significant fringe depth, while the pulse measured at, say, x = 3.84 µm

do not show strong fringes. Secondly, at longer lengths of fiber, because of higher accumulated

nonlinearity, we expect to see more temporal fringes. This is seen in Fig.3.4(b). And finally,

for both fiber lengths, Fig. 3.4 shows a broad agreement of numerical simulations and experi-

mental observations. Note that the numerical simulations presented here also included the δβ
(p)
1
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Figure 3.4: Experimental observations and numerical simulations of time-domain interference
arising from nonlinearly interacting LP0m modes of a parabolic GRIN fiber. (a) Simulations
(top) and experimental measurements (bottom) for fiber length Lf = 20 m. (b) Simulations (top)
and experimental measurements (bottom) for fiber length Lf = 40 m. In both cases, the optical
pulse emerging from the fiber is sampled at different x, and the pulse amplitudes are normalized
to the peak of the pulse at x = 0. Input pulse energy for both cases is ≈ 5.2 µJ.

and β
(p)
2 terms in the NLSEs. The temporal pulse shape used in the simulations corresponds

to a transform-limited parabolic pulse fit of the experimentally measured optical pulse exiting

the laser source, although the laser likely produced chirped pulses resulting from the fact that it

consisted of a few meters of a fiber amplifier.

With these initial experiments, we were able to definitively prove the first of the aforemen-

tioned predictions made by Eq. 3.10. The second prediction follows automatically, because a

spatial variation of the local time-domain pulse shape is equivalent to a temporal variation of the

spatial pattern. However, the shortcomings of our measurements did not allow us to demonstrate

this temporal variation in an elegant enough manner.

73



Additionally, the laser that we used produced pulses that did not seem to be fully transform-

limited, and consisted of a short gain-switching peak as shown in Fig. 3.3(b). This resulted

from the fact that the device consisted of a long ∼ 1 m section of erbium-doped fiber amplifier

followed by a single mode fiber before the beam emerged into free space, which would have

caused nonlinear chirping and distortion of the pulse.

Another shortcoming of these experiments relate to the mode excitation. Although we

could adjust the mode excitation by adjusting the spot size, this method still only provides fairly

limited control on what modes are excited. Ideally, in order to study the nonlinear interactions

between individual modes, we require a method to control the modes excited in a fiber.

We address all of these issues in the experiments presented in Chapter 4, where we demon-

strate the first reported complete spatiotemporal intensity measurements of multimodal nonlin-

earity.

3.7 Summary

In conclusion, in this chapter we discussed the coupled NLSEs for a combination of LP0m

modes of a parabolic index MMF, and used the analytical solutions to predict a spatiotemporal

nonlinear effect that would result in time domain interference fringes. This type of phenomenon

does not have an analog in SMF systems where all frequencies and polarizations reside in a single

spatial mode.

We demonstrated broad qualitative agreement between numerical simulation results and

experimental observations. At high input powers, the pulse profile emerging from the fiber was

shown to vary depending upon the spatial location of sampling, and the number of time-domain
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interference fringes was shown to increase at longer lengths of fiber.

Although this experimental study demonstrated the spatiotemporal nature of multimodal

nonlinearity, even in the presence of a small number of modes, this version of the experiment

also has many limitations. In Chapter 4, we discuss a similar phenomenon occurring in a step-

index FMF – except that we are able to exercise much more control over the mode excitation,

and also perform spatially resolved measurements with a much higher spatial resolution.
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Chapter 4: Spatiotemporal Characterization of Nonlinear Intermodal Interfer-

ence in a Step-Index FMF

4.1 Chapter Overview

In Chapter 3, we discussed the phenomenon of time domain fringes observed at the output

of a multimode fiber that consists of nonlinearly interacting spatial modes. We also identified nu-

merous shortcomings of our initial experiments, and in this chapter, we address these shortcom-

ings and analyze the spatiotemporal measurements of multimodal nonlinearity that we reported

in Reference [62].

In Section 4.2, we first discuss the problem of selectively and controllably exciting a small

number of spatial modes. We present a unique technique that we developed that involves the

direct etching of a phase mask onto the input end-face of a fiber using focused ion beam (FIB)

milling. With this technique, we excite a combination of two spatial modes in a step-index FMF

with a core diameter of 2a = 20 µm. This fiber was chosen not only for its small number of

spatial modes, but also because nonlinear optics in FMFs is expected to be of interest for mode

division multiplexing (MDM) applications.

We then briefly revisit the coupled NLSEs before describing the spatiotemporal character-

ization tool that we have developed. In short, this technique consists of programmatically scan-
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ning the output end-face of a FMF/MMF using a near-field scanning optical microscopy (NSOM)

probe, and recording the time-domain waveform at each pixel. Using this data, we reconstruct

the spatiotemporal nonlinear evolution of the pulse exiting the fiber.

4.2 Selective Mode Excitation

One of the shortcomings of our experiments reported in Chapter 3 was the lack of control

over the modes excited in the fiber. Although tuning the spot size of the laser beam incident on the

fiber’s input end-face can tune the modal power distribution to some degree, the level of control

that it gives is still quite minimal. For example, if we wanted to excite a mode combination of

just two specific modes and not others, or if we wanted to excite just one higher order mode

selectively, that is not impossible to do by simply adjusting the spot size of input Gaussian beam.

As mentioned above, for the work reported in this chapter, we use a step-index FMF with a

core diameter 2a = 20 µm. We discussed the spatial modes in this fiber, in the LP basis, in Fig.

2.3. The fiber supports 17 spatial modes per polarization at our laser wavelength of λ0 = 1064

nm, out of which three are radially symmetric modes. For the phenomenon that we observe in

this chapter too, we focus exclusively on the radially symmetric modes.

In Fig. 4.1(a), we show the numerically calculated coupling efficiencies to the three radially

symmetric LP0m modes as a function of the input beam radius for an axially aligned Gaussian

illumination on the input end-face. As the plot shows, for any spot radius < a, where a is the core

radius, it is not possible to excite a combination of two modes with roughly equal powers without

also launching significant power in the third. It is also not possible to excite a higher order mode,

say the LP03 mode, selectively.
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Note: Although we use the LP mode notation to denote the radially symmetric modes that

we describe in Chapters 3 and 4, we reiterate that for l = 0, the LP modes are completely

equivalent to the hybrid modes denoted by HE and EH modes (see Table 2.1). It is only for

l ̸= 0 that, as we discussed in Chapter 2, the LP modes are not true propagation modes of

the fiber. Our choice to use the LP0m mode notation here, as opposed to the fully equivalent

HE1m notation, is purely for convenience and for denoting the fact that we work with linear

polarized light throughout these experiments and analysis.
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Figure 4.1: (a) Modal coupling efficiencies to the three LP0m modes of the step-index FMF as a
function of input Gaussian beam spot radius. (b) Illustration of direct phase mask etching using
a focused beam of Ga+ ions (FIB milling).

In order to excite a desired mode combination selectively, several methods exist and have

been reported in the literature. Phase-only spatial light modulators (SLMs) are by far the most

commonly used devices for this purpose [20, 70]. However, the drawback of using SLMs lies in

their bulky nature and their difficulty in alignment. Additionally, SLMs based on liquid crystals

are prone to damage under high fluence illumination that is typical for nonlinear optical experi-

ments. Free-space devices such as SLMs can also suffer from significant insertion losses, which
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can be a hindrance for nonlinear optical experiments. For spatial modes that carry OAM, fork

grating patterns, spiral phase plates and q-plates have been used [71, 72]. However, such meth-

ods typically suffer from high coupling losses, and are often not applicable for exciting linearly

polarized Gaussian-like modes in a fiber.

The method that we employ in this work involves the direct etching of a phase mask onto

the fiber input end-face. Our technique has been inspired by a thin-film deposition technique

reported in Reference [73]. We differ from the method presented therein, however, in that we

etch a phase mask directly onto the input end-face of the fiber, whereas the method suggested

in Reference [73] consists of depositing a thin-film grating with film thickness and transparency

appropriately chosen to achieve the desired transmissivity. There exist a variety of fabrication

methods that can be used for patterning the end-face of a fiber, such as e-beam lithography, thin-

film deposition, photolithography and nano-imprinting [74]. We adopt a focused ion beam (FIB)

milling technique instead, as it is a convenient prototyping tool that allows for rapid fabrication

of multiple samples, each with arbitrary numerically designed shapes.

Fig. 4.1(b) shows a schematic of the FIB milling process. The focused beam of accelerated

(30kV) Ga+ ions removes SiO2 from the fiber’s metal-coated (Au:Pd alloy) input end-face. The

metal coating ensures that there is no charge accumulation on the fiber end-face, which can

significantly impact the quality of the mill. The ion beam has a focused spot size of approximately

90 nm. The removal of SiO2 imparts a phase difference between parts of the incoming near-field

light beam that propagate through the milled portion and outside the milled portion. Appendix

A provides further information on the fabrication process. For a simple disc-shaped mill pattern,

the phase mask profile can be expressed as follows in terms of the mill depth dm and mill radius

rm:
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Θ(r) =


(nco − 1)ω0

c
dm, for r ≤ rm

0, for r > rm

(4.1)

Further discussion on the FIB fabrication process is provided in Appendix A. With this

phase mask etched onto the fiber, the modal coupling efficiencies of the pth mode is given as:

ηp =

∣∣∣∫ Φ(r)eiΘ(r,ϕ)Ψp(r, ϕ)dA
∣∣∣2∫

|Φ(r)|2 dA
∫
|Ψp(r, ϕ)|2 dA

(4.2)

where Φ(r) denotes the transverse electric field profile of the focused Gaussian laser beam,

and Ψp(r, ϕ) denotes the modal profile of the pth spatial mode, and is given by Eq. 2.19. Fig.

4.2(a) shows a 3-dimensional graphic of a phase mask design Θ(r, ϕ) that, when etched onto

the fiber’s input end-face, can excite the higher order LP03 mode of the fiber selectively. This

is shown in the plot of modal coupling efficiencies calculated using Eq. 4.2, in Fig. 4.2(b). A

comparison with Fig. 4.1(a) reveals that this was not possible without the use of a phase mask.

We emphasize here that Eq. 4.2 for any arbitrary phase mask profile Θ(r, ϕ), but we focus on a

simple binary phase mask that is circularly symmetric so as to simplify the fabrication process.

