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1. INTRODUCTION

In the last three decades, there has been increased interest in the development of optical

communication systems. Development of high capacity optical time division multiplexed

(OTDM) systems [4] has been especially important in this area. It has been recognized that

in order to construct high speed OTDM systems, employing all-optical techniques can be

one of the best solutions. All-optical networks employ ultrafast nonlinear effects and are

faster and simpler in principle than electronically controller optical networks. The idea of

controlling light with light was proposed more than 20 years ago. As an example we can

mention the idea of the ultrafast all-optical gate [5] based on nonlinear effects in LiNbO3.

In the past two decades different methods for all-optical communication systems have been

developed most of which include optical nonlinear effects. Two-photon absorption as a

nonlinear effect has been considered an attractive solution for several applications including

all-optical switching or demultiplexing.

Linear absorption in a detector happens when one photon creates one electron-hole pair

in the detector. In this case the resulting photocurrent is proportional to the incident optical

power. But under certain conditions two photons may be absorbed in a detector generating

1



1. Introduction 2

one electron-hole pair and in this case the photocurrent is proportional to the square of the

optical power. This phenomenon is called two-photon absorption (TPA) and is considered

a third-order optical nonlinearity in the material. This thesis is an experimental study on

the different factors affecting the TPA process in a detector. The detector used in this

experiment is a silicon avalanche photodiode.

In Chapter 2 we discuss the theory of the TPA process based on the third-order nonlinear

susceptibility tensor. Also in this chapter we briefly explain some applications of the TPA

process described in previous research.

Chapter 3 presents some experimental measurement of TPA in a silicon photodetector.

In this chapter first we show the main experimental setup and explain different elements of

this setup. The curves showing the TPA response of the detector are given in this chapter.

Sensitivity of the detector to the spot-size of the light focused on the detector is discussed

theoretically and experimentally in this chapter. One of the main concerns in this chapter

is the nonuniform response of the surface of the detector which is discussed in detail.

In Chapter 4 we describe the polarization sensitivity of the TPA process. Experimental

result of the polarization dependence for linearly and elliptically polarized light are given

in this chapter. Also theoretical analyses for isotropic and anisotropic materials are given

and discussed based on the experimental results.

Chapter 5 compares the APD detector used in this experiment with another silicon APD

detector and summarizes the conclusion gained from this comparison.



2. THEORY AND APPLICATIONS

This chapter is intended to explain some fundamental concepts of nonlinear optics, specif-

ically two-photon absorption (TPA), and give a brief review of the applications introduced

for two-photon absorption.

Nonlinear optics has been discussed in several text books [1, 6, 7] and the theoreti-

cal discussion given in this chapter is just a brief background of those topics needed to

understand the concept of two-photon absorption. Starting in Section 2.1 we will give a

simple analysis of second and third harmonic generation, intensity dependent refractive

index and the general case of third-order nonlinear polarization. In Section 2.2 we give

a general treatment of nonlinear susceptibility in a medium which leads to defining the

susceptibility tensor. Section 2.3 describes a classical way to explain the second and third

order nonlinearities in optical materials. Section 2.4 explains some symmetry properties in

the third-order nonlinear susceptibility tensor. In Section 2.5, two-photon absorption in an

isotropic medium as a special case of optical nonlinearity is explained and the TPA coef-

ficient is derived from the nonlinear susceptibility tensor elements. The term two-photon

absorption refers to the quantum mechanical explanation of this process and this is briefly

3



2. Theory and Applications 4

explained in Section 2.6. The last section of the chapter reviews recent research related to

the applications of TPA.

