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Temporal multiplexing provides an efficient and scalable approach to realize a quantum random walk
with photons that can exhibit topological properties. But two-dimensional time-multiplexed topological
quantum walks studied so far have relied on generalizations of the Su-Shreiffer-Heeger model with no
synthetic gauge field. In this work, we demonstrate a two-dimensional topological quantum random walk
where the nontrivial topology is due to the presence of a synthetic gauge field. We show that the synthetic
gauge field leads to the appearance of multiple band gaps and, consequently, a spatial confinement of the
quantum walk distribution. Moreover, we demonstrate topological edge states at an interface between
domains with opposite synthetic fields. Our results expand the range of Hamiltonians that can be simulated

using photonic quantum walks.
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Photonics provides a compelling platform to study
quantum random walks [1]. Photons can propagate over
long distances without losing coherence, enabling complex
quantum walks that can implement various quantum
computing algorithms [2—4] and also simulate a broad
range of quantum Hamiltonians [5]. Photonic quantum
walks in both one and two dimensions can be implemented
in spatial degrees of freedom using beam splitters [6—8] or
coupled waveguide arrays [9—11]. But such approaches are
difficult to scale to a large number of steps, particularly
when going to higher dimensions.

Synthetic spaces provide an alternative approach to scale
the state space of the walker without requiring complex
photonic circuits. Examples of synthetic spaces include
frequency [12-16], orbital angular momentum [17-20],
and transverse spatial modes as recently realized exper-
imentally [21]. Time multiplexing is another synthetic
space that is particularly easy to work with [22-27].
Time-multiplexed quantum walks have the advantage that
they can span an extremely large state space with only a few
optical elements and can efficiently scale to a higher
number of walker dimensions.

Recently, time-multiplexed quantum walks have been
used to explore topological physics and the associated edge
states in both one- and two-dimensional systems [26,27].
Most realizations of such topological quantum walks are
based on the split-step quantum walk protocol [28-31].
Similar to the Su-Shreiffer-Heeger model, here the non-
trivial topology is a result of the direction-dependent
hopping strength between the lattice sites. However, many
of the most interesting topological Hamiltonians—such as
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the integer quantum Hall effect [32], the Haldane model
[33], and the quantum-spin Hall effect [34]—require
gauge fields that generate direction-dependent hopping
phases. Synthetic gauge fields have been realized in a
variety of physical systems [35—40] and also proposed in
discrete-time quantum walks [41]. However, so far, time-
multiplexed quantum walks with synthetic gauge fields
have only been experimentally realized in one dimension,
which severely restricts the scope of topological
Hamiltonians that can be explored.

Here, we experimentally demonstrate a topological syn-
thetic gauge field in a two-dimensional time-multiplexed
quantum walk. We show that in our discrete-time quantum
walk, the quasienergy band structure exhibits multiple band
gaps depending on the magnitude of the synthetic gauge
field. These band gaps result in the suppressed diffusion of
the quantum walker, as opposed to ballistic diffusion that
would otherwise occur [42]. Moreover, we demonstrate the
presence of multiple topological edge bands at an interface
between two domains with opposite magnetic fields.
Because of the presence of two topological edge bands,
our system supports two sets of nondegenerate topological
edge states that travel in forward and backward directions
along the interface.

To implement a gauge field, pulses must accumulate a
net phase shift when walking around a closed trajectory.
Figure 1(a) shows how we implement this condition. We
apply a phase shift of y¢p when the walker moves to the
right and —y¢ when the walker steps to the left, where y is
the vertical coordinate of the walker. In this way, when
walking around a closed trajectory, pulses will accumulate
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FIG. 1. (a) Schematic explaining the possible movements of a

walker at spatial position (x, y) along with applied phase shifts
during each step of the quantum walk. (b) Schematic of the two-
dimensional quantum walk setup describing the details of the
experimental setup. PD is for photodetector, BPF for band pass
filter, SOA for semiconductor optical amplifier, EOPM for electro-
optic phase modulator, and PC is for polarization controller.

a net phase proportional to the enclosed area. This phase
convention realizes a uniform magnetic field in the Landau
gauge. This type of phase pattern should be distinguished
from the position-dependent but direction-independent
phase shifts previously used for implementation of electric
fields in discrete-time quantum walks [43-45].