Fig. 4.2(c) shows the phase mask of interest for the work presented in this chapter. As

the modal coupling efficiency plot in Fig. 4.2(d) shows, for an input beam radius above 7 µm,

it is possible to excite a combination of the LP01 and LP02 modes with comparable amplitudes,

while excluding the LP03 mode. This, too, was not possible without the use of a phase mask as

evidenced by the plot in Fig. 4.1(a). Although more complex phase mask designs might provide

better overall efficiency and better extinction of the LP03 mode, for the purposes of this work, we

adopted a simple phase mask design so as to ensure ease of repeatability. It is worth pointing out
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that unlike other planar lithographic techniques that are inherently binary, the FIB technique does

not constrain the masks to a piecewise uniform etch depth. In other words, the FIB technique is

in principle capable of producing smooth variations in the mill pattern. However, binary patterns

are easier to control and calibrate. For the remainder of this chapter, we adopt the phase mask

shown in Fig. 4.2(c).
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Figure 4.2: (a) 3-dimensional graphic representing the shape Θ(r) of an example FIB-milled
phase mask design that can excite the LP03 mode selectively. The bounds of the graphic shown
denote the core boundary of the FMF. (b) Modal coupling efficiency plot (calculated) resulting
from the use of the phase mask described in part (a), showing coupling efficiency for the three
LP0m modes as a function of input Gaussian beam spot radius. (c) 3-dimensional graphic repre-
senting the shape Θ(r) of an FIB-milled phase mask design that can excite a combination of the
LP01 and LP02 modes with comparable powers while ensuring no excitation of the LP03 mode.
(d) Modal coupling efficiency plot (calculated) resulting from the use of the phase mask described
in part (c), showing coupling efficiency for the three LP0m modes as a function of input Gaussian
beam spot radius.
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4.3 Modeling Bimodal Nonlinear Propagation

The co-propagation of two LP0m modes in the nonlinear regime in the FMF can be modeled

using the coupled GMMNLSEs, as we did in Section 3.3. As before, it is helpful to make the

following variable transformation:

A′
p(z, t) = Ap(z, t)e

−iβ
(p)
0 z (4.3)

where β(p)
0 represents the linear propagation constant of the pth spatial mode. The GMMNLSEs

are then given as:

∂zA
′
p = (−δβ

(p)
1 ∂t − i

β
(p)
2

2
∂2
t )A

′
p + i

n2ω0

c
NphkmA

′∗
hA

′
kA

′
me

i∆βphkm (4.4)

Upon examining the various possible Nphkm and ∆βphkm terms, we obtain the following

simplified bimodal NLSEs:

∂zA
′
1 = i

n2ω0

c
(N1111|A′

1|2 + 2N1212|A′
2|2)A′

1 (4.5a)

∂zA
′
2 = i

n2ω0

c
(N2222|A′

2|2 + 2N1212|A′
1|2)A′

2 (4.5b)

where we neglect the β
(p)
2 and δβ

(p)
1 terms as we work with long quasi-CW pulses, and the

differential group delay between the two modes is much shorter than the pulse width used in our

experiments. In other words, the dispersion length T 2
0 /|β

(p)
2 is much longer than the fiber length

Lf , and δβ
(p)
1 Lf ≪ T0, where T0 is the temporal width of the pulse. Note, however, that we
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neglect these terms only momentarily to develop an approximate analytical solution with which

to help visualize the nonlinear phenomenon, and we retain these linear terms in our numerical

simulations of the GMMNLSEs that we present in Section 4.5.

The analytical solutions to Eqs. 4.5 can be expressed as follows:

A′
1(z, t) = A′

1(0, t)e
iΓ1(t)z (4.6a)

A′
2(z, t) = A′

2(0, t)e
iΓ2(t)z (4.6b)

where we have defined Γ1(t) and Γ2(t) as:

Γ1(t) =
n2ω0

c
(N1111|A′

1|2 + 2N1212|A′
2|2) (4.7a)

Γ2(t) =
n2ω0

c
(N2222|A′

2|2 + 2N1212|A′
1|2) (4.7b)

Note that in writing Eqs. 4.7, we have utilized the fact that the modal powers remain

constant. This because the remaining terms in the NLSEs Eqs. 4.5 are the (self and cross) phase

modulation terms, as a result of which the derivative d|Ap|2
dz

= 0. The net intensity at the output of

the fiber (i.e. z = Lf , where Lf denotes the fiber length) is then given by:

I(r, ϕ, z = Lf , t) =
1

2
ncoε0c |E(r, ϕ, z = Lf , t)|2

=
1

2
ncoε0c

∣∣∣∣∣∑
p

Ψp(r, ϕ)Ap(z = Lf , t)

∣∣∣∣∣
2
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=
1

2
ncoε0c

∣∣∣∣∣∑
p

Ψp(r, ϕ)Ap(z = 0, t)eiβ
(p)
0 Lf eiΓp(t)Lf

∣∣∣∣∣
2

=
1

2
ncoε0c

∣∣∣∣∣∑
p

Ψp(r, ϕ)
√
ηpA0(t)e

iβ
(p)
0 Lf eiΓp(t)Lf

∣∣∣∣∣
2

(4.8)

where ηp represents the fraction of input power coupled into the pth mode (shown in Figs.

4.2(c) and (d)), nco is the core refractive index and A0(t) denotes the input pulse amplitude of the

free-space beam.

In the linear regime where Γp(t) = 0, the right hand side of Eqs. 4.8 can be separated

out into spatial and temporal parts by simply factoring out the A0(t). The shape of the spatial

intensity pattern at the fiber output would then be independent of time, and the pulse shape at the

output end-face of the fiber would not depend upon the spatial coordinate at which one samples

the waveform.

In the nonlinear regime, however, this separation is no longer true. This is because each

mode acquires a different Γp(t), which in turn occurs because of differences in powers in the

modes and differences in the nonlinear coefficients N1111, N2222 and N1212. Eqs. 4.8 can be

further simplified as [62]:

I(r, ϕ, z = Lf , t) =
1

2
ncoε0c|A0(t)|2

∣∣∣∣∣∑
p

Ψp(r, ϕ)
√
ηpe

iβ
(p)
0 Lf eiΓp(t)Lf

∣∣∣∣∣
2

=
1

2
ncoε0c|A0(t)|2(η1Ψ2

1 + η2Ψ
2
2 + 2

√
η1η2Ψ1Ψ2 cos(∆θNL(t))) (4.9)

where ∆θNL is given as:
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∆θNL(t) = θ0 + (Γ1(t)− Γ2(t))Lf (4.10)

The phase offset θ0 denotes the unknown relative linear phase between the two modes

at the fiber output. For a perfect fiber where the propagation constants of the two modes and

length of the fiber are accurately known, θ0 is simply equal to (β
(1)
0 − β

(2)
0 )Lf . However, in a

real experiment, neither of these numbers can be easily ascertained with the required degree of

precision (i.e. it is challenging to estimate Lf to within one beat length of the modes, which

is less than ∼ 1 mm). Furthermore, θ0 depends sensitively on the fiber length, the propagation

constants of the modes as well as the relative phase with which the two modes are excited at the

input. As a result, in order to be able to directly compare the results of Eq. 4.9 with experimental

observations, we treat θ0 as an unknown linear parameter that must be adjusted in the simulations

in order to match the experimentally observed output intensity pattern at low input power.

Because of the time dependence of the input pulse shape A0(t), the nonlinear phases Γp(t)

– and consequently ∆θNL(t) – depend on time. At high enough input powers, the peak nonlinear

phase difference between the modes approaches π, which causes the instantaneous spatial inter-

ference pattern formed by the two spatially overlapping modes to appear different at the peak of

the input pulse compared to that in the tails of the input pulse. Equivalently, the time-domain

waveform at a given transverse spatial coordinate exhibits interference fringes. As we will see in

subsequent sections, these predictions of the analytical model are validated by numerical simula-

tions using the SSFM as well as experimental observations.
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4.4 Experiments

In Section 4.2, we addressed one limitation of the initial experiments discussed in Chapter

3, relating to the ability to a desired mode combination. Another limitation of those experiments

relates to the spatial scanning at the fiber output. Although we were able to resolve the time-

domain output spatially, we did not have the capability to do so for the entire 2-dimensional output

beam with a high spatial resolution. Here, we report a new technique that we have developed that

is capable of this functionality.

For these experiments and for all experiments reported henceforth, we work with a Nd:YAG

microchip laser [75] that outputs 720 ps (FWHM) pulses at a wavelength of λ0 = 1064 nm and a

repetition rate of 1 kHz. We use a plano-convex lens of focal length f = 25.4 mm to focus down

the free-space Gaussian beam produced by the laser to a spot of radius rg = 8.4 µm onto the

input end-face of the patterned FMF. The length of the fiber used in this experiment is Lf = 1.24

m. The length has been kept short intentionally so as to minimize the impact of intermodal DGD,

and also to minimize any depolarization or linear coupling into undesired spatial modes. The

fiber was held in a roughly horizontal position across an optics workbench. The peak power of

the pulse coupled into the fiber is estimated to be ≈ 15 kW.

In order to resolve the output beam spatially as well as temporally, we employ a near-field

scanning optical microscopy (NSOM) probe that samples the output waveform evanescently.

The NSOM probe comprised of a tapered single-mode fiber with a sub-wavelength aperture. The

tapered section of the fiber was coated with metal so as to disallow coupling outside of the small

coupling aperture at the tip of the probe. We use an NSOM instead of a lensed fiber as it provides

superior spatial resolution that is not limited by diffraction. With commercially available NSOM

87



FMF
Lf = 1.24 m

SMF
Real-time

Oscilloscope

10 GHz

Laser

HWP

PBS

f = 25.4 mm

2r
m

2r
g

Core

Cladding

20
 µ

m

x

y

~ 50 cm

NSOM Tip

Ȝ0=1064 nm

0

20 µm

Milled 
region

15

-1 1
Time (ns)

0

P
 (k

W
)

(a)
(b) (c)

Figure 4.3: Experimental schematic for performing spatiotemporal measurements of multimodal
nonlinearity in a step-index FMF. (a) Scanning electron microscopy (SEM) image showing the
core + cladding of a 2a = 20 µm step-index FMF. The dark disc-shaped region at the center is the
milled phase mask region. (b) A free-space Gaussian beam is incident on the patterned FMF input
end-face. Radius of the Gaussian beam is rg = 8.4 µm. The inset plot shows the experimentally
measured time-domain profile of the input optical pulse. (c) An NSOM tip is raster-scanned
along the output end-face of the FMF, recording a time-trace at each “pixel”. HWP = half wave
plate, PBS = polarizing beam splitter.

probes, it is possible to achieve a spatial resolution of ∼ 50 nm. For comparison, magnifying

the beam before spatially resolving it (as was done in Reference [76], for example) would still be

limited by the diffraction limit of the magnifying lens. Even for a lens of high numerical aperture,

say NA = 0.75, the achievable diffraction-limited resolution is given by λ/2NA ≈ 710 nm at

our wavelength of interest, 1064 nm.

We observed in our experiments that the NSOM probes exhibit a polarization-dependence

in their collection efficiency. In these experiments, however, this does not cause a problem for our

work as we work with linearly polarized light. Care must be taken to characterize this polarization

dependency beforehand, however, when working with vector beams and modes.

Light that is coupled into the NSOM probe is guided to a 10 GHz high-speed photoreceiver,
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consisting of a transimpedance amplfier of gain 400 V/W, that is connected to a high bandwidth

33 GHz real-time oscilloscope. The time-domain waveform is measured at each “pixel” along a

2-dimensional grid of 20 µm × 20 µm that covers the entire core region of the FMF. We limited

the spatial resolution for these measurements to 400 nm to allow for rapid raster scanning while

also achieving a resolution that surpasses the diffraction limit. In order to minimize timing jitter

in the time-domain measurements, the oscilloscope was triggered by a second electrical pulse

waveform that was generated by sampling a part of the laser output and using another high-

speed photodiode (not shown in Fig. 4.3). Finally, the time-domain waveforms recorded at each

pixel were processed offline and stitched together to reconstruct the time-dependent nonlinear

evolution of the output instantaneous intensity pattern.

4.5 Results and Discussion

4.5.1 Spatially-Resolved Time Domain Waveforms

We begin our discussion first by observing the time-domain interference fringes at differ-

ent spatial locations. In Fig. 4.4, we show the experimentally measured time traces (in pink)

alongside numerically simulated ones (in green), for two example spatial coordinates: x = 0 and

x = 4.4 µm. Notice that the shape of the time-domain pulse measured at the output is different

for the two spatial coordinates, just as we predicted using our analytical model. This is the same

type of behavior that we saw in the experiments described in Chapter 3.