2.1 Second and Third Harmonic Generation

The linear relationship between the electric field strength E(t) and polarization P (t) can

be written as:

P (t) = ε0χ
(1)E(t) (2.1)

where χ(1) is the linear susceptibility. But in nonlinear optics we can write a generalized

form of this equation:

P (t)

ε0
= χ(1)E(t) + χ(2)E2(t) + χ(3)E3(t) + ... (2.2)

Second and third term on the right hand side of Eq. 2.2 are usually of great importance in

nonlinear optics and as we will see in the following subsections, these two terms explain the

second and third harmonic generation in nonlinear optical materials. They are also respon-

sible for sum-frequency generation, difference-frequency generation, four-wave mixing,

self-phase modulation and self-focusing among other effects which are not discussed in

this thesis.
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2.1.1 Second-Harmonic Generation

As an example of the nonlinear optical process, let us consider the second term on the

right hand side of Eq. 2.2 in the case that the electric field strength can be written as

E(t) = E0 cos(ωt). The nonlinear term of the polarization will be:

P (2)(t) = ε0χ
(2)E2

0 cos2(ωt) =
ε0χ

(2)

2
E2

0 (1 + cos(2ωt)) (2.3)

We see that the second-order polarization term consists of a zero-frequency component and

a second-harmonic component. The zero-frequency term does not lead to the generation

of any electromagnetic radiation, but the second term gives rise to a new electromagnetic

wave with twice the input frequency [1]. In a quantum mechanical picture one can interpret

this process as two input photons of frequency ω being destroyed and a single photon of

frequency 2ω being simultaneously created [1].

2.1.2 Third-Harmonic Generation and Intensity-Dependent Refractive Index

If we consider the third term of the polarization and assume the same expression for the

electric field strength, we can write:

P(3) = ε0χ
(3)E3

0 cos3(ωt) =
ε0χ

(3)

4
E3

0 (cos(3ωt) + 3 cos(ωt)) (2.4)
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The first term appearing in this equation describes a response at frequency 3ω that is due

to an applied field at frequency ω. This process is called third-harmonic generation and

can be explained as three photons of frequency ω being destroyed and a single photon

of frequency ω being created. But the second term of this equation is what we are more

interested in when we talk about the two-photon absorption process. This term leads to a

nonlinear contribution to the refractive index of the medium. Assuming that χ(3) is a real

number one can show that the refractive index of the medium will change as a function of

the light intensity:

n = n0 + n2I (2.5)

We will consider this equation more carefully in the following sections. If χ(3) has an

imaginary part, this equation leads to an intensity-dependent absorption coefficient for the

material.

2.1.3 General Case of the Third-Order Polarization

Now let us assume that the electric field consists of 3 different frequencies:

E(t) = E1e
−jω1t + E2e

−jω2t + E3e
−jω3t + c.c. (2.6)

where c.c. means the complex conjugate of all the terms and E(t) can be simplified to 3

cosine terms. If we substitute this electric field into the third-order term of Eq. 2.2 we will

obtain 44 different frequency components assuming that negative and positive frequencies
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Original Frequencies ω1, ω2, ω3

Third-Harmonics 3ω1, 3ω2, 3ω4

Two-Wave Mixing (2ω1 ± ω2), (2ω2 ± ω3), ...
Three-Wave Mixing (ω1 + ω2 + ω3), (ω1 + ω2 − ω3), ...

Tab. 2.1: Different frequency components in the third-order polarization term

are distinguishable [1]. These frequency components are shown in table 2.1. This sim-

ple analysis leads us to the formal definition of the nonlinear susceptibility and writing a

general form of nonlinear polarization. This general treatment is shown in Section 2.2.

2.2 Formal Definition of the Nonlinear Susceptibility

In section 2.1 we only considered the strength of the electric field and did not assume any

vector nature for the field, nor did we account for the orientation of the crystal axes with

respect to the propagation direction and polarization state. But none of these assumptions

give us a general treatment of the nonlinear polarization and we need to consider a vector

for both electric field and polarization vector. Therefore the susceptibility in general will be

a tensor. First we define some parameters to be able to analyze a general case. The electric

field in general has the following form:

E(r, t) =
∑

n

Ene
−jωnt + c.c. (2.7)
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Where r is the position vector. A spatially slowly varying field amplitude is usually defined

by the following relationship:

En = Ane
jkn·r (2.8)

where kn is the wave vector for frequency ωn and An is the slowly varying amplitude

for this frequency component. Considering the fact that the fields are real and defining

En = E(ωn) one can easily see that:

E(−ωn) = E(ωn)∗ (2.9)

which leads to removing the c.c. term from Eq. 2.7 and writing the general electric field

as:

E(r, t) =
∑

n

E(ωn)e−jωnt =
∑

n

A(ωn)ej(kn·r−ωnt) (2.10)

The polarization vector resulting from this electric field will be:

P(r, t) =
∑

n

P(ωn)e−jωnt (2.11)

The first, second and third order susceptibility tensors are the defined based on the follow-

ing equations [8]:

P
(1)
i (ω) = ε0

∑

j

χ
(1)
ij (ω)Ej(ω) (2.12)

P
(2)
i (ω = ω1 + ω2) = ε0D

(2)
∑

jk

χ
(2)
ijk(ω1, ω2)Ej(ω1)Ek(ω2) (2.13)
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P
(3)
i (ω = ω1 + ω2 + ω3) = ε0D

(3)
∑

jkl

χ
(3)
ijkl(ω1, ω2, ω3)Ej(ω1)Ek(ω2)El(ω3) (2.14)

Where D(2) and D(3) are integer factors called degeneracy factors. D(2) and D(3) represent

the number of distinct permutations of the two frequencies ω1 and ω2 (for χ(2)) and the

three frequencies ω1, ω2 and ω3 (for χ(3)), respectively. D(3) is equal to 1 for the third-

harmonic generation process (meaning that ω1 = ω2 = ω3) and is equal to 3 for intensity

dependent refractive index or TPA process (meaning that ω1 = ω2 = −ω3 or two other

similar combinations.) The linear susceptibility (χ(1)) is therefore described by a 2nd rank

tensor with 3 × 3 elements, while χ(2) is described by a 3rd rank tensor with 3 × 3 × 3

elements and χ(3) is a 4th rank tensor with 3 × 3 × 3 × 3 elements. These tensors have

certain properties and depending on the type of the medium one can simplify the problem

by fining the zero elements of these tensors as well as the independent non-zero elements.

2.3 Classical Explanation of Nonlinear Susceptibility

The classical explanation is base on a classical anharmonic oscillator [1]. It is better to

consider two cases of Noncentrosymmetric and centrocymmetric medium. For simplicity

in both cases we will only consider one-dimensional motion. When no electric field is

applied to the medium, the electrons are in equilibrium positions. If x(t) is the amount

of displacement with respect to the equilibrium position, a polarization vector of P (t) =

Nex(t) will be generated in the medium where N is the number of electrons per unit

volume and e is the charge of an electron. Now the differential equation that explains the
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motion of the electron determines how x and P are related to the applied electric field.

2.3.1 Noncentrosymmetric Medium

In this case the differential equation describing the motion of the electron is:

ẍ+ 2γẋ+ ω2
0x+ ax2 = −eE(t)

m
(2.15)

where γ and ω0 are constants and a is a constant that determines the degree of nonlinearity.

This differential equation considers a potential energy function of the form:

U =
1

2
mω2

0x
2 +

1

3
max3 (2.16)

that can be plotted as a function of x. The plot is shown in figure 2.1 (a) where it is easy

to see that the curve is not symmetric around the equilibrium because of the second term

in Eq. 2.16 that changes sign at the two sides of x = 0. It can be shown [1] that this term

leads to a second-order susceptibility for the medium.

2.3.2 Centrosymmetric Medium

In this case the differential equation describing the motion of the electron is:

ẍ+ 2γẋ+ ω2
0x− bx3 = −eE(t)

m
(2.17)
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(a)

(b)

parabola (linear)
actual potential

actual potential

parabola (linear)

x

x

U(x)

U(x)

Fig. 2.1: The potential energy as a function of displacement for a noncentrosym-
metric (a) and a centrosymmetric (b) medium. The dashed line shows the parabola
corresponding to a linear medium. (figs/2/pot.eps)
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where b is the constant that determines the degree of nonlinearity. In this case the potential

energy function is:

U =
1

2
mω2

0x
2 − 1

3
mbx4 (2.18)

which gives a symmetric potential curve as shown in figure 2.1 (b). This nonlinearity leads

to a third-order susceptibility in the material. We can see the difference between the two

media. As we will see in the next section, the second-order susceptibility tensor elements

are all zero for a centrosymmetric medium.

