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This document provides supplementary information to "Guiding and confining of light in a two-
dimensional synthetic space using electric fields," https://doi.org/10.1364/OPTICA.386347. We 
explain the experimental details of this study in the first section of this supplemental ma-
terial. In the second section, we review the theoretical analysis of one-dimensional quantum 
walks and explain the possibility of observing Bloch oscillations using time-dependent gauge 
fields in such quantum walks. In the next section, we provide the corresponding theoretical 
analysis for the case of two-dimensional quantum walks.

1. EXPERIMENTAL DETAILS:

Figure S1 shows the schematic of the experimental setup, which
is composed of similar elements as used in our previous work
[1]. However, the phase modulation patterns used in this study
are different from those used earlier. We used a laser diode
made by Bookham technology (LC25W5172BA-J34) operating
at the C-band of the telecom wavelength (1550 nm) for pulse
generation. By modulating this laser, pulses with a power of
10 mW and pulse duration of 2 ns were generated, which were
sent into the setup with a repetition rate of 10 µs. These pulses
initiate the quantum walk in our synthetic two-dimensional
space. The initial pulse after passing through the first 50/50
beam splitter continues its path through either the 1 m or 2 m
fiber length. This leads to different delays that can be concep-
tually regarded as “choosing” the left or right direction in the
x movement by the quantum walker. When reaching the next
beam splitter, the pulse chooses either the 130 m or 118 m fiber
spool. This determines whether the pulse has gone in the up
or down direction in the y movement. The x and y coordinate
of the pulses are encoded based on the delay in reaching the
detectors. We used 90/10 beam splitters to out-couple 10% of
the light for detection purposes. In addition, two phase modula-
tors made by Cybel, LLC (MPZ-LN-10-P-P-FA-FA) were used to
apply opposite phases to the right and left moving pulses (i.e.,

±x direction).

We used semiconductor optical amplifiers made by Thorlabs
(SOA1117S) to compensate for the loss in the setup by ampli-
fying the pulses without ruining their phase coherence. These
amplifiers are only turned on for a fraction of a repetition period
at each cycle to avoid over amplifying the background noises.
Moreover, in order to filter out background noises, we used nar-
row band-pass filters (< 0.3nm) directly after the semiconductor
optical amplifiers. However, the ratio of the optical pulse power
at different positions of the synthetic space relative to the noise
degrades with increasing time steps due to the diffusion and
the added noise. We therefore limited our measurement of the
quantum walk distribution to 10 steps because of the observed
degradation of the signal-to-noise ratio and the finite ratio of
the time delays corresponding to the x and y movements. The
distribution of the quantum walk at every time step was deter-
mined by measuring the power of the pulses present in each
step. We also used polarization controllers in our setup in order
to compensate for the polarization changes along the optical
fibers.

We measured the quantum walk distribution at different
time steps under the application of the proposed time-varying
gauge fields with different phases (φ = 0 [deg], φ = 90 [deg],
φ = 60 [deg], φ = 45 [deg], andφ = 36 [deg]).

https://doi.org/10.1364/OPTICA.386347
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Fig. S1. Schematic of the experimental setup for the two-
dimensional quantum random walk. PD: photodetector, BPF:
band-pass filter, SOA: semiconductor optical amplifier, EDFA:
Erbium-doped fiber amplifier, EOM: Electro-optic modulator
and PC: polarization controller.

Using the measured probability distributions, we calculated
the quadratic means and norm ones of the x and y of the quan-
tum walk distribution. We plotted the variation of these quan-
tities by the time step in the main text. These quantities reach
their local minima after around 2π/φ time steps depending on
the value of φ used. This behavior is due to the state revival and
the trapping of the quantum walk distribution close to the origin
after around 2π/φ time steps.

Based on the measured results, we can also calculate the
quantum walk distribution probability at the origin for differ-
ent applied phases. Using these probabilities, we plotted the
revival probability in the main text as a function of the required
steps to reach the revival. Indeed, smaller phases lead to higher
probability of the revival, as has been discussed in the main text.

We note that the error in our measurement of the intensity of
the pulses at different time delays (corresponding to different
positions in the synthetic space) is around 3% (∆Px,y/Px,y = 3%).
This error will propagate to the error in the calculated quadratic
means, norm ones, and revival probabilities, as explained in the
following.