The on-axis pulse (both simulated and measured, shown in Fig. 4.4(a)) exhibits a local

minimum at t = 0, which is when the peak intensity of the input pulse occurs. This is a direct

result of the fact that for our experimental parameters, the peak nonlinear phase difference be-
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tween the two overlapping modes is approximately π. At the tails of the input pulse, however,

the nonlinear phase difference between the modes is much lower. This results in a time-domain

output that exhibits a “minimum” at t = 0 when sampled along the fiber axis. At a different

spatial location, such as the x = 4.4 µm plot shown in Fig. 4.4(b), the time-domain interference

pattern exhibits a different shape. This is a result of the spatial variation of the modal amplitudes

Ψp(x, y) in Eqs. 4.9.
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Figure 4.4: Spatially-resolved temporal measurements at the FMF output. Experimentally mea-
sured (pink) and numerically simulated (green) temporal pulse shape at two example spatial
coordinates: (a) x = 0, and (b) x = 4.4 µm. Input pulse peak power ≈ 15 kW. (Data originally
published in S.K. Dacha et al., Optica 7, 1796-1803 (2020) ©Optical Society of America)

The slight asymmetry observed in the numerical simulation results, shown in Fig. 4.4,

arises from the fact that we have included the β
(p)
1 DGD terms in the coupled NLSEs when

performing numerical simulations using the SSFM. The additional asymmetry observed in the

experimental data arises from the asymmetry in the input pulse itself (shown in Fig. 4.3(b)), and

likely also from experimental imperfections in the selective mode coupling described before.

Finally, we note the excellent agreement between simulation and experiment shown in

Fig. 4.4. As mentioned before, θ0 in Eq. 4.10 is treated as an unknown parameter. When
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setting a value of θ0 in order to compare simulated and experimental results, we do the following:

we measure the output spatial pattern using a CMOS camera at low input power (i.e. in the

absence of nonlinearity), and we tune θ0 in our simulations to reproduce the same output intensity

pattern (also in the linear regime, at low input power). It is worth reiterating that θ0 is only a

free parameter, and adjusting it in our simulations does not have any implications for the time-

dependent dynamics observed. In other words, θ0 only sets the “initial state” of the spatial beam

at the tail of the pulse in the absence of any nonlinearity, and does not relate to any of the time-

dependent dynamics that are observed thereafter.

4.5.2 Reconstruction of Spatiotemporal Nonlinear Evolution

As mentioned in the description of the experimental setup, the NSOM probe is raster-

scanned across the output end-face of the FMF, and time-domain waveforms are recorded at each

“pixel” with a spatial resolution of 400 nm. This data is then stitched together offline to recon-

struct a time-dependent variation of the instantaneous 2-dimensional intensity pattern exiting the

fiber. The temporal resolution achieved with this setup is approximately 100 ps, and is only lim-

ited by the bandwidth of the photodiode used in our experiment. The reconstructed patterns, in

other words, would show us what one would see if we had a camera capable of sub ns sampling.

As Fig. 4.5 shows, the shape of the 2-dimensional intensity pattern at the output is Gaussian-

like at both tails of the pulse, t = −0.65 ns and t = 0.84 ns. This denotes the intensity pattern

formed by the interference of the two spatially overlapping modes that we have excited in the

FMF. As the input pulse reaches its peak at t = 0, however, the nonlinear phase difference be-

tween modes reaches approximately one π, causing the modes to interfere with opposite phase as
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Figure 4.5: Spatiotemporal measurements of nonlinear interaction between the two spatial modes
that we excited in the FMF. The instantaneous spatial intensity patterns were reconstructed by a
synchronized stitching of the experimentally obtained spatially-resolved temporal measurements.
The larger images at the different time instances (t = −0.65 ns, t = 0 and t = 0.84 ns) denote the
experimentally obtained images, and the inset images show the results of numerical simulation
of the coupled NLSEs. See Supplementary Videos 1 and 2 for movies of experimentally recon-
structed and numerically simulated time-dependent spatial patterns. (Data originally published
in S.K. Dacha et al., Optica 7, 1796-1803 (2020) ©Optical Society of America)

they did at the tails of the pulse, creating a donut-shaped beam. Once again, numerical simulation

results reproduce experimental observations, as the inset images in Fig. 4.5 demonstrate.

Note: Several experimental measurements and numerical simulations reported throughout

this thesis are accompanied by movies/video files that show time-dependent evolution of

spatial waveforms. For the work described in this chapter, please see Supplementary Videos 1

and 2 for measured and simulated time-dependent variation of the spatial interference pattern

caused by nonlinearly interacting LP01 and LP02 modes.
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4.5.3 Thermo-Optic Interference Experiments

In order to further verify that the time-dependent effect that we observe in Fig. 4.5 results

from a time-varying modal interference effect, we performed thermo-optic measurements that

showed a temperature-dependent mode interference effect that caused similar spatial patterns to

appear as in Fig. 4.5. First, the laser was attenuated to a power level where the nonlinear phase

shift between the modes was expected to be very low (even at the peak of the input pulse). A

short (≈ 20 cm) section of the FMF was placed on a hot plate, and the temperature of the hot

plate was slowly varied from 500 C to 1500 C, and the output was imaged using a conventional

CMOS camera.

As the temperature increases, the refractive index as well as the length of the ≈ 20 cm FMF

section exhibit a temperature dependence. The thermal expansion is believed to be the dominant

effect in this case based upon estimations of the index change caused by increasing the temper-

ature of SiO2. Or rather, it was found that the propagation constants of both the modes change

roughly equally, which would not result in any significant change in the spatial interference pat-

tern produced by the two modes. The thermal expansion of the fiber, however, does change the

overall length of the fiber ever so slightly, as a function of temperature. In other words, tuning

the temperature changes the phase with which the modes overlap at the output, thereby creating

the variation in spatial patterns observed in Fig. 4.6.

Admittedly, these measurements are somewhat crude in many ways: i) the temperature

reported in Fig. 4.6 is only the temperature of the hot plate, not necessarily that of the fiber’s

core material; ii) there may be a temperature gradient across the fiber cross section because the

heating mechanism is not convectional (i.e. the side of the fiber touching the hot plate may be

93



T = 50° C T = 150° C T = 250° C

10 µm

Figure 4.6: Temperature dependent interference patterns created by the two overlapping modes
excited in the FMF. Each image was recorded using a conventional CMOS camera at a different
hot plate temperature (500 C, 1500 C and 2500 C). (Data originally published in S.K. Dacha et
al., Optica 7, 1796-1803 (2020) ©Optical Society of America)

hotter than the other side), although care was taken to flip the fiber around gently throughout the

experiment; iii) increase in temperature of may introduce other perturbations that did not exist

before because of thermal deformations.

However, the essential point of these measurements was simply to demonstrate the fact that

changing the phase with which the two modes overlap can change the output intensity pattern.

In fact, the images shown in Fig. 4.6 not only prove this statement, but they also show the same

kind of spatial patterns observed in the spatiotemporal measurements Fig. 4.5. In other words,

this demonstrates further that the time-dependent effect that we see in Fig. 4.5 is indeed a result

of time-dependent nonlinear phase difference arising from SPM and XPM.

4.6 Summary

In this chapter, we described our work on modeling, simulating and experimentally mea-

suring the nonlinear interactions (SPM and XPM) between two radially symmetric LP0m modes
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of a step-index FMF. We selectively excited the LP01 and LP02 modes using a novel phase mask

etching technique that utilizes an accelerated and focused beam of Ga+ ions to mill SiO2 out of

the core of the FMF. This makes for a convenient phase mask prototyping technique that allows

for the fabrication of very fine features on a fiber end-face.

At the output end, we demonstrated the capability of a powerful spatiotemporal character-

ization technique that we developed, wherein an NSOM probe scans the output end-face of the

FMF and records a time-trace at various transverse spatial coordinates with a sub-wavelength (for

our λ0) spatial resolution of ≈ 400 nm. The temporal resolution obtained in our measurements

is below 100 ps, and is only limited by the bandwidth of the photodiode used in our experiments.

With commercially available technology, this technique can achieve temporal resolution of 10s

of ps and a spatial resolution of well below 100 nm.

Finally, by synchronously stitching together the spatially-resolved temporal waveforms

recorded, we were able to reconstruct the full time-dependent nonlinear evolution of the beam

exiting the fiber [62]. In the next chapter, we will apply the same spatiotemporal scanning tech-

nique to study a different phenomenon in a parabolic GRIN fiber, namely Kerr-induced beam

self-cleaning [15].
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Chapter 5: Spatiotemporal Characterization of Kerr-induced Beam Self-Cleaning

in a Parabolic GRIN MMF

5.1 Chapter Overview

The spatiotemporal characterization technique that we described in Chapter 3 can be uti-

lized to measure any time-varying intensity pattern involving nanosecond pulses. In Chapter

1, we referenced a unique phenomenon that occurs in parabolic GRIN MMFs, namely Kerr-

induced beam self-cleaning. The measurements reported in References [14] and [15] only used

conventional spatial imaging that recorded the time-averaged output intensity pattern. The spa-

tiotemporal characterization technique described in the previous chapter present an opportunity

to better resolve this phenomenon.

Although at the time of our experiments it was broadly accepted that the beam self-cleaning

phenomenon resulted from the “instantaneous” Kerr effect, and that it was not a result of the time

averaging that a conventional “slow” camera would perform on the spatiotemporal beam exiting

the fiber, there was no concrete experimental evidence demonstrating that the instantaneous beam

of at the peak of the input pulse at t = 0 is self-cleaned while the beam at the tails of the pulses

is not. This is the goal of the measurements presented in this chapter. Similar measurements

were later reported by the same group that initially reported observation of the phenomenon, in
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Reference [76].

A detailed study of Kerr-induced beam self-cleaning is beyond the scope of this thesis, as

the main focus of our work has been the study of intermodal nonlinear effects between individual

spatial modes. However, in this chapter, we describe the results of applying our spatiotemporal

characterization technique to measuring the beam self-cleaning phenomenon. We begin by pre-

senting a brief overview of the phenomenon, then describe our measurements before concluding

the chapter.

5.2 Kerr-induced Beam Self-Cleaning

In Section 2.2.5, we discussed the spatial modes of a parabolic GRIN fiber and their prop-

erties. One of the unique features of the modes of a parabolic GRIN fiber is the grouping of

modes of different l and m into mode groups of equal propagation constant that are also equally

spaced from one another. This is illustrated in Fig. 2.4(a). In the nonlinear regime, this allows

for energy exchange between various spatial modes via phase-matched four-wave mixing terms

in the coupled NLSEs, as described in Section 2.3.2.3. As a result, in the presence of hundreds

of spatial modes co-propagating in a parabolic GRIN fiber, a multitude of Kerr nonlinear inter-

actions are possible, including phase modulation of a mode by hundreds of other modes, and the

energy inflow and outflow out of modes from and to other modes.

In order to make sense of such complex phenomena, it is not sufficient to look at the inter-

actions between individual modes alone, and it is essential to take a more “macroscopic” view.

In Reference [15] (also see Reference [14]), one such complex phenomena was first reported

wherein ∼ 900 ps optical pulses at λ0 = 1064 nm are propagated through 12 m of a 2a = 52.1
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µm parabolic GRIN fiber (NA = 0.205) in the nonlinear regime, and the evolution of the time-

integrated spatial pattern was studied. The results of their measurements are shown in Fig. 5.1.