In our time-multiplexed photonic quantum walk, optical
delays map the walker state space into time delays of optical
pulses. Similar to earlier studies [24,27] of two-dimensional
quantum random walks, we implement these delays using a
pair of nested fiber delay loops. Figure 1(b) shows the
schematic of the experimental setup, and the full details are
explained in the Supplemental Material [46]. The experi-
mental setup consists of two beam splitters with their ports
connected to fibers of different lengths such that they map
the =x and £y directions to different time delays. One
complete propagation of an optical pulse around the loop is
then equivalent to hopping of the walker to one of the four
possible corners in the synthetic space [Fig. 1(a)]. Two
semiconductor optical amplifiers (SOAs) are employed
to partially compensate for the losses that the optical
pulses experience in each round trip. In this setup, we
study the quantum walk distribution at each time step via
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FIG. 2. (a) Experimental observations and (b) theoretical pre-
dictions of the evolution of the quantum walk distribution under
no phase modulation. (c) Experimental observations and (d) theo-
retical predictions of the evolution of the quantum walk distri-
bution under linearly dependent phase modulation ¢, = y¢ for
the case of ¢p = 7/2. The left, middle, and right columns show the
distributions at time steps of 1, 5, and 9, respectively. In these
plots, all the distributions are normalized to their maximum.
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two photodetectors analyzing two channels that we refer to
as the up and down channels, as labeled in Fig. 1(b). We
initialize the quantum walk through a single incident laser
pulse that is injected into the up channel starting the
evolution of the quantum walk distribution from the origin
in synthetic space. Here, we have analyzed the evolution of
the quantum walk based on the pulses detected in the down
channel. The electro-optic modulators that are driven by
programmable voltage waveforms are used for producing
the desired phase shifts to generate the synthetic gauge field.

Figure 2 compares the evolution of the quantum walk
distribution with and without an applied gauge field.
Figure 2(a) shows the experimental results for the evolution
under no applied gauge field. In this figure, the distribution
of the quantum walker is shown at three different time steps
of 1, 5, and 9. In the absence of a gauge field, the quantum
walk exhibits rapid diffusion. These results are consistent
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(a) Comparison of the theoretical and experimental results for the variation of the quadratic mean of x under no gauge field as

well as under the gauge field with ¢ = z/2. (b) Comparison of the theoretical and experimental results for the variation of the quadratic
mean of y under no gauge field as well as under the gauge field with ¢p = z/2. The error bars in the measurements are smaller than the
size of the plotted data points. (c,d) Band structure of the system under no phase modulation (¢ =0) and a linear phase

modulation (¢ = 7/2).

with the theoretical predictions shown in Fig. 2(b).
Figure 2(c) shows the experimental results for the evolution
of the quantum walk distribution in the presence of a
gauge field with ¢p = /2. The gauge field leads to sup-
pressed diffusion and confinement of the quantum walk
distribution. The experimental results shown in Fig. 2(c) for
the case of a gauge field with ¢p = z/2 are consistent with
the theoretical predictions shown in Fig. 2(d).

We calculate the similarity of the measured distributions
relative to the theoretical distributions (Pgy,) based on

F(n) =3, /Pu(x,y;n)Peyy(x, y;n). For the case of
no applied gauge field, we obtain similarities of 0.999,
0.996, and 0.985 for time steps of 1, 5, and 9, respectively.
Similarly, for the quantum walk under the gauge field, we
determine similarities of 0.999, 0.993, and 0.972 for time
steps of 1, 5, and 9, respectively.

To provide a more quantitative analysis of the effect of the
gauge field on the confinement of the quantum walk
distribution, we calculate the variation of the spatial quad-
ratic means as a function of the time step. Figures 3(a)
and 3(b) plot the quadratic means of x and y with gauge
fields of ¢ =0 and ¢ = z/2. With no applied gauge
field, the quadratic means show nearly linear variation
with the time step, consistent with ballistic diffusion (see

Supplemental Material [46] for an analytical explanation).
But under the application of the gauge field with ¢ = /2,
the quadratic means show reduced diffusion. The decrease
of the quadratic means in both directions is due to the
confinement of the quantum walk distribution under a
constant pseudo-magnetic field. Figures 3(a) and 3(b)
confirm the agreement of the experimental results with
the theoretical predictions, both with and without the
applied gauge field (see also Fig. S3 in the Supplemental
Material [46] for the numerical study of the variation of
quadratic means over a larger number of steps).

In order to better understand the confinement of the
quantum walker in the presence of a gauge field, we first
calculate the band structure of the quantum walk. The full
evolution of the walker is determined by the single-step
propagation matrix U, which advances the quantum walk
distribution by one time step. According to Floquet band
theory, the single-step propagation matrix determines the
effective Hamiltonian from U = e~'Her, which gives the
band structure of the walker. With no synthetic gauge field
(¢ =0), we can analytically solve for the dispersion
relation of the walker (see theoretical analysis section in
the Supplemental Material [46]). The quasienergy bands of
the system in this case are
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E . = +arccos [sin(k,) sin(k, )], (1)

where k, and k, are the momentum wave vectors in inverse
synthetic space. Figure 3(c) shows the corresponding band
structure of the system. Because of the discrete nature of the
quantum walk, the quasienergy spectrum wraps every 2,
and therefore, we restrict the quasienergies to the range
of —z and z. As Fig. 3(c) shows, the system is gapless,
and there are four Dirac points, two at £ =0 and two
at £ = +n.