By defining P1 = ∑x,y x2Px,y and P2 = ∑x,y Px,y, in which
Px,y is the power detected at coordinates x and y in the synthetic
space, the quadratic mean of x is calculated based on:

xrms =
√
< x2 > =

√
∑x,y x2Px,y

∑x,y Px,y
=

√
P1
P2

. (S1)

By assuming that ∆Px,y/Px,y = D = 3%, since x2 > 0 and
Px,y > 0, then:

∆P1
P1

=

√
∑x,y x4

(
∆Px,y

)2

∑x,y x2Px,y
=

D
√

∑x,y x4P2
x,y

∑ x2Px,y
≤ D (S2)

∆P2
P2

=

√
∑x,y

(
∆Px,y

)2

∑x,y Px,y
=

D
√

∑x,y P2
x,y

∑x,y Px,y
≤ D (S3)

Therefore:

∆ < x2 >

< x2 >
=

√(
∆P1
P1

)2
+

(
∆P2
P2

)2
≤
√

2D (S4)

Consequently:

∆xrms

xrms
=

1
2

∆ < x2 >

< x2 >
≤ 1√

2
D (S5)

Similarly, by defining P3 = ∑x,y |x| Px,y, the norm one of x is
calculated based on:

< |x| >=
P3
P2

(S6)

Since |x| > 0 and Px,y > 0, then:

∆P3
P3

=

√
∑x,y x2

(
∆Px,y

)2

∑x,y |x| Px,y
=

D
√

∑x,y x2P2
x,y

∑ |x| Px,y
≤ D (S7)

Consequently:

∆ < |x| >
< |x| > =

√(
∆P3
P3

)2
+

(
∆P2
P2

)2
≤
√

2D (S8)

A similar analysis holds for the y direction.
The probability of revival is also calculated based on:

PU (0, 0) =
P0,0

∑x,y Px,y
(S9)

Consequently:

∆PU (0, 0)
PU (0, 0)

=

√(
∆P0,0

P0,0

)2
+

(
∆P2
P2

)2
≤
√

2D (S10)

Therefore, the error bars in the quadratic means and norm
ones as well as the probabilities of revival are less than around
4% and are smaller than the size of the plotted data points.
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Fig. S2. Simplified version of the schematic of a one-
dimensional quantum random walk setup

2. THEORETICAL ANALYSIS FOR ONE-DIMENSIONAL
QUANTUM RANDOM WALKS:

In this section, we consider the evolution of pulses (representing
the quantum walkers) in one-dimensional quantum random
walks. For the theoretical analysis of the quantum walk, we can
assume that all the losses in the setup are fully compensated
by the amplifiers. Therefore, we can consider an ideal setup as
shown in Fig. S2.

Two pulses just before the first beam splitter,

 U(n)
x

D(n)
x

, will

produce the output pulses as (movement in the x direction):

 U(n+1)
x+1

D(n+1)
x−1

 =
1√
2

 e−iφn,x 0

0 eiφn,x


×

 1 −1

1 1

 U(n)
x

D(n)
x

 . (S11)

Therefore,

 U(n)
x

D(n)
x

 will produce the following pulses after

traversing the beam splitter:

U(n+1)
x+1 =

e−iφn,x

√
2

(
U(n)

x − D(n)
x

)
(S12)

D(n+1)
x−1 =

eiφn,x

√
2

(
U(n)

x + D(n)
x

)
(S13)

Alternatively, based on the above results

 U(n+1)
x

D(n+1)
x

 can be

produced from other pulses as:

U(n+1)
x =

e−iφn,x−1

√
2

(
U(n)

x−1 − D(n)
x−1

)
(S14)

D(n+1)
x =

eiφn,x+1

√
2

(
U(n)

x+1 + D(n)
x+1

)
(S15)

By defining S(n)
x = U(n)

x + D(n)
x and P(n)

x = U(n)
x − D(n)

x , the
obtained equations can be written as:

S(n+1)
x =

eiφn,x+1

√
2

S(n)
x+1 +

e−iφn,x−1

√
2

P(n)
x−1 (S16)

P(n+1)
x = − eiφn,x+1

√
2

S(n)
x+1 +

e−iφn,x−1

√
2

P(n)
x−1 (S17)

 S(n+1)
x

P(n+1)
x

 =
1√
2

 eiφn,x+1 e−iφn,x−1

−eiφn,x+1 e−iφn,x−1

 S(n)
x+1

P(n)
x−1

 (S18)

By defining s(n)kx
and p(n)kx

as Fourier transforms of S(n)
x and

P(n)
x , we have: S(n)

x

P(n)
x

 =
1

2π

 ∫
kx

s(n)kx
eikx xdkx∫

kx
p(n)kx

eikx xdkx

 (S19)

Therefore:

 ∫
kx

s(n+1)
kx

eikx xdkx∫
kx

p(n+1)
kx

eikx xdkx

 =
1√
2

 eiφn,x+1 e−iφn,x−1

−eiφn,x+1 e−iφn,x−1


×

 ∫
kx

eikx s(n)kx
eikx xdkx∫

kx
e−ikx p(n)kx

eikx xdkx

 (S20)

This equation can be used to solve the Fourier transforms as
functions of the time step. In the following subsections, we solve
this equation for two cases of no phase modulation as well as
time dependent linear phase modulation.