Figure 5.1: Experimental observation of Kerr-induced beam self-cleaning. (a)-(d) Near-field
images of the output of the parabolic GRIN fiber (λ0 = 1064 nm) for increasing input peak
powers. Intensities in each image are normalized to the maximum in that image. Scale bars: 10
µm. (e)-(h) Beam profiles of horizontal cuts (through the center of the images) of images shown
in (a)-(d). Fiber length used is 12 m. (Reprinted by permission from Nature Photonics: Krupa et
al., Nat. Phot. 11, 237-241 (2017) © Nature)

The input free-space beam is coupled to the fiber so as to intentionally excite a large number

of spatial modes. This is evidenced by the fact that at low input powers, the output of the fiber

is observed to be a speckle pattern (see Fig. 5.1(a)). As the input power is increased, nonlinear

interactions between the modes lead to an apparent “self organization” of the beam exiting the

fiber, as the output beam looks like a cleaned up Gaussian beam. Notably, the authors report that

spectral measurements reveal that the optical spectrum remains narrow, and most importantly,

this phenomenon is observed below the Raman threshold. This indicates that this is purely a Kerr

phenomenon and does not involve the dissipative Raman process. (Raman beam cleanup has also

been studied previously in parabolic GRIN MMFs [67].)

This so-called self-cleaning phenomenon has attracted considerable curiosity and attention,

both from a scientific research perspective but also for its potential applications for biomedical
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imaging and high-power beam delivery. Numerous experiments have since reported similar phe-

nomena in other types of fibers and at other wavelengths, including in the anomalous dispersion

regime at λ0 = 1550 nm. This phenomenon has only recently been explained using a semi-

classical wave thermalization model [77]. In even more recent experiments, it has been demon-

strated using a mode-resolved characterization method that the modal power distribution in the

parabolic GRIN fiber approaches a Rayleigh-Jeans distribution, confirming the predictions of the

thermalization model [32].

As mentioned before, a detailed study of this phenomenon is beyond the scope of this thesis.

Instead, we focus on utilizing our spatiotemporal characterization technique to demonstrate that

the Kerr-induced beam self-cleaning phenomenon is indeed an instantaneous phenomenon, and

not an artifact of the time averaging of a conventional camera.

5.3 Spatiotemporal Measurements of Kerr-induced Beam Self-Cleaning

Fig. 5.2 shows the experimental schematic that we adopted for these measurements. We

used ≈ 11 m of a 2a = 62.5 µm parabolic GRIN fiber – the same kind used in measurements

reported in Chapter 3. Unlike in the Chapter 3 experiments, however, we now use the λ0 = 1064

nm Nd:YAG microchip laser that we used in Chapter 4. The laser produces 1 ns pulses that

are coupled into the fiber using a plano convex lens. The input Gaussian beam is intentionally

focused to an off-axis spot on the fiber’s input end-face in order to excite a large number of modes

propagating in the fiber.

For the length of the fiber that we used, we observed via a conventional CMOS camera the

beam self-cleaning occurring for an input peak power of approximately 6 kW. At this stage, we
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Figure 5.2: Experimental schematic for spatiotemporal measurement of Kerr-induced beam self-
cleaning. The fiber used was a ∼ 11 m long 2a = 62.5 µm parabolic GRIN fiber. Peak power of
the input pulse was ≈ 6 kW. HWP = half wave plate, PBS = polarizing beam splitter.

inserted the NSOM probe setup from Chapter 4 and performed raster-scanning along the cleaved

output end-face of the parabolic index MMF. Because the piezo translation stage that we used for

the raster-scanning only had a piezo travel range of 20 µm, our scan was limited to a 20 µm × 20

µm grid. Care was taken to ensure that the center of the beam exiting the fiber was present within

the scanning window.

Fig. 5.3 shows the results of our measurements. At the tail of the pulse at t = −0.85 ns,

the reconstructed intensity pattern looks like a speckle pattern, revealing the presence of several

spatial modes, including many non-radially-symmetric ones. As the pulse approaches its peak at

t = 0, the beam is now “cleaned up”, visibly demonstrating a reduction of the instantaneous M2

factor. In fact, the observed beam at t = 0 is cleaner than what is observed using conventional

imaging methods such as those reported in References [14, 15] owing to the fact that we are ob-

serving the instantaneous beam at the peak of the pulse as opposed to the time-averaged intensity

profile.

These measurements, as predicted, demonstrate the instantaneous nature of this phenomenon.
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Figure 5.3: Spatiotemporal measurements of Kerr-induced beam self-cleaning. We show the
reconstructed intensity pattern at (a) t = −0.85 ns (i.e. tail of the input pulse) and at (b) t = 0
(i.e. at the peak of the input pulse). The reconstructed intensity at the tail of the pulse shows
a speckle pattern, indicating the presence of several spatial modes. At the peak of the pulse,
we observe a cleaned up beam, experimentally demonstrating the instantaneous nature of this
phenomenon.

As an alternate perspective on what these measurements indicate, one might also say that they

further validate the spatiotemporal measurement technique if we begin with the assumption that

the phenomenon is indeed instantaneous.

5.4 Summary

In summary, in this chapter, we have demonstrated the use of our spatiotemporal character-

ization technique to perform unique measurements of the Kerr-induced beam self-cleaning phe-

nomenon. We discussed what the phenomenon entails, and some explanations that researchers

have put forth in order to explain it. However, we do not dwell on analyzing the phenomenon

or our measurements like we did in Chapters 3 and 4, as that is beyond the scope of this thesis.

It is worth noting that similar time-resolved measurements of the phenomenon were reported in
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Reference [76] around the same time as we performed our measurements. The authors in Refer-

ence [76] first magnify the output beam using a high numerical aperture lens before scanning the

magnified beam using a conventional single mode fiber.

In the next chapter, we begin our discussion of nonlinear optical effects involving orbital

angular momentum (OAM) fiber modes, which remains, at the time of this writing, a relatively

under-studied topic.
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Chapter 6: Nonlinear Rotation of Spin-Orbit Coupled States in a Hollow RCF

6.1 Chapter Overview

So far in this thesis, we have described our work with step-index and parabolic index fibers.

The final type of fiber that we discuss is the hollow ring core fiber (RCF). As mentioned in

Sections 2.2.2.2 and 2.2.6, the high cross-sectional index contrast of this type of fiber increases

the effective index difference between the HE and EH modes for all azimuthal and radial mode

orders l and m. This leads to the stable propagation of hybrid vector modes in RCFs. As we

discussed in Sections 2.2.2.2 and 2.2.6, the hybrid vector modes can be superposed to give rise

to the OAM mode basis, where each photon in a given spatial mode has a well-defined orbital

angular momentum as well as spin angular momentum. While the high effective index split

created by the index profile prevents the SOa(a) mode groups from mixing, mixing between modes

within a degenerate SOa(a) group is prohibited by conservation of orbital angular momentum [50].

In this chapter, we discuss our work on nonlinear optical effects involving OAM fiber

modes. More specifically, we describe a phenomenon that we observe when two degenerate spin-

orbit anti-aligned modes co-propagate in the fiber. The coupled NLSEs describing the problem

show great resemblance to those that are used for modeling the well-known nonlinear polariza-

tion rotation (NPR) phenomenon in SMFs. Using analytical calculations, numerical simulations,

experimental measurements, we describe our discovery of the spin-orbit coupled generalization
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of the NPR phenomenon.

6.2 Light Carrying OAM

Light that carries orbital angular momentum is described by a characteristic phase function

eiLϕ, where L is an integer and is known as the topological charge of the beam. The orbital an-

gular momentum associated with each photon in such a beam is given by Lh̄ [37]. Light beams

as well as fiber modes that carry OAM have received significant attention in a wide range of

scientific research areas such as classical and quantum communication [78–84], optical metrol-

ogy [85, 86], quantum optics [87–89], particle trapping and optical tweezers [90–92]. In fact,

Arthur Ashkin received the Nobel Prize for Physics in 2018 for the invention of optical tweez-

ers [93], as they have since proven to be a critical experimental tool for research in atomic and

molecular physics and biophysics.

Note: Thus far in this thesis, we have denoted the azimuthal mode number by l where l =

0, 1, 2, .... However, as we saw in Section 2.2.2.2, the topological charge of an OAM beam

is related to the l ≥ 0 of the constituent HE and EH modes but can also be negative. As a

result, we denote the topological charge of OAM beams throughout this thesis by capital L,

which is allowed to be negative. With this notation, L = ±l, or equivalently, l = |L|. The L

is not to be confused with the notation for the length of the fiber, which we denote throughout

this thesis by Lf .

The study of OAM light in the context of optical fibers has come to be of particular interest,

owing in large part to the newly developed high confinement index geometries such as the hollow

RCF discussed in Section 2.2.6. Technically, the mathematics of the OAM mode basis that we
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discussed in Section 2.2.2.2 applies in any type of index geometry, and the OAM mode basis

can, in principle, be used to describe light propagation in any circularly symmetric multimode

fiber. However, in conventional optical fibers with step and parabolic index profiles, the effective

index separation between the four possible modes for a given l and m would be nearly (but not

exactly) zero. This results in strong coupling between the 4 HE and EH modes, and results in

the formation of the maximally mixed LP mode basis described in Section 2.2.2.1. In fibers such

as the hollow RCF, however, the high cross-sectional index contrast increases the effective index

difference between the HE and EH modes, resulting in stable propagation of OAM modes that

do not mix with each other in the linear regime, even in the presence of bends and perturbations

[39].

In comparison to research that examines linear propagation of OAM modes in fibers, non-

linear propagation remains relatively understudied, and many questions remain unanswered. As

is the theme of this thesis, nonlinear effects in RCFs, too, are of considerable interest from a

telecommunications (SDM) as well as from a fundamental physics perspective. Some recent

studies do exist, however, that study OAM propagation in the nonlinear regime. Recently, octave-

wide supercontinuum generation was observed in the same hollow RCF as the one used in this

work, where the entire supercontinuum resides in the same spatial mode [26]. The mechanism

that allows for such a broad spectrum to reside in the same spatial mode despite the fact that

the fiber supports multiple spatial modes has been attributed to the breaking of the near degener-

acy between the spin-orbit aligned and anti-aligned modes, and to the high degree of selectivity

of nonlinear products that results from the conservation of OAM [26, 63]. Parametric FWM has

also recently been observed in the same type of fiber, demonstrating the possibility for generating

OAM-carrying light pulses at user-defined wavelengths [63].
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Here, we report a novel phenomenon that can be understood as a generalization of the

well-known nonlinear polarization rotation effect occurring in SMFs.

6.2.1 Spin-Orbit Interaction

In this work, we use the same hollow RCF that was used in [26, 63]. As mentioned above

and in Section 2.2.6, the index profile of this fiber was tailored to support stable propagation of

OAM modes. In order to better understand how this comes about, consider the first order po-

larization correction term to the modal propagation constant Eq. 2.8. Although the high index

contrast of the hollow RCF necessitates the use of a full vectorial mode solver, significant analyt-

ical insight can nonetheless be gained by studying the fiber using the tools of the weakly guiding

approximation.

As we discussed in Section 2.2.2.2, the OAM mode basis is comprised of a complex super-

position of the HE and EH modes. In any given fiber – including in the step and parabolic index

fibers – the HE and EH modes have slightly different propagation constants. The magnitude of

this difference depends upon the modal intensity profiles and the cross-sectional refractive index

gradient via Eq. 2.8. The hollow RCF is therefore simply designed to increase this difference

by way of tailoring the index profile to have a large gradient. Because the SOa and SOaa modes

are combinations of the even and odd HE and EH modes respectively according to Eqs. 2.14,

an effective index split between the HE and EH modes is equivalent to an effective index split

between the SOa and SOaa modes.