We next consider the effect of the synthetic gauge field
on the band structure. Figure 3(d) shows the band diagram
for the case of ¢) = 7/2. An analytical solution for this case
also exists (see Supplemental Material [46]), with a
quasienergy band structure given by

1 1
E,.= n—; + 7 arecos (1 -3 sin2(2kx)sin2(2ky)> (2)

for n € Z. Similar to the case of the integer quantum Hall
effect, the introduction of a gauge field produces a series of
topological bands. For ¢p = z/2, we observe four doubly
degenerate bands. However, because of the wrapping of the
quasienergy, one set of bands is split and appears close to
energies £x. In contrast to the zero gauge field, the band
structure in the presence of a synthetic gauge field exhibits
band gaps that lead to the confinement of the quantum
walker. We have also obtained the corresponding band
diagrams for several other choices of ¢p. We have presented
these results (see Fig. S2) along with their derivation in the
Supplemental Material [46].

One consequence of a gauge field is the presence of edge
states at the boundaries. In this synthetic space, we can
make a boundary by applying two different gauge fields to
two neighboring regions [41]. Here, using a phase modu-
lation pattern of ¢, = y¢ for y>0 and ¢, = —y¢ for y <0,
we realize two domains with opposite magnetic fields
(y > 0 and y < 0), as illustrated in Fig. 4(a). Figure 4(b)
shows the band structure for such a phase pattern with
¢ = n/2. The band diagram contains multiple band gaps
hosting unidirectional edge states that propagate at the
boundary in opposite directions. The corresponding band
diagrams for several other choices of ¢ are also presented in
the Supplemental Material [46] (see Fig. S4).

Figure 4(c) shows experimentally measured results for
the phase modulation pattern shown in Fig. 4(a). We start
the quantum walker at the interface between the two
magnetic domains, precisely where edge states should be
present. In this case, the quantum walker predominantly
walks along the edge, remaining confined to the boundary
between the two regions. These results are consistent with
the numerical simulations demonstrating how the edge
states cause the quantum walk distribution to move mainly
along the boundary [Fig. 4(d)]. We also note that because
of the linear dispersion of the topological edge states
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FIG. 4. (a) The schematic describing the phase modulation

pattern of ¢, = |y|¢ for ¢) = z/2 in the synthetic space. (b) Band
diagram of the corresponding system, which clearly shows the
presence of edge states in the band gap. (c) Experimental
observations and (d) theoretical predictions of the evolution of
the quantum walk distribution moving along the boundary under
the phase modulation of ¢, = |y|¢ for ¢ = /2. The left, middle,
and right columns show the distributions at time steps of 1, 5, and
9, respectively. In these plots, all the distributions are normalized
to their maximum.

[see Fig. 4(b)], the photonic wave packets moving to the
left and the right along the domain boundary experience
minimal spreading [Fig. 4(c)], unlike that in the absence of
edge states [Fig. 2(c)]. We have also studied the robustness
of the edge modes against sharp bends in the Supplemental
Material [46]. For this purpose, we have considered a
nonplanar interface and have shown that the quantum walk
distribution moves along the boundary and remains con-
fined to it in spite of its nonplanar shape (see Fig. S5).

Typical topological quantum walks result in unidirec-
tional edge-state propagation. Here, however, we do not see
unidirectional movements because we are initializing the
walker at a position eigenstate, which is a superposition of
all energy eigenstates of the band structure. As can be seen
from Fig. 4(b), different energy bands support topological
edge states propagating in either the left or right direction.
We could excite specific edge modes by engineering the
initial distribution of the quantum walk to be confined in
corresponding energies.
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In conclusion, we have implemented time-multiplexed
two-dimensional quantum random walks with a synthetic
gauge field. This gauge field leads to the suppressed
diffusion of the walker evolution. Through application of
an inhomogeneous gauge field on this quantum walk, we
observed the creation of topological edge states that are
confined at the boundary of two distinct gauge fields. These
results demonstrate a versatile approach to create various
types of band structures with a tunable number of band
gaps. In our setup, there exists an overall loss of around
6.5 dB in each round trip, and a major part (about 3 dB) of
the loss comes from the fiber coupled modulators. In order
to increase the number of steps, we used optical amplifiers
to compensate for round-trip losses without damaging the
phase coherence of the optical pulses. These losses can be
reduced by decreasing coupler losses through fiber splicing
and the use of modulators with lower insertion loss.
Eliminating these losses opens up a path towards quantum
random walks that can be implemented at the single photon
level or in higher dimensions. The addition of optical
nonlinearities and integration of this platform with single
photon emitters could provide another interesting oppor-
tunity to study topological band structures with optical
interactions [47,48]. Ultimately, our results expand the
toolbox of quantum photonic simulation and provide a
scalable architecture to study photonic quantum walks with
nontrivial topologies.
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