A. Zero phase modulation:
For the case of no applied phase, we have:

 s(n+1)
kx

p(n+1)
kx

 =
1√
2

 eikx e−ikx

−eikx e−ikx

 s(n)kx

p(n)kx

 (S21)

Note that the evolution matrix has the determinant of 1.
Based on this matrix, the effective Hamiltonian, He f f = i log (U),
is given by:

H =
arccos

(
cos (kx) /

√
2
)

√
2 sin

(
arccos

(
cos (kx) /

√
2
))

×

 sin (kx) −ie−ikx

ieikx − sin (kx)

 (S22)

The obtained Hamiltonian is hermitian and its eigenvalues
are given by:

E± = ± arccos
(

cos (kx) /
√

2
)

(S23)

The evolution after n steps is given by:

 s(n)kx

p(n)kx

 =
1√
2n

 eikx e−ikx

−eikx e−ikx

n  s(0)kx

p(0)kx

 (S24)

Assuming that the whole evolution is caused by a single

pulse at the origin (U(0)
x = δ (x), D(0)

x = 0 which is equivalent

to S(0)
x = δ (x), P(0)

x = δ (x)), we have:
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 s(0)kx

p(0)kx

 =

 1

1

 (S25)

Therefore, for the down channel pulses, d(n)kx
=

0.5
(

s(n)kx
− p(n)kx

)
, we have:

d(n)kx
=

eikx

√
2

sin
(

n arccos
(

cos (kx) /
√

2
))

sin
(

arccos
(

cos (kx) /
√

2
)) (S26)

All the moments, such as the distribution variances and av-
erages (

〈
x2〉

D and 〈x〉D ) as functions of the time step n, can be
obtained from the above expression.

Based on the fact that:

d(n)kx
= ∑

x
D(n)

x e−ikx x (S27)

Then:

d(n)∗lx
d(n)kx

= ∑
p

∑
x

e−i(kx x−lx p)D(n)∗
p D(n)

x (S28)

Therefore, the following equations can be obtained straight-
forwardly:

PD = ∑
x

∣∣∣D(n)
x

∣∣∣2 =
1

2π

∫ 2π

kx=0

∣∣∣d(n)kx

∣∣∣2 dkx

=
1

4π

∫ 2π

kx=0

sin2
(

n arccos
(

cos (kx) /
√

2
))

sin2
(

arccos
(

cos (kx) /
√

2
)) dkx (S29)

〈x〉D = ∑
x

x
∣∣∣D(n)

x

∣∣∣2 =
1

2π

∫ 2π

kx=0
d(n)∗kx

(
i

d
dkx

)
d(n)kx

dkx (S30)

〈
x2
〉

D
= ∑

x
x2
∣∣∣D(n)

x

∣∣∣2
=

1
2π

∫ 2π

kx=0
d(n)∗kx

(
i

d
dkx

)2
d(n)kx

dkx (S31)

In the limit of large n, we have:

PD →
1

8π

∫ 2π

kx=0

1
1− cos2 (kx) /2

dkx =
1

2
√

2
(S32)

〈x〉D → 0 (S33)

〈
x2
〉

D
→ n2

16π

∫ 2π

kx=0

sin2 (kx)

(1− cos2 (kx) /2)2 dkx =
n2

8
√

2
(S34)

These results prove that the spatial quadratic mean of the
quantum walk distribution varies linearly with the time step.
Note that these average values are normalized relative to the
total power in the up and down channels. However, they can
also be normalized relative to the total power present in the cor-
responding channel. Since the probabilities of PD and PU tend

toward constant values, by the latter normalization the asymp-
totic behavior of the quadratic mean remains linear relative to
the time step.

Similarly, we can investigate the up channel:

u(n)
kx

= 0.5
(

s(n)kx
+ p(n)kx

)
= cos

(
n arccos

(
cos (kx) /

√
2
))

− i
sin (kx)√

2

sin
(

n arccos
(

cos (kx) /
√

2
))

sin
(

arccos
(

cos (kx) /
√

2
)) (S35)

PU = ∑
x

∣∣∣U(n)
x

∣∣∣2 =
1

2π

∫ 2π

kx=0

∣∣∣u(n)
kx

∣∣∣2 dkx

=
1

4π

∫ 2π

kx=0
sin2 (kx)

sin2
(

n arccos
(

cos (kx) /
√

2
))

sin2
(

arccos
(

cos (kx) /
√

2
)) dkx

+
1

2π

∫ 2π

kx=0
cos2

(
n arccos

(
cos (kx) /

√
2
))

dkx (S36)

〈x〉U = ∑
x

x
∣∣∣U(n)

x

∣∣∣2 =
1

2π

∫ 2π

kx=0
u(n)∗

kx

(
i

d
dkx

)
u(n)

kx
dkx (S37)

〈
x2
〉

U
= ∑

x
x2
∣∣∣U(n)

x

∣∣∣2
=

1
2π

∫ 2π

kx=0
u(n)∗

kx

(
i

d
dkx

)2
u(n)

kx
dkx (S38)

In the limit of large n, we have:

PU →
1
2
+

1
8π

∫ 2π

kx=0

sin2 (kx)

1− cos2 (kx) /2
dkx = 1− 1

2
√

2
(S39)