Looked at differently, the effective index difference between the SOa and SOaa modes can

be understood by recognizing the fact that the “polarization correction” term in Eq. 2.8 depends
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upon not just the spatial intensity shape, but also the polarization and phase of the electric field. In

other words, for a mode that has a given polarization, the effective index depends upon its spatial

phase – in other words the OAM. This is known as the spin-orbit coupling effect, where effective

indices (equivalently, propagation constants) and group velocities of modes depend upon the

OAM as well as the polarization – or more specifically, their relative alignment [40, 94, 95].

Reference [40] discusses the different regimes of spin-orbit interaction (SOI) as follows.

In the scalar approximation, which is valid for conventional step- and parabolic-index fibers, all

OAM modes of a given |L| possess the same effective index. This is defined as the regime of

negligible SOI. Fibers such as the one used in this work exhibit weak SOI, where modes with

aligned and anti-aligned OAM and SAM possess different effective and group indices. The strong

SOI case is described in Reference [40] as applicable for fiber index profiles that have a much

thinner guiding ring index layer. In this regime, superpositions of free-space OAM and SAM

beams with specific relative amplitudes and phases behave as individual modes. Such modes

are defined by a given total angular momentum, and consist of a spatially-varying elliptical state

of polarization. However, they are neither OAM nor SAM eigenstates and are not propagation-

invariant modes in free space.

6.2.2 Spin-Orbit Coupled States

The term “spin-orbit coupled state” is defined as any general superposition of the “weak

SOI” SO(a)a fiber modes. Here, we specifically consider a superposition of the two degenerate

L = ±10 SOaa modes. Fig. 6.1(a) shows the intensity, polarization and spatial phase patterns of

the two modes. The L = ±10 SOa modes are not relevant for the work here, and are therefore not
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shown, but Section 2.2.6 offers further discussion. Fig. 6.1(b) shows an unequal superposition

of the two modes (α ̸= 1). Because the two modes have opposite helicities of polarization, an

unequal superposition of them yields an elliptical state of polarization. However, since the modes

also have opposite helicities of their spatial phase (OAM), the orientation of the resulting ellipse

is spatially non-uniform. The ellipse orientation exhibits a periodicity with a period 2π/(2|L|) =

180. As we will see in subsequent sections, a change in the relative phase between the two

overlapping modes because of nonlinear SPM and XPM results in a power-dependent rotation of

this pattern.
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Figure 6.1: (a) |L| = 10 spin-orbit anti-aligned (SOaa) modes of the hollow RCF used in this
work. Each of the modes has a circular state of polarization that has opposite helicity as its
phase (i.e. OAM). (b) ‘Spin-orbit coupled state’: An unequal superposition (α ̸= 1) of the two
degenerate |L| = 10 SOaa modes. This superposition consists of a spatially varying elliptical
state of polarization. The ellipticity of the local ellipses remains the same, but the orientation of
the ellipse exhibits a periodicity with period 2π/(2|L|) = 180.
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6.3 Coupled NLSEs for Nonlinear Rotation of Spin-Orbit Coupled States

6.3.1 Theory

In order to understand the nonlinear evolution of the spin-orbit coupled state described

above, it is once again helpful to write down the coupled NLSEs. We begin by first writing down

the NLSEs in the hybrid HE and EH mode basis, and then convert the NLSEs to the OAM mode

basis using Eqs. 2.14. One can also write down the NLSEs directly in the OAM basis starting

from Eqs. 2.60, but in this case, it is instructive to start in the hybrid mode basis for reasons that

will become clear soon.

Because we work with the two SOaa modes, which both comprise only of the EH modes

that are completely degenerate with each other, the coupled NLSEs are given as [71]:
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where we have denoted the slowly-varying pulse envelopes of the EH modes as Bp(z, t).

We now transform these equations into the OAM mode basis using the relations in Eqs. 2.14.

The coupled NLSEs for the slowly-varying pulse envelopes in the OAM basis Ap(z, t) are given

as:

∂A1

∂z
= i

2n2ω0

3c
N1111

(
|A1|2A1 + 2|A2|2A1

)
(6.2a)
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As the right hand side of Eqs. 6.2 shows, only the SPM and XPM terms survive upon

performing the transformation to the OAM basis, while the equations in the hybrid mode basis

Eqs. 6.1 also contain a phase-matched FWM term. This suggests that although phase-matched

power exchange the two EH modes is possible, the power in each of the two SOaa modes remains

constant, and the two SOaa modes interact nonlinearly via SPM and XPM alone.

The reader may already recognize that Eqs. 6.1 resemble the coupled NLSEs that describe

nonlinearly interacting x̂ and ŷ polarization states in an isotropic single mode fiber, while Eqs.

6.2 also resemble the SMF case when written in the circular polarization basis. In SMFs, the

equations in the circular polarization basis show that when the left and right circular states have

unequal but non-zero power – i.e. when the net state of polarization is elliptical – they acquire a

power-dependent nonlinear phase difference arising from SPM and XPM. This power-dependent

phase difference leads to a power-dependence of the orientation of the net elliptical state of po-

larization. Equivalently, the instantaneous Stokes vector in the Poincaré sphere rotates about the

S3 axis by an angle that is proportional to the nonlinear phase difference between the left and

right circularly polarized basis states. The degree of rotation about the S3 axis depends upon

the ellipticity of the propagating mode. This is the well-known nonlinear polarization rotation

effect [11].

Here, we argue by analogy that a similar effect occurs. However, the presence of the ad-

ditional spatial degree of freedom leads to this phenomenon having a spatial dimension as well.

More specifically, we saw in Fig. 6.1(b) that an unequal superposition of the two modes leads to
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a spatially non-uniform elliptical state of polarization, where the local ellipse orientation rotates

along the azimuthal coordinate. The exact orientation of the overall pattern – or equivalently, the

orientation of the ellipse at any given transverse coordinate – is determined by the phase with

which the two modes overlap. In the presence of SPM and XPM, as described in Eqs. 6.2, the

modes acquire a power-dependent phase difference. As a result, the entire polarization distri-

bution exhibits a power-dependent rotation. Equivalently, the polarization ellipse at one fixed

transverse spatial coordinate can be said to rotate about its axis in a power-dependent manner.

In SMFs, the NPR phenomenon involves purely polarization states. In this case, however,

the polarization as well as spatial phases of the modes – as well as the coupling between them

– are key to making this phenomenon possible. In other words, this is a spin-orbit coupled

generalization of NPR.

6.3.2 Numerical Simulations

We numerically simulate this phenomenon by solving the coupled NLSEs in Eqs. 6.2

using the SSFM. As mentioned in Section 2.2.6, the modes are computed using a vector finite-

difference mode solver from Reference [53]. The results of these simulations are shown in Sup-

plementary Video 3 attached with this thesis (also accessible under ’Supplementary Material’ in

Reference [71]), snapshots of which are shown in Fig. 6.2. As the results presented in Supple-

mentary Video 3 show, the instantaneous orientation of the polarization pattern varies with time

as a result of SPM and XPM between the two interacting modes.

Because of the added spatial degree of freedom, this phenomenon can be easily observed

by imaging the output beam through a linear polarizer. For example, imaging the beam shown
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in Fig. 6.1(b) through a linear polarizer results in the appearance of 2|L| = 20 lobes in the

imaged intensity pattern. The orientation of this lobe pattern depends upon the phase with which

the two modes overlap. The power-dependent rotation effect described above, therefore, results

in a power-dependent rotation of the lobe intensity pattern, as shown on the right hand side of

Supplementary Video 3 and Fig. 6.2. The rotation of the intensity pattern is much easier to

observe experimentally than the rotation of a spatially-varying state of polarization.
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Figure 6.2: Snapshots of Supplementary Video 3, which shows numerical simulation of nonlinear
rotation of our mode superposition. (Top) Instantaneous distribution of polarization and instanta-
neous lobe pattern along the rising edge of the input pulse, at t = −0.45 ns. (Bottom) At the peak
of the input pulse t = 0, the instantaneous polarization distribution, as well as the lobe intensity
pattern, can be observed to be rotated relative to that at t = −45 ns. This is seen by observing,
for example, the ellipses within the dashed white box at t = −0.45 ns and t = 0. (Data originally
published in S.K. Dacha et al., Opt. Exp. Vol. 30, No. 11, 18481-18495 (2022) ©Optical Society
of America)

In fact, the experimental setup required to observe this effect can be simplified further by

imaging the output of the fiber using a conventional “slow” CCD/CMOS camera. The rotation

experienced by the lobe pattern for a given peak power can be ascertained by simply measuring
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the rotation of the lobes seen in the time-averaged image. At higher input powers, the lobes

undergo significant rotation within the duration one one pulse, resulting in a “smearing out” of

the time-averaged lobe images. However, the rotation at the peak of the input pulse is still evident

from the time-averaged image via the position of bright lobes over a smeared out background.

Simulations of this behavior are shown in Supplementary Video 4.

In the following sections, we describe our experimental results wherein we demonstrate a

power-dependent rotation of the time-averaged lobe intensity pattern.

6.4 Generation of OAM Beams

Several methods exist for generating light beams that contain well-defined OAM. The

mechanism underlying the generation of OAM varies from one method to another. For example,

spiral phase plates [96], forked gratings [97] and mode converters [98] all consist of elements

that contain a phase discontinuity. These techniques are polarization insensitive, meaning that

the generated beams can have any state of polarization, but have a uniform polarization across

the beam.

Other methods such as q-plates [99], J-plates [100] and p-plates [101] all couple the beam’s

OAM with its polarization. Such methods are typically based on the Pancharatnam-Berry (PB)

geometric phase. Because we are interested in generating a combination of the two L = ±10

SOaa modes, we employ a q-plate of appropriate q value in this work. Fig. 6.3 summarizes the

functionality of a q-plate.

Liquid crystal (LC) technology is most commonly used for fabricating q-plates. In this

work, we employ a custom fabricated transmissive dielectric metasurface q-plate. Metasurface
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Figure 6.3: Schematic summarizing the functionality of a q-plate. For an input Gaussian beam
with an elliptical state of polarization, the output of a q-plate of q = |L|/2 consists of a combi-
nation of two |L| = 10 SOaa OAM beams, along with an unconverted Gaussian component. The
conversion efficiency of a q-plate is often defined as the ratio of output power in OAM beams to
the total input power.

devices offer the capability to structure a light beam on the sub-wavelength scale, and they allow

for simultaneous control of polarization as well as phase. They also have higher damage thresh-

olds compared to conventional LC devices, which makes them ideal for use in nonlinear optical

experiments.

6.5 Experiments

The metasurface q-plate used in our experiments was fabricated by our collaborators at

NIST. The metasurface consists of high aspect-ratio amorphous silicon nanofins laid out on a

2-dimensional Cartesian grid [102]. Fig. 6.4(a) shows an illustration of the “unit cells” that span

the device. The spacing between adjacent unit cells is ≈ 400 nm. Each nanofin is approximately

272 nm long, 104 nm wide and 760 nm tall, and each acts as a half-wave plate for a laser beam at

wavelength λ0 = 1064 nm. The q-plate functionality is achieved via a rotation of the nanofin fast

axis orientation along the azimuthal coordinates of the grid. The fast axis orientation of a nanofin

is given by ΘNF = |L|ϕ/2, where ϕ is the azimuthal coordinate with respect to the center of the
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2-dimensional pattern, as shown in Fig. 6.4(b). We have provided a detailed recipe for fabrication

in Reference [71].
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Figure 6.4: Description of metasurface q-plate with q = |L|/2 = 10/2. (a) Schematic illustrating
a unit cell consisting of a 272 nm × 104 nm × 760 nm amorphous Silicon nanofin. Spacing
between adjacent unit cells is ≈ 400 nm. (b) The q-plate profile showing the spatial variation of
the fast axis orientation. The orientation of a nanofin at an azimuthal coordinate ϕ is given by
θNF = |L|ϕ/2.