〈x〉U →
(

1−
√

2
2

)
n (S40)

〈
x2
〉

U
→ n2

8π

∫ 2π

kx=0

sin2 (kx)
(

sin2 (kx) +
1
2

)
(

1− cos2(kx)
2

)2 dkx

=

(
1− 9

8
√

2

)
n2 (S41)

B. Time-dependent phase modulation:
For the case of a time-dependent but coordinate-independent
phase modulation, we have:

 s(n+1)
kx

p(n+1)
kx

 =

 ei(kx+φn )√
2

e−i(kx+φn )√
2

− ei(kx+φn )√
2

e−i(kx+φn )√
2

 s(n)kx

p(n)kx

 (S42)

We consider phase modulations that are linearly varying
with the time step, such that φn = nφ. Therefore, by defining

w(n)
kx

= s(n)kx−nφ and v(n)kx
= p(n)kx−nφ:
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Fig. S3. The quantum walk probability distribution in the (a) up and (b) down channels at different time steps under no applied
gauge field. The quantum walk probability distribution in the (c) up and (d) down channels at different time steps under a time-
varying gauge field with a phase of φ = π/6. Under the presence of a nonzero phase, the walker returns back to the origin after a
fixed number of steps, which is determined by the applied phase.
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 w(n+1)
kx+φ

v(n+1)
kx+φ

 =
1√
2

 eikx e−ikx

−eikx e−ikx

 w(n)
kx

v(n)kx

 (S43)

The evolution matrix can be obtained for rational values
of phase modulations, φ/2π = p/q. We then can obtain the
pseudo-energy band diagrams from the evolution matrix. In the
following, we obtain the eigen-energies for any rational value of
phase modulation, straightforwardly.

By defining r(n)kx
=
[

w(n)
kx

v(n)kx

]T
and

Mkx =
1√
2

 eikx e−ikx

−eikx e−ikx


=

1√
2

 1 1

−1 1

 eikx 0

0 e−ikx

 , (S44)

we have:

r(n+1)
kx+φ = Mkx r(n)kx

(S45)

After q steps, we have:

r(n+q)
kx

= Mkx+(q−1)φ . . . Mkx r(n)kx
(S46)

Therefore, by defining Y(i)
kx

= Mkx+(i−1)φ . . . Mkx , the follow-
ing holds:

Mkx =
1√
2

 eikx e−ikx

−eikx e−ikx

 (S47)

r(n+q)
kx

= Y(q)
kx

r(n)kx
(S48)

Since M and Y are unitary matrices, the following equations
hold for the eigen-energies:

Y(q)
kx

r(n)kx
= eiqEr(n)kx

(S49)

Y(q)†
kx

r(n)kx
= e−iqEr(n)kx

(S50)

Consequently, we have:

1
2

(
Y(q)

kx
+ Y(q)†

kx

)
r(n)kx

= cos (qE) r(n)kx
(S51)

It can be verified that not only for φ = 2π/q but also for any
φ = 2πp/q, with q and p being relatively prime, the following
holds:

1
2

(
Y(q)

kx
+ Y(q)†

kx

)
=
(

cos
(πq

2

)
− cos (qkx)

) (−1)q
√

2q
I

− cos
(πq

2

)
I (S52)
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Fig. S4. (a) The probability amplitude of the quantum walker
to be at the origin in the up channel after q steps as a function
of q. (b) The normalized probability of the quantum walker to
return to the origin in the up channel after q steps as a function
of q.

Therefore, the eigen-energies are given by

En,±,kx =
2nπ

q
± 1

q
arccos

[ (
cos

(πq
2

)
− cos (qkx)

)
× (−1)q
√

2q
− cos

(πq
2

) ]
, (S53)

which explicitly expresses the eigen-energies for any of 2q
bands.

Based on this analytical expression for the allowed energies,
it can be verified that the bandgap does not exist for any rational
value of phase modulation.

Since we are interested in the evolution of the quantum walk
after q steps, we obtain the following for any kx = π

2 + 2πm
q with

m ∈ Z:
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Fig. S5. (a) The total probability of the quantum walker to be
in the up channel and (b) down channel as a function of the
time step for different values of phase modulations.

qEn,±,kx

= ± arccos
[(

cos
(πq

2

)
− cos (qkx)

) (−1)q
√

2q
− cos

(πq
2

)]

=



π : q = 4g

±π/2 : q = 4g + 1

0 : q = 4g + 2

±π/2 : q = 4g + 3

, (S54)

which corresponds to:

e−iqEn,±,kx =



−1 : q = 4g

∓i : q = 4g + 1

1 : q = 4g + 2

∓i : q = 4g + 3

. (S55)

We can express any amplitude ψ representing the up chan-
nel U (x, n) or the down channel D (x, n) in terms of the initial
conditions as:
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Fig. S6. The quadratic mean of x for the (a) down channel
and (b) up channel as a function of the time step for different
values of phase modulations.

ψ (kx, n) =
2q

∑
j=1

e−iEj,kx n Aj,kx (S56)

Therefore, based on the above expressions, such an amplitude
is expressed after q steps for even values of q via:

ψ (kx, q) = s
2q

∑
j=1

eikx x Aj,kx = sψ (kx, 0) , (S57)

in which

s =

 −1 : q = 4g

+1 : q = 4g + 2
. (S58)

This equality holds for any kx = π
2 + 2πm

q with m ∈ Z and
for other values of kx it holds by approximation. However, with
the increase of q, the approximation becomes more and more
accurate. Therefore, the following approximation holds, and it
becomes exact in the limit of q→ ∞:

ψ (x, q) ∼= sψ (x, 0) . (S59)
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Fig. S7. The norm one of x for the (a) down channel and (b) up
channel as a function of the time step for different values of
phase modulations.

This proves that revival happens after q steps (|ψ (x, q)| ∼=
|ψ (x, 0)|) for even values of q and it becomes more accurate
with the increase of q. The variations of the quantum walk
probability distribution as a function of the time step under no
applied gauge field as well as a linearly time varying gauge field
with φ = π/6 are shown in Fig. S3. This figure clearly shows
the revival caused by Bloch oscillations under the time varying
gauge field.

Since we start with a unity pulse at the origin in the up
channel, we can plot the probability amplitude of the quan-
tum walker to be at the origin after q steps. We have plotted this
amplitude in Fig. S4a. This figure confirms the fact that with
the increase of q, the quantum walker indeed becomes more
localized at the origin and the corresponding probability tends
toward unity in the limit of q→ ∞. The corresponding normal-
ized probability of the quantum walker to return to the origin
after q steps is also shown in Fig. S4b.

We can also consider the total probability of the quantum
walker to be in the up channel or down channel as a function
of the time step. We have plotted these probabilities in Fig. S5
for different values of phase modulations. As we expect, the
probability of the quantum walker to be in the up channel is
close to one after 2π/φ time steps. It is interesting to note that
the minimum value of the probability of the quantum walker to
be in the up channel is not zero and instead it is close to 1/2

√
2.

The probability in the up channel reaches this value after around

π/φ time steps.
Figures S6a and S6b summarize the numerical results for the

variation of
√
〈x2〉D and

√
〈x2〉U with the time step for different

values of φ. The obtained results show that for 1 � n � π/φ,√
〈x2〉D varies as n/

√
8
√

2 as one would expect from the zero-
phase modulation case. Moreover, the numerical results show

that for small values of φ,
√
〈x2〉D reaches the maximum value

at n ∼= π/φ. These results also show that
〈

x2〉
D tends toward

zero at n ∼= 2π/φ, which is consistent with the above analysis.
In addition to the quadratic means, we can also look at the
variations in the norm ones of the quantum walk distributions.
Figures S7a and S7b summarize the numerical results for the
variation of 〈|x|〉D and 〈|x|〉U with the time step for different
values of φ.
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Fig. S8. Simplified version of the schematic of a two-
dimensional quantum random walk setup

3. THEORETICAL ANALYSIS FOR TWO-DIMENSIONAL
QUANTUM RANDOM WALKS:

In this section, we generalize the concepts that are presented
in the previous section to two-dimensional quantum random
walks. By assuming that all the losses in the setup are fully
compensated by the amplifiers and all the polarization changes
are compensated by polarization controllers, the setup can be
represented as an ideal setup, as shown in Fig. S8. We have
demonstrated in our earlier work how pulses will propagate
under arbitrary phase modulation patterns [1]. By representing

the pulses that exist at time step n by U(n)
x,y and D(n)

x,y in the up
and down channels, respectively, we have shown the evolution
of the pulses obey the following equations:

U(n+1)
x,y =

eiφn,y−1

2

(
U(n)

x+1,y−1 − D(n)
x+1,y−1

)
− e−iφn,y−1

2

(
U(n)

x−1,y−1 + D(n)
x−1,y−1

)
(S60)

D(n+1)
x,y =

eiφn,y+1

2

(
U(n)

x+1,y+1 − D(n)
x+1,y+1

)
+

e−iφn,y+1

2

(
U(n)

x−1,y+1 + D(n)
x−1,y+1

)
(S61)

By defining S(n)
x,y = U(n)

x,y + D(n)
x,y and P(n)

x,y = U(n)
x,y − D(n)

x,y , the
obtained equations can be written as:

 S(n+1)
x,y

P(n+1)
x,y

 =
1
2

 e−iφn,y+1 eiφn,y+1 −e−iφn,y−1 eiφn,y−1

−e−iφn,y+1 −eiφn,y+1 −e−iφn,y−1 eiφn,y−1



×


S(n)

x−1,y+1

P(n)
x+1,y+1

S(n)
x−1,y−1

P(n)
x+1,y−1

 (S62)

By defining s(n)kx ,ky
and p(n)kx ,ky

as Fourier transforms of S(n)
x,y and

P(n)
x,y , we have:

 S(n)
x,y

P(n)
x,y

 =
1

4π2

 ∫ ∫
kx ,ky

s(n)kx ,ky
eikx x+ikyydkxdky∫ ∫

kx ,ky
p(n)kx ,ky

eikx x+ikyydkxdky

 (S63)

Therefore:

 ∫ ∫
kx ,ky

s(n+1)
kx ,ky

eikx x+ikyydkxdky∫ ∫
kx ,ky

p(n+1)
kx ,ky

eikx x+ikyydkxdky


=

1
2

 e−iφn,y+1 eiφn,y+1 −e−iφn,y−1 eiφn,y−1

−e−iφn,y+1 −eiφn,y+1 −e−iφn,y−1 eiφn,y−1



×



∫ ∫
kx ,ky

eiky−ikx s(n)kx ,ky
eikx x+ikyydkxdky∫ ∫

kx ,ky
eikx+iky p(n)kx ,ky

eikx x+ikyydkxdky∫ ∫
kx ,ky

e−ikx−iky s(n)kx ,ky
eikx x+ikyydkxdky∫ ∫

kx ,ky
eikx−iky p(n)kx ,ky

eikx x+ikyydkxdky

 (S64)

This equation can be used to solve the Fourier transforms as
functions of the time step. The evolution for the case of no phase
modulation has already been investigated [1]. Here we focus
on the case in which we apply a phase modulation that varies
linearly with the time step.

A. Time-dependent phase modulation:
For the case of a time-dependent but coordinate-independent
phase modulation, we have:

 s(n+1)
kx ,ky

p(n+1)
kx ,ky

 =

 ie−i(kx+φn) sin
(
ky
)

ei(kx+φn) cos
(
ky
)

−e−i(kx+φn) cos
(
ky
)
−iei(kx+φn) sin

(
ky
)


×

 s(n)kx ,ky

p(n)kx ,ky

 (S65)

Therefore, by defining w(n)
kx ,ky

= s(n)kx−nφ,ky
and v(n)kx ,ky

=

p(n)kx−nφ,ky
:

 w(n+1)
kx+φ,ky

v(n+1)
kx+φ,ky

 =

 ie−ikx sin
(
ky
)

eikx cos
(
ky
)

−e−ikx cos
(
ky
)
−ieikx sin

(
ky
)


×

 w(n)
kx ,ky

v(n)kx ,ky

 (S66)

Using this equation, we can obtain a propagation matrix
for rational values of phase modulations, φ/2π = p/q. In the
following, we obtain the eigen-energies for any rational value of
phase modulation, straightforwardly.

By defining r(n)kx ,ky
=
[

w(n)
kx ,ky

v(n)kx ,ky

]T
and

Mkx ,ky =

 ie−ikx sin
(
ky
)

eikx cos
(
ky
)

−e−ikx cos
(
ky
)
−ieikx sin

(
ky
)
 , (S67)

we have:

r(n+1)
kx+φ,ky

= Mkx ,ky r(n)kx ,ky
(S68)

After q steps, we have:
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Fig. S9. (a) The probability amplitude of the quantum walker
to be at the origin in the up channel after q steps as a function
of q. (b) The normalized probability of the quantum walker to
return to the origin in the up channel after q steps as a function
of q.

r(n+q)
kx ,ky

= Mkx+(q−1)φ,ky
. . . Mkx ,ky r(n)kx ,ky

(S69)

Therefore, by defining Y(i)
kx ,ky

= Mkx+(i−1)φ,ky
. . . Mkx ,ky , the

following holds:

r(n+q)
kx ,ky

= Y(q)
kx ,ky

r(n)kx ,ky
(S70)

Since M and Y are unitary matrices, the following equations
hold for the eigen-energies:

Y(q)
kx ,ky

r(n)kx ,ky
= eiqEr(n)kx ,ky

(S71)

Y(q)†
kx ,ky

r(n)kx ,ky
= e−iqEr(n)kx ,ky

(S72)

Consequently, we have:

1
2

(
Y(q)

kx ,ky
+ Y(q)†

kx ,ky

)
r(n)kx ,ky

= cos (qE) r(n)kx ,ky
(S73)

It can be verified that not only for φ = 2π/q but also for any
φ = 2πp/q, with q and p being relatively prime, the following
holds:

1
2

(
Y(q)

kx ,ky
+ Y(q)†

kx ,ky

)
=
(

cos
(πq

2

)
− cos

(
qkx +

πq
2

))
sinq (ky

)
I

− cos
(πq

2

)
I (S74)

Therefore, the eigen-energies are given by

En,±,kx ,ky =
2nπ

q
± 1

q
arccos

[ (
cos

(πq
2

)
− cos

(
qkx +

πq
2

))
× sinq (ky

)
− cos

(πq
2

) ]
, (S75)

which explicitly expresses the eigen-energies for any of 2q
bands.