Fig. 6.5 shows a schematic of our setup for these experiments. We use the same laser as

we described in Chapters 4, 5 that outputs ≈ 720 ps (FWHM) Gaussian-shaped optical pulses at

λ0 = 1064 nm. The power control optics remain the same as well, consisting of a half-wave plate

and a polarizing beam splitter (PBS). The fabricated transmissive metasurface q-plate is inserted

before the input end-face of a Lf ≈ 1 m long section of hollow RCF. A free-space quarter wave

plate (QWP) is used to tune the state of polarization of the Gaussian beam that is incident on the

q-plate. The output consists of a combination of the |L| = 10 SOaa modes as illustrated in Fig.

6.3. The q-plate that we fabricated was measured to have a conversion efficiency of ≈ 20 %. The

unconverted L = 0 part of the beam was prevented from coupling into the fiber by choosing the

focal length of the aspheric lens used in the experiment to focus the |L| = 10 beams into the

guiding core layer while focusing the Gaussian component into the air section at the center [103].

This is confirmed by the linear characterization measurements reported below. In sum, this setup
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offers the capability to tunably excite a combination of the two |L| = 10 SOaa modes in the RCF.

The relative power is conveniently adjusted using the free-space QWP.
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Figure 6.5: Schematic of experimental setup used for observing nonlinear rotation of spin-orbit
coupled states. Inset (a) shows a scanning electron micrograph of part of the fabricated metasur-
face q-plate. Inset (b) shows the beam entering the fiber for excitation of the two SOaa modes,
consisting of a spatially-varying state of elliptical state of polarization. At the output end, the
beam exiting the RCF is imaged using polarization and OAM-resolving optics. PBS = polarizing
beam splitter, λ/2(4) = half (quarter) wave plate, LP = linear polarizer.

The output of the fiber is characterized to measure the OAM as well as polarization con-

tent using free-space optics. The beam is first magnified using an infinity-corrected microscope

objective with a numerical aperture of 0.75 and magnification 40x. A cylindrical lens converts a

portion of the magnified beam from a Laguerre-Gaussian (LG) beam to a Hermite-Gauss (HG)

beam. Counting the number of dark fringes in the resulting HG beams reveals the |L| value of

the output beam [98]. A linear polarizer is employed to observe the x̂ polarized part of the output

beam.

The spatiotemporal measurement technique used in Chapters 4 and 5 is not ideal for the

measurements discussed here, as the near-field scanning method does not allow for sufficient

space to insert a linear polarizer – and observing the output beam through a linear polarizer is of
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key importance for these experiments. As we discussed in Section 6.3.2, time-averaged methods

such as conventional CCD/CMOS cameras prove sufficient for observing the phenomenon of

interest here.

6.6 Demonstration of Tunable Excitation of SOaa Modes

We begin our analysis of experimental observations by first demonstrating the tunability

of excitation afforded by the metasurface q-plate. As mentioned above, the ratio of powers in

the two SOaa modes is adjusted using the QWP shown in Fig. 6.5. In Fig. 6.6, we show expe-

rimentally measured images (originally published in Reference [71]) at low input power, in the

absence of any optical nonlinearity. The QWP setting is tuned such that the state of polariza-

tion of the Gaussian laser beam incident on the q-plate varies from left circular to right circular.

For each case, we show images of the overall intensity pattern, the x̂ polarized intensity, and

the corresponding HG mode pattern observed when the output beam is imaged through a linear

polarizer.

For a circularly polarized Gaussian beam incident on the q-plate, the free-space output

consists of a combination of a pure OAM beam alongside the remnant unconverted portion of the

Gaussian beam. The latter is not guided through the fiber, as we described above, and the output

of the fiber shows a clean L = +10 SOaa mode. This is seen by counting the number of dark

fringes in the cylindrical lens measurement corresponding to this case shown in Fig. 6.6. The

absence of the unconverted Gaussian portion is evident by further observing that the image does

not show a bright region at the center of the image, which would be observed if significant power

from the unconverted beam coupled into the fiber.
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Figure 6.6: Tunable excitation of the two |L| = 10 SOaa modes in the RCF. The output images
are shown for input states of polarizations of the Gaussian laser beam being left circular, left
elliptical, linear, right elliptical and right circular. For each case, we show: (Top) image of the
HG mode pattern indicating the OAM content, (Middle) image of the overall intensity pattern,
and (Bottom) image of the x̂ polarized intensity pattern. All images shown are experimentally
measured. We also denote the mode superposition achieved for each case. α1(2) < 1. (Data
originally published in S.K. Dacha et al., Opt. Exp. Vol. 30, No. 11, 18481-18495 (2022)
©Optical Society of America)

Similarly, for the right circularly polarized case, we see that the output consists of a pure

L = −10 SOaa mode, except with the orientation of the resulting HG pattern being opposite

that of the L = +10. In both of these cases, both the overall intensity profile as well as the x̂

polarized intensity show full rings without the appearance of any lobes. This is fully consistent

with numerically calculated mode profiles.

For elliptically and linearly polarized inputs, we see in Fig. 6.6 that the output consists of

a combination of the two SOaa modes. This results in the appearance of 2|L| = 20 lobes in the

x̂ polarized intensity patterns while not showing any lobes in the full intensity pattern. This is,
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once again, consistent with the calculated mode superposition profiles. These measurements thus

demonstrate tunable excitation of the two SOaa modes.

In order to observe the nonlinear rotation effect described above, we are interested in ex-

citing an unequal combination of the two modes. In the measurements that we discuss below, the

QWP is set to positions that allow for this unequal excitation

6.7 Demonstration of Nonlinear Rotation of Spin-Orbit Coupled States

We study two main cases here, one corresponding to the case of a dominant L = −10

mode, where the power ratio between the two modes is PV+/PV− ≈ 0.15, and another case with

a dominant L = +10 mode with PV+/PV− ≈ 5.88. In Fig. 6.7, we show numerically simulated

and experimentally obtained time-averaged images for both of these cases, at three different peak

powers of the pulse propagating in the fiber. A rotational wheel grid has been overlaid on top of

all images for aid in visualizing the rotation.

The images shown in Fig. 6.7 clearly demonstrate the nonlinear rotation that we predicted

in Section 6.3.2. For the dominant L = −10 case, for example, both simulated and measured

images show a counter-clockwise rotation. In the dominant L = +10 case, meanwhile, the

images show a clockwise rotation. This is in agreement with both theory as well as intuition, as

the sense of rotation is determined by whether the nonlinear phase difference between the modes

∆ΘNL = ΘNL,+10−ΘNL,−10, where ΘNL,±10 denotes the nonlinear phase of the L = ±10 mode,

is a growing positive number or a falling negative number as the power is increased.

In both cases, the lobe pattern diminishes in contrast as the power is increased. This is

a result of the fact that at higher powers, significant time-dependent rotation of the lobe pattern
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Figure 6.7: Demonstration of nonlinear rotation of an unequal combination of the two |L| = 10
SOaa modes in the RCF. (Top row) Numerically simulated time-averaged images of the beam
emerging from the fiber as imaged through a linear polarizer. (Bottom row) Experimentally
obtained time-averaged images of the fiber output imaged through a linear polarizer. Images in
both rows are shown for increasing peak powers, and for two different cases: for the dominant
L = −10 case and the dominant L = +10 case. A rotational wheel grid with a uniform angular
spacing of 2π/(2|L|) is overlaid on all images to aid in visual interpretation of observed rotation.
The arrows indicate the direction and amount of rotation observed. For experimentally obtained
images, the rotational wheel grid is aligned with the lobes using the image processing technique
described below to avoid human error with noisy images. (Data originally published in S.K.
Dacha et al., Opt. Exp. Vol. 30, No. 11, 18481-18495 (2022) ©Optical Society of America)

occurs within the duration of a single pulse. When time-averaged, this results in the smearing out.

This is analogous to the apparent “depolarization” observed when studying the NPR phenomenon

in SMFs using short optical pulses that are averaged over in time when using slower polarization

characterization equipment.

These results are much more visually obvious and appreciable when viewed as a movie.

Supplementary Video 4 shows numerical simulation results, and Supplementary Videos 5 and 6

show experimental results shown in Fig. 6.7. (Supplementary Videos are also accessible under

‘Supplementary Material’ in Reference [71].)
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6.8 Image Processing
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Figure 6.8: Summary of the image processing technique employed to measure the power-
dependent rotation and smearing out of experimentally obtained time-averaged lobe patterns.
Rotation is measured as a change in the Fourier phase ξ of the filtered signal, while smearing out
is quantified as the ratio of amplitudes of the 0th and ±20th Fourier components. (Data originally
published in S.K. Dacha et al., Opt. Exp. Vol. 30, No. 11, 18481-18495 (2022) ©Optical Society
of America)

In order to better make sense of the rotation observed in Fig. 6.7, and in order to avoid the

element of human error, we employ an image processing technique that is summarized in Fig.

6.8. A concentric ring of an appropriate radius is overlaid on top of the measured time-averaged

lobe pattern, and the intensity along the ring is extracted. After performing Fourier filtering, we

retain only the 0th and ±20th components. The ±20th components are chosen because we are

looking for patterns that correspond to the 2|L| = 20 lobes. The filtered signal is denoted in pink,

while the original signal is denoted in green in Fig. 6.8. The close match of the two curves show

that most of the essential information of the signal is retained by this procedure while noise is

filtered out. The rotation of the lobe pattern δ is then measured as a change in the Fourier phase
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ξ. The two are related as:

δ = 18◦ξ/(2π) (6.3)

The smearing out of the time-averaged lobe patterns is quantified by defining the ‘lobe

contrast’ as the ratio between the amplitudes of the 0th and ±20th Fourier components.

Fig. 6.9(a) shows the measured and simulated rotations of the time-averaged images upon

use of the image processing algorithm described above. Firstly, the plot shows that the dominant

L = ±10 cases exhibit opposite senses of rotation, as we discussed above already. Secondly,

even for the dominant L = −10 case, we repeated the measurement for two different values

of modal power ratio, namely PV+/PV− ≈ 0.15 and PV+/PV− ≈ 0.32. While the direction

of rotation is the same in these two cases, Fig. 6.9(a) shows that the magnitude of rotation is

different. This is consistent with the analytical expectation that the amount of rotation depends

upon the modal power ratio. Finally, we observe from the red plot in Fig. 6.9(a) that for the

control case of approximately equal power in the two modes, we observe minimal rotation.

Figs. 6.9(b) and 6.9(c) show simulated and measured lobe contrast, respectively, as a func-

tion of power. In all cases except for the control cases of input circular polarization (that excites

only a pure SOaa mode) and input linear polarization (that excites an equal combination of the

two SOaa modes), the simulated as well as measured images exhibit significant reduction in the

mode contrast. In other words, they demonstrate smearing out of the lobe patterns at higher input

powers as a result of time-averaging. For the control case corresponding to equal power in the

two modes, there is little rotation observed, as a result of the fact that equal powers in the two

SOaa modes is equivalent to exciting one pure EH mode. For the control case corresponding to
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a single OAM mode excited, lobes do not appear even when imaged through a linear polarizer,

as explained in Fig. 6.6. As a result, the lobe contrast remains close to 0.

Finally, we note the sources of noise in the images described and analyzed here. These

include alignment imperfections at the input coupling as well as at the output imaging ends,

fabrication defects in the fiber and in metasurface q-plate, non-uniformity in input illumination

as well as errors arising from the image processing algorithms. In order to ensure that the findings

presented here are reliable, an error analysis was performed. The error bars displayed in Fig. 6.9

correspond to one standard deviation of observed pattern rotation and lobe contrast value, which

was based upon collecting multiple time-averaged images for each data point and estimating

the deviation of these quantities. Despite these sources of error, however, we note the excellent

agreement between simulations and experimental observations in Figs. 6.7 and 6.9.
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Figure 6.9: Results of image processing of measured time-averaged lobe images. (a) Rotation δ
of measured and simulated images as a function of input power. (b) Reduction in lobe contrast in
simulated images as a result of time-averaging. (c) Reduction in lobe contrast in measured images
as a result of time-averaging. For (a)-(c), control cases of input SOP being linear and circular are
also shown. Simulation plots are solid lines, experimental plots are dotted lines. (Data originally
published in S.K. Dacha et al., Opt. Exp. Vol. 30, No. 11, 18481-18495 (2022) ©Optical Society
of America)
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6.9 Summary

In this chapter, we described our observation of a spin-orbit coupled generalization of the

well-known nonlinear polarization rotation phenomenon. This phenomenon was observed in a

hollow RCF that consisted of a tailored refractive index profile that allows for stable linear propa-

gation of OAM modes and prevents linear mixing between the modes. We excited a combination

of the two degenerate L = ±10 SOaa modes using a metasurface q-plate. Using this setup, we

demonstrated tunable excitation of the two modes by the convenient adjustment of a free-space

QWP.

In order to observe the nonlinear rotation effect, we set the QWP to excite an unequal

mixture of the two modes in the fiber. The resulting mode superposition consists of a spatially

non-uniform elliptical state of polarization as displayed in Fig. 6.1. The ellipticity of the local

elliptical state of polarization remains the same across the beam, but the orientation of the ellipse

changes along the azimuthal direction. The exact orientation of the polarization pattern – or

equivalently, the orientation of the ellipse at a given transverse spatial coordinate – is determined

by the phase with which the two modes overlap.

The phase between the modes changes as a function of input power as a result of SPM and

XPM, resulting in a power-dependent rotation of the polarization pattern. This was experimen-

tally observed by imaging the output beam through a linear polarizer on a conventional camera.

Image processing of the measured images and comparison with numerical simulations revealed

close agreement between the two.

Although these measurements present an important step in furthering the literature on non-

linearly interacting OAM modes, many other interesting and important problems remain to be
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studied. In the next and final chapter, we present some concluding remarks for this thesis, and

present an outlook toward potentially interesting problems that may be worth pursuing in this

research field.
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Chapter 7: Conclusions & Outlook

In Chapter 1, we began our discussion on the ‘why’ of this research field where I claimed

that this is a topic that should be of broad interest for not just the fiber optics community or even

the optics community, but the scientific community overall. Through my description of the many

novel and complex phenomena that we have observed and others in the field have, I hope first

and foremost that MMNLFO has piqued your scientific interest and curiosity, and I hope that

I have convinced you of the many possibilities that MMNLFO offers to the scientific commu-

nity. As we discussed throughout this thesis, nonlinear phenomena in MMFs are not only of

interest for SDM-based telecommunication technology, but they also pave the way for numer-

ous other practical applications such as high power supercontinuum and ultrashort pulsed light

sources, multimode amplifiers, high power optical beam delivery technology, optical metrol-

ogy, quantum optics and communication, frequency and spatial mode conversion and biomedical

imaging. MMNLFO is also fascinating from a fundamental physics perspective, not only thanks

to the aforementioned parallels between the nonlinear wave equation to the equation describing

bosonic gases and BECs, but also as it offers a unique perspective into other nonlinear coupled

mode systems such as water waves [104].

Despite the fact that multimode fibers have existed for longer than single mode fibers have,

we are only now beginning to develop an understanding of nonlinear propagation of multimodal
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pulses. The surge in interest in the past decade has been motivated in part by the increasing

need for SDM technology, and has been realized by recent theoretical [60, 61, 105], computa-

tional [53, 69] and experimental advances in the field. At the time of writing of this thesis, new

tools continue to be developed, new applications continue to be identified, and new phenomena

continue to be uncovered in the vast jungle of possibilities that MMNLFO is.

In this thesis, we report our humble attempt to push the envelope further. As we stated in

Chapter 1, one of our research objectives was to shed more light on the “micro” picture, namely

the nonlinear interactions between individual modes. In Chapter 3, we described our first ef-

forts in that direction, where we saw that the radially symmetric modes of a parabolic GRIN

fiber exhibit time-domain interference fringes that vary with power, fiber length as well as the

transverse spatial coordinate, thereby demonstrating the spatiotemporal nature of nonlinear prop-

agation in MMFs. In Chapter 4, we addressed the many limitations of those initial experiments

and discussed a similar nonlinear mode interference effect occurring in a step-index FMF. With

an improved characterization technique, we were able to demonstrate the first reported spatiotem-

poral measurements of multimodal nonlinearity [62]. In our effort to control the modes that were

excited in the FMF, we also developed a technique with which to excite modes of a fiber selec-

tively and efficiently. In Chapter 5, we utilized the spatiotemporal measurement technique once

again to demonstrate that the Kerr-induced beam self-cleaning phenomenon in a time-resolved

manner.

Finally, in Chapter 6, we described nonlinear experiments with the modes of a hollow

RCF. We excited a superposition of a pair of degenerate SOaa modes using a metasurface q-

plate, and using analytical tools, numerical simulations and experimental evidence, we showed

the occurrence of a spin-orbit coupled generalization of the well-known nonlinear polarization
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rotation effect [71].

7.1 Future Directions

Although we have considered and worked on numerous interesting problems in the field

over the past few years, many unstudied and unanswered problems still come to mind. Here, we

outline a few such problems that could be of interest for future research.

7.1.1 Modulation Instability Phenomena

Modulation instability (MI) is a well-known phenomenon in single mode fibers, where a

quasi-CW pulse propagating in the nonlinear regime can break up into a train of short pulses

spontaneously, leading to the appearance of spectral sidebands [11]. MI requires anomalous

dispersion (β2 < 0) to occur in the case of a single polarization mode propagating in an SMF,

but it can occur even in the normal dispersion (β2 > 0) regime in the presence of two nonlinearly

interacting polarization or spatial modes. MI has already been studied and observed in step and

parabolic index fibers [16, 34, 36].

Modulation instability has also been studied in the context of OAM-carrying fiber modes of

a ring core fiber [63], but so far there appears to be only one reported work that has considered the

problem, and many questions remain unanswered. OAM modes in RCFs are excellent candidates

for studying modulation instability because of the high contribution of waveguide dispersion to

the overall dispersion experienced by the modes. More specifically, it is now known that for an

input laser wavelength that would typically lie in the normal dispersion regime of fused silica, for

example λ0 = 1064 nm, the higher order modes of a RCF can in fact exhibit anomalous dispersion
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at those wavelengths [26,63]. As a result, different regimes of dispersion can be examined in the

same fiber with the same light source by simply exciting a different spatial mode.

Recent experiments that we have conducted have yielded observations that hint at interest-

ing phenomena arising from the fact that even if a single spatial mode is excited in an RCF and

even if there is no linear coupling to other modes, nonlinear coupling still remains. Studying this

problem could be experimentally challenging, and ideally it requires a way to resolve the output

beam into the constituent modes. Although mode-resolved techniques have been demonstrated

already [70], they are typically limited to linearly polarized modes of a conventional fiber. Fur-

ther advancements in such characterization techniques might therefore be needed to be able to

resolve the vector modes of a ring core fiber.

7.1.2 Spatiotemporally Resolved Polarization

A fascinating extension to the spatiotemporal near-field scanning technique that we de-

scribed in Chapter 4 would be the capability to resolve the output not just in space and time, but

also in polarization. As we described in Chapters 4 and 6, our method can be used for linearly

polarized modes emerging from a conventional fiber. However, the polarization sensitivity of

NSOM probes yields the method unusable for vector modes. Furthermore, even if the NSOM

probe were not polarization sensitive, the near-field scanning method does not allow for the in-

sertion of free-space polarization components in between the fiber and the probe. Exactly how

one might extract the capability to spatially resolve the polarization of the output beam therefore

remains an immense experimental challenge. However, such a technique could potentially un-

lock very interesting insights into the nonlinear rotation phenomenon that we described in Fig.
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6.2 and Supplementary Video 3 in Chapter 6.

7.1.3 Applications of MMNLFO to Photonic Reservoir Computing

It is somewhat ironic that this is an idea that appears in the ‘future directions’ section of my

thesis, as the work that we have carried out originally began with a discussion between me and

my advisor on the possibility to use multimode fibers for photonic reservoir computing. However,

we quickly realized that much remains to be understood about the nature of light propagation in

MMFs, and so we decided that that would form my dissertation topic instead.

Photonic reservoir computing is a fast growing research field [106], and there already a

few papers on using few-mode fibers to perform dendrite-like computational tasks in an efficient

manner [107]. However, much remains to be done to advance research in this field. Given the

complexity that MMFs offer in the nonlinear regime, MMNLFO could serve as a powerful plat-

form to build machine learning algorithms, such as reservoir computing, on.

In every thesis on MMNLFO that you come across, you are likely to find a completely

different set of ideas for future directions of research, and many of these ideas, if realized, have

the potential to make great impact in natural and computer sciences research overall. To me, it is

deeply fascinating and a little amusing that such great possibilities exist within a mere strand of

glass.
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Appendix A: FIB Mask Fabrication

In Chapter 4, we described the design of an FIB phase mask for achieving selective exci-

tation of the radially symmetric LP0m modes of a step-index FMF. Here, we briefly describe the

fabrication method employed. Fig. A.1 shows a photograph of a custom fiber holder that was

designed for the specific purpose of mounting it in a focused ion beam instrument. Although FIB

has been used in the fiber context before, at the time of this fabrication, there were not very many

guides on how to mount a fiber inside such an instrument.

The mount shown in Fig. A.1 is the final version of multiple iterations and a few different

designs that we tried out. The structure of the mount consists of a bottom stem that was designed

to be mounted in the slots provided inside the FIB instrument that we used. The top part consisted

of a cuboidal section that held the fiber in a machined v-groove at a 550 degree angle to the vertical

to match the angle of the incoming ion beam. The entire mount was milled in a machine shop

from a single cubical block of steel. Conductive carbon tape and a colloidal silver paste were

used to hold the fiber in place, and also to help dissipate charge.

The fiber end-face was first cleaved before it was stuck onto the mount as shown in Fig. A.1.

The entire mount was then placed in a sputter deposition instrument where the fiber end-face was

sputter-coated with a ≈ 80 : 20 alloy of Au:Pd in a high vacuum chamber for approximately 120

seconds at a current setting of ≈ 15 mA. The mount was then transferred to the FIB instrument

132



Figure A.1: Custom-designed fiber holder for FIB mask fabrication. The fiber is held at a 550

angle relative to the vertical so as to match the angle at which the ion beam is incident on the
fiber.

(TESCAN GAIA3).