Based on this analytical expression for the allowed energies,
it can be verified that the bandgap does not exist for any rational
value of phase modulation. The energy band diagrams for φ =
π/2, φ = π/3, and φ = π/4 have been plotted in Fig. 2 of the
main text.

Since we are interested in the evolution of the quantum walk
after q steps, we obtain the following for any kx = 2πm

q with
m ∈ Z:

qEn,±,kx ,ky

= ± arccos
[(

cos
(πq

2

)
− cos

(
qkx +

πq
2

))
sinq (ky

)
− cos

(πq
2

)]

=



π : q = 4g

±π/2 : q = 4g + 1

0 : q = 4g + 2

±π/2 : q = 4g + 3

, (S76)

which corresponds to:

e−iqEn,±,kx ,ky =



−1 : q = 4g

∓i : q = 4g + 1

1 : q = 4g + 2

∓i : q = 4g + 3

. (S77)

We can express any amplitude ψ representing the up channel
U (x, y, n) or the down channel D (x, y, n) in terms of the initial
conditions as:

ψ (kx, y, n) =
2q

∑
j=1

∫
ky

e−iEj,kx ,ky neikyy Aj,kx ,ky dky (S78)

Therefore, based on the above expressions, such an amplitude
is expressed after q steps for even values of q via:

ψ (kx, y, q) = s
2q

∑
j=1

∫
ky

eikyy Aj,kx ,ky dky = sψ (kx, y, 0) , (S79)

in which
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Fig. S10. (a) The total probability of the quantum walker to be
in the up channel and (b) the total probability of the quantum
walker to be in the down channel as a function of the time step
for different values of phase modulations.

s =

 −1 : q = 4g

+1 : q = 4g + 2
. (S80)

This equality holds for any kx = 2πm
q with m ∈ Z and for

other values of kx it holds by approximation. However, with
the increase of q, the approximation becomes more and more
accurate. Therefore, the following approximation holds, and it
becomes exact in the limit of q→ ∞:

ψ (x, y, q) ∼= sψ (x, y, 0) . (S81)

This proves that revival (caused by Bloch oscillations) hap-
pens after q steps (|ψ (x, y, q)| ∼= |ψ (x, y, 0)|) for even values of
q and it becomes more accurate with the increase of q.

Since we start with a unity pulse at the origin in the up
channel, we can plot the probability amplitude of the quan-
tum walker to be at the origin after q steps. We have plotted this
amplitude in Fig. S9a. This figure confirms the fact that with the
increase of q, the quantum walker indeed becomes more trapped
at the origin and the corresponding probability tends toward
unity in the limit of q → ∞. The corresponding normalized
probability of the quantum walker to return to the origin after q
steps is also shown in Fig. S9b.

We can also consider the total probability of the quantum
walker to be in the up channel or down channel as a function
of the time step. We have plotted these probabilities in Fig. S10
for different values of phase modulations. As we expect, the
probability of the quantum walker to be in the up channel is
close to one after 2π/φ time steps. The minimum value of the
probability of the quantum walker to be in the up channel is not
zero and instead it is close to 1/π. The probability in the up
channel reaches this value after around π/φ time steps.

We can also analyze the transient variation of the quantum
walk. For this purpose, the obtained propagation equation for

w(n)
kx ,ky

and v(n)kx ,ky
can be transformed to the following equation:

 w(n+1)
kx ,ky

+ v(n+1)
kx ,ky

w(n+1)
kx ,ky

− v(n+1)
kx ,ky


=

 ie−iky sin (kx − φ) −e−iky cos (kx − φ)

eiky cos (kx − φ) −ieiky sin (kx − φ)


×

 w(n)
kx−φ,ky

+ v(n)kx−φ,ky

w(n)
kx−φ,ky

− v(n)kx−φ,ky

 (S82)

Focusing on the down channel, we know that at time step n,
we have:

d(n)kx ,ky
= 0.5

(
s(n)kx ,ky

− p(n)kx ,ky

)
= 0.5

(
w(n)

kx+nφ,ky
− v(n)kx+nφ,ky

)
(S83)

From this expression, we can obtain the following equation
for
〈
y2〉

D:

〈
y2
〉

D
= ∑

x,y
y2
∣∣∣D(n)

x,y

∣∣∣2
=

1
4π2

∫ 2π

ky=0

∫ 2π

kx=0
d(n)∗kx ,ky

(
i

d
dky

)2
d(n)kx ,ky

dkxdky

=
1

16π2

∫ 2π

ky=0

∫ 2π

kx=0

(
w(n)

kx ,ky
− v(n)kx ,ky

)∗
×
(

i
d

dky

)2 (
w(n)

kx ,ky
− v(n)kx ,ky

)
dkxdky (S84)

Therefore, it is enough to obtain w(n)
kx ,ky
− v(n)kx ,ky

at time step n
in order to calculate the statistics of the quantum walk. Contrary
to the zero-phase modulation, in which propagation matrices re-
main constant through time, here the evolution can be explained
in terms of the product of n matrices, which are not necessarily
equal to each other:

 0.5
(

w(n)
kx ,ky

+ v(n)kx ,ky

)
0.5
(

w(n)
kx ,ky
− v(n)kx ,ky

)


=

 ie−iky sin (kx − φ) −e−iky cos (kx − φ)

eiky cos (kx − φ) −ieiky sin (kx − φ)

× · · · ×
 ie−iky sin (kx − nφ) −e−iky cos (kx − nφ)

eiky cos (kx − nφ) −ieiky sin (kx − nφ)

 1

0

 (S85)
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Fig. S11. The quadratic mean of (a) y and (b) x for the down channel as a function of the time step for different phase modulation
values. The quadratic mean of (c) y and (d) x for the up channel as a function of the time step for different phase modulation values.
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Fig. S12. The norm one of (a) y and (b) x for the down channel as a function of the time step for different phase modulation values.
The norm one of (c) y and (d) x for the up channel as a function of the time step for different phase modulation values.
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Fig. S13. (a) The accumulated phases based on time-varying
gauge fields implemented in this work along four sample
closed paths. (b) The accumulated phases using a coordinate-
dependent unitary operation along four similar closed paths.

It is easy to verify that the expansion of 0.5
(

w(n)
kx ,ky
− v(n)kx ,ky

)
has terms proportional to eikyn, eiky(n−1), ..., and eiky(−n+2). The
first and last term represent the farthest y position from the x axis
after n steps. By obtaining the amplitudes of these two terms

based on the above equation, we can expand 0.5
(

w(n)
kx ,ky
− v(n)kx ,ky

)
as:

0.5
(

w(n)
kx ,ky
− v(n)kx ,ky

)
= (−i)n−1 einky cos (kx − nφ)

n−1

∏
p=1

sin (kx − pφ)

+ in−1e−i(n−2)ky cos (kx − φ)
n

∏
p=2

sin (kx − pφ)

+
n−1

∑
y=−n+3

ay (kx, φ, n) eikyy (S86)

Which means that

PD (y = −n) = PD (y = n− 2)

=
1

2π

∫ 2π

kx=0
cos2 (kx)

n−1

∏
p=1

sin2 (kx − pφ) dkx. (S87)

These expressions show the existence of zeros in the inte-
grand at kx = pφ for p = 1 to n− 1. For n ∼ 2π

φ , these zeros
spread across the entire region of kx = 0 to kx = 2π. Especially,
for the small values of φ, the presence of these zeros causes that
PD (y = −n) and PD (y = n− 2) tend to zero at n ∼ 2π

φ . For
other values of y 6= 0, similar expressions can be obtained for
PD (y), which they also become small for φ = 2π

n . This analysis
predicts that

〈
y2〉

D tends toward zero for n = 2π/φ.
Figures S11a and S11c summarize the numerical results for

the variation of
√
〈y2〉D and

√
〈y2〉U with the time step for

different values of φ. The obtained results show that for 1 �
n� π/φ,

√
〈y2〉D varies as n/

√
6π, as one would expect from

the zero phase modulation case. Moreover, the numerical results

show that for small values of φ,
√
〈y2〉D reaches the maximum

value at n ∼= π/φ. These results also show that
〈
y2〉

D tends
toward zero at n ∼= 2π/φ, which is consistent with the above
analysis. The effect of phase modulation on the quadratic mean
of x can be investigated as well. Numerical results as depicted
in Figs. S11b and S11d show that the quadratic mean of x also
decreases relative to the zero-phase modulation case. However,
the effect of phase modulation is more intense on decreasing the
quadratic mean of y as compared with the quadratic mean of x.

In addition to quadratic means, we can also look at the varia-
tions of the norm ones of the quantum walk distributions. Fig-
ures S12a and S12c summarize the numerical results for the
variation of 〈|y|〉D and 〈|y|〉U with the time step for different
values of φ. The corresponding results for the x direction are
also shown in Figs. S12b and S12d.

B. Creation of electric fields using various gauge fields:
In addition to the time-dependent approach, an electric field
can be implemented through the use of a coordinate-dependent
gauge field as well. In the latter case, instead of using a time-
dependent gauge field, a phase modulation is applied that is
not direction dependent and instead depends on the coordinate
linearly. In this approach, an effective linear electric potential
V = −Ex is implemented that will lead to the generation of an
electric field based on

−→E = −∇V. The unitary operation in each
time step has an extra term relative to the standard quantum
walk evolution operator U0 as Uφ = eiφxU0. We can compare
the effect of such a gauge field with the time-dependent gauge
field considered in this work. In Fig. S13, we have considered
four sample closed paths that start from the origin and return to
it, and have calculated the total phase accumulated in them. As
this figure shows, the net amount of phase in both approaches
are similar, showing that indeed the time-varying gauge field
will induce a similar phase accumulation in these closed paths
as a conventional electric field in the x direction. This similarity
holds for any closed path starting from the origin and ending at
it.
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