Scanning electron micrographs were obtained using the instrument’s SEM functionality at

a voltage setting of 20 kV. The FIB milling was performed by first ensuring that the ion beam is

focused properly, and test patterns were performed on a trial fiber to ensure quality milling. The

ion current was chosen based upon the desired mask size and geometry, but it was typically of

the order of 0.1 − 0.5 nA. It was found that using a small neutralization electron current during

the milling process was useful in dissipating any excess Ga+ charge that may accumulate on
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the exposed fiber end-face, ensuring sharp edges in the mill pattern. The desired mill-depth was

achieved upon iterations of calibrating instrument mill time vs depth measured using SEM tilt-

corrected depth measurements. After the mill process completed, the fiber was dismounted from

the v-groove, and the end-face was cleaned by carefully dipping it in an Aqua Regia solution to

dissolve the metal.

(b)(a)

125 µm

SEM
Optical Micrograph

.

20 µm
14.7 µm

6.4 µm

ʌ

(c)

Figure A.2: (a) Desired mask design for example case of exciting the higher order LP03 mode
selectively in a 2a = 20 µm step-index FMF. Graphic shows the core area only. (b) Scanning
electron micrograph showing the milled cross-section of the fiber. (c) Optical micrograph show-
ing the milled mask pattern, imaged using a 50x magnifying lens.

Fig. A.2 shows the result of the entire process. Fig. A.2(a) shows an example mask design

that is capable of exciting the higher order LP03 mode selectively, as we discussed in Chapter

4. Figures A.2(b) and A.2(c) show scanning electron and optical micrographs respectively of the

fiber cross-section upon completion of the milling and metal removal processes. More complex

designs may be achieved using this technique depending upon the desired feature sizes.
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Appendix B: Example Calculations for Nphkm and ∆βphkm for OAM Modes

Throughout this thesis, we have used the GMMNLSEs Eqs. 2.60 to model nonlinear in-

teractions between a the spatial modes of fibers. In Chapter 6, we give the NLSEs for the two

|L| = 10 SOaa modes, but we do not provide a derivation there. In particular, it is worth ask-

ing the question of what other nonlinear terms exist if the equations were to be written for all 4

|L| = 10 OAM modes.

Additionally, most literature in the field of MMNLFO focuses on scalar modes, and in

some cases vector HE and EH modes. However, as we saw from Eqs. 2.14, the OAM mode

basis consists of modes that are not only vectorial in nature, but also complex. The form of

the GMMNLSEs that we have used in Eqs. 2.60 is completely consistent with complex vector

beams [61]. Here, we describe an instructive example which may be useful for a reader that is

new to MMNLFO in the context of complex vector modes.

B.1 Coupled NLSEs and Mode Definitions

We begin our discussion by writing down the coupled NLSEs:

∂zA
′
p = (−δβ

(p)
1 ∂t − i

β
(p)
2

2
∂2
t )A

′
p + i

n2ω0

c
NphkmA

′∗
hA

′
kA

′
me

i∆βphkm (B.1)
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where we have written the equations in terms of A′
p(z, t) = Ap(z, t)e

−iβ
(p)
0 z.

As we mentioned in Section 2.3.2.3, the ∆βphkm is the phase matching term, whereas

Nphkm is given by (from Eq. 2.61):

Nphkm =
2

3

∫ ∫
(e∗p · em)(ek · e∗h)dxdy +

1

3

∫ ∫
(e∗p · e∗h)(ek · em)rdrdϕ (B.2)

We express the 4 |L| = 10 modes as follows:

e1 = FL(r)e
iLϕσ̂+ (B.3a)

e2 = FL(r)e
−iLϕσ̂− (B.3b)

e3 = FL(r)e
iLϕσ̂− (B.3c)

e4 = FL(r)e
−iLϕσ̂+ (B.3d)

The first two modes are the spin-orbit aligned modes, while the last two are the spin-orbit

aligned modes. For these modes, we have, as we discussed in Section 2.2.6:

β
(1)
0 = β

(2)
0 ̸= β

(3)
0 = β

(4)
0 (B.4)

B.2 Phase Matching

We begin by setting the first index p to 3, denoting that we want to write the NLSE for the

e3 mode. For a nonlinear term to be phase-matched, we require that ∆βphkm = ∆β3hkm = 0.

In general, for 4 modes under consideration, there are 4×4×4 = 64 possible combinations
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of 3hkm. Imposing the constraint ∆β3hkm = 0, however, reduces the number of terms needed to

be calculated. This is because possible values of hkm for which ∆β3hkm = β
(k)
0 + β

(m)
0 − β

(h)
0 −

β
(3)
0 = 0 are the following sets:

• k is either 3 or 4, m and h are either 1 or 2 OR m and h are either 3 or 4

• m is either 3 or 4, k and h are either 1 or 2 OR k and h are either 3 or 4

These possibilities are listed (in a less confusing manner) in the first columns of Tables B.1,

B.2, B.3 and B.4. We are now left with 32 possible terms. For all other possibilities of 3hkm,

∆β3hkm can be shown to be ̸= 0.

B.3 Calculation of Nonlinear Coefficients

We now evaluate whether the N3hkm coefficients are non-zero for the remaining 3hkm

terms. In doing this calculation, we adopt the following convention for the dot product of complex

vectors [61]:

|V|2 = V∗ · V = |Vx|2 + |Vy|2 (B.5)

where V is some complex valued vector with cartesian components Vx and Vy. Note that

with this notation, we have:

σ̂+ · σ̂+ =
(x̂ + iŷ)

2
· (x̂ + iŷ)

2
= 0 (B.6)

and
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σ̂+ · σ̂− =
(x̂ + iŷ)

2
· (x̂ − iŷ)

2
= 1 (B.7)

which is counter-intuitive.

We first show the calculation for an example N3hkm term, and later list only whether the

constituent terms in N3hkm are zero or non-zero in Tables B.1, B.2, B.3 and B.4. Consider the

case 3hkm = 3131. The first integral in Eq. B.2, say N1, can be calculated as:

N1 =
2

3

∫ ∫
(e∗3 · e1)(e1 · e∗3)rdrdϕ

=
2

3

∫ ∫ (
(FL(r)e

iLϕσ̂−)
∗ · (FL(r)e

iLϕσ̂+)
)(

(FL(r)e
iLϕσ̂+) · (FL(r)e

iLϕσ̂−)
∗
)
rdrdϕ

= 0 (B.8)

where in the last step, we find that the integral is zero because both the first and second

terms in the integrand product involve the dot product σ̂+ · σ̂+, which is 0.

The second term in the nonlinear coefficient, N2, can be calculated as:

N2 =
1

3

∫ ∫
(e∗3 · e∗1)(e1 · e3)rdrdϕ

=
1

3

∫ ∫ (
(FL(r)e

iLϕσ̂−)
∗ · (FL(r)e

iLϕσ̂+)
∗
)(

(FL(r)e
iLϕσ̂+) · (FL(r)e

iLϕσ̂−)
)
rdrdϕ

=
1

3

∫ ∫
|FL|4(r)

(
e−iLϕe−iLϕ

)(
eiLϕeiLϕ

)
rdrdϕ

=
2π

3
Ir (B.9)
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where in the penultimate step we have made use of the identity σ̂+ · σ̂− = 1. The 2π results

from the azimuthal part of the integral, and Ir is the radial integral defined as follows:

Ir =
∫ ∫

|FL|4(r)rdr (B.10)

Similarly, the nonlinear coefficients N3hkm can be calculated for other allowed combina-

tions of the indices 3hkm. In Tables B.1, B.2, B.3 and B.4, we list the resulting N1 and N2 terms

for all combinations of 3hkm for which ∆β3hkm = 0.

Following these calculations, we finally end up with the coupled NLSE for the p = 3 mode.

However, this equation can be generalized to any p mode, with p being any number from 1 to 4,

since we have not made any assumptions that are particular to p = 3. The resulting NLSEs are

then given as:

∂zA
′
p = (−δβ

(p)
1 ∂t − i

β
(p)
2

2
∂2
t )A

′
p + i2πIr

n2ω0

c

(
2

3
|A′

p|2 +
4

3

∑
h̸=p

|A′
h|2

)
A′

p (B.11)
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Table B.1: Zero and Nonzero Nphkm Coefficients for |L| = 10 OAM Modes - Part 1

3hkm N1 =
2
3

∫ ∫
(e∗p · em)(ek · e∗h)dxdy N2 =

1
3

∫ ∫
(e∗p · e∗h)(ek · em)dxdy Nphkm

(×2πIr) (×2πIr) (×2πIr)

3131 0 1/3 1/3

3232 2/3 0 2/3

3333 2/3 0 2/3

3434 0 1/3 1/3

3132 0 0 0

3231 0 0 0

3334 0 0 0

3433 0 0 0
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Table B.2: Zero and Nonzero Nphkm Coefficients for |L| = 10 OAM Modes - Part 2

3hkm N1 =
2
3

∫ ∫
(e∗p · em)(ek · e∗h)dxdy N2 =

1
3

∫ ∫
(e∗p · e∗h)(ek · em)dxdy Nphkm

(×2πIr) (×2πIr) (×2πIr)

3141 0 0 0

3242 0 0 0

3343 0 0 0

3444 0 0 0

3142 0 0 0

3241 0 0 0

3344 0 0 0

3443 2/3 1/3 1
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Table B.3: Zero and Nonzero Nphkm Coefficients for |L| = 10 OAM Modes - Part 3

3hkm N1 =
2
3

∫ ∫
(e∗p · em)(ek · e∗h)dxdy N2 =

1
3

∫ ∫
(e∗p · e∗h)(ek · em)dxdy Nphkm

(×2πIr) (×2πIr) (×2πIr)

3113 2/3 1/3 1

3223 2/3 0 2/3

3333 2/3 0 2/3

3443 2/3 1/3 1

3123 0 0 0

3213 0 0 0

3343 0 0 0

3433 0 0 0
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Table B.4: Zero and Nonzero Nphkm Coefficients for |L| = 10 OAM Modes - Part 4

3hkm N1 =
2
3

∫ ∫
(e∗p · em)(ek · e∗h)dxdy N2 =

1
3

∫ ∫
(e∗p · e∗h)(ek · em)dxdy Nphkm

(×2πIr) (×2πIr) (×2πIr)

3114 0 0 0

3224 0 0 0

3334 0 0 0

3444 0 0 0

3124 0 0 0

3214 0 0 0

3344 0 0 0

3434 0 1/3 1/3
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Appendix C: List of Publications

• Sai Kanth Dacha, Wenqi Zhu, Amit Agrawal, Kenneth J. Ritter, and Thomas E. Murphy,

“Nonlinear rotation of spin-orbit coupled states in hollow ring-core fibers,” Opt. Express

30, 18481-18495 (2022)

• Sai Kanth Dacha and Thomas E. Murphy, “Spatiotemporal characterization of nonlinear

intermodal interference between selectively excited modes of a few-Mode fiber”, Optica 7,

1796-1803 (2020)

• S. K. Dacha, W. Zhu, A. Agrawal, and T. E. Murphy, “Kerr-induced Rotation of Mixed

Orbital Angular Momentum States in Hollow Ring-Core Fibers,” in Optical Fiber Commu-

nication Conference (OFC) 2022, paper W2A.13

• S. K. Dacha and T. E. Murphy, “(2+1)D Spatiotemporal Characterization of Nonlinear In-

teractions between Selectively Excited Spatial Modes of a Few-Mode Fiber,” in Conference

on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2020),

paper FTh3A.6

• S. K. Dacha and T. E. Murphy, “Time-Domain Interference of Nonlinearly Interacting Spa-

tial Modes in a Multimode Fiber,” 2018 Conference on Lasers and Electro-Optics (CLEO),

2018
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