2.4 Symmetry Properties of the Third-Order Susceptibility

In this thesis most of the experiments and theoretical results are based on Silicon as the

medium for the two-photon absorption process. Before we explain the theory of TPA pro-

cess, we discuss some symmetry properties of the third-order susceptibility tensor. Silicon

is a cubic crystal from the m3m class and therefore it is a centrosymmetric medium. As

we saw in section 2.3 all elements of χ(2) tensor vanish for a centrosymmetric medium. In

other words centrosymmetric system possesses inversion symmetry. Now assume that the

electric field E(t) generates the second-order polarization vector P (2)(t) = ε0χ
(2)E(t)2.

Because of the symmetry the inverted field −E(t) should generate a polarization equal to

−P (2)(t) but this means that χ(2) has to be zero. So the third-order susceptibility gives the

first non-zero nonlinear term. Table 2.2 gives a brief overview on the susceptibility tensor

in some media. As we can see in the table in an isotropic medium there are only 3 indepen-
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Medium Number of non-zero and independent elements
Isotropic 21, 3
Cubic crystal classes m3m,432,43m 21, 4
Cubic crystal classes m3,23 21, 7
Orthorhombic crystal 21, 21
Triclinic crystal 81, 81

Tab. 2.2: Form of the χ(3) tensor for a few media [1]

Medium Non-zero elements
Isotropic yyzz = zzyy = zzxx = xxzz = xxyy = yyxx

yzyz = zyzy = zxzx = xzxz = xyxy = yxyx

yzzy = zyyz = zxxz = xzzx = xyyx = yxxy

xxxx = yyyy = zzzz = xxyy + xyxy + xyyx

m3m crystal yyzz = zzyy = zzxx = xxzz = xxyy = yyxx

yzyz = zyzy = zxzx = xzxz = xyxy = yxyx

yzzy = zyyz = zxxz = xzzx = xyyx = yxxy

xxxx = yyyy = zzzz

Tab. 2.3: Non-zero elements of χ(3) tensor for isotropic and 3m3 cubic crystal. [1]

dent values that must be determined to completely specify the susceptibility tensor of the

medium. In silicon which is a m3m crystal the number of independent values is 4. Now

let us consider the third-order susceptibility tensor of the isotropic material and cubicm3m

crystal and give a more detailed image of this tensor. Table 2.3 shows the non-zero ele-

ments of χ(3) tensor. In this table the indices are shown and χ(3) is eliminated, for example

xxyy means χ(3)
xxyy. In the next section we will explain the two-photon absorption process

and derive an expression for TPA coefficient in an isotropic medium. The other symmetry
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properties of the third-order susceptibility tensor are that:

• For a third-harmonic generation (THG) process when ω1 = ω2 = ω3 the intrinsic

permutation symmetry of χ(3) requires that:

χ
(3)
iijj = χ

(3)
ijij = χ

(3)
ijji (2.19)

• For a TPA process or intensity-dependent refractive index when ω1 = ω2 = −ω3 or

two other similar combinations, the intrinsic permutation symmetry requires that:

χ
(3)
ijij = χ

(3)
iijj (2.20)

2.5 Two-Photon Absorption Coefficient for an Isotropic Medium

In section 2.1.2 we discussed the intensity-dependent refractive index as a result of the

third-order nonlinearity in the medium. Eq. 2.5 gives a formula for the refractive index

that is proportional to the intensity of the light. Now if n2 in Eq. 2.5 is a complex number

and has a non-zero imaginary part, then this leads to an intensity-dependent absorption

coefficient. This is what we call two-photon absorption. In this section we will consider

this phenomenon more carefully and in more detail based on Eq. 2.14.

In Eq. 2.14 if (ω1, ω2, ω3) = (ω, ω,−ω), then the output polarization has a frequency
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of ω. But considering Eq. 2.9 we can rewrite Eq. 2.14 for the case of TPA process as:

P
(3)
i (ω) = 3ε0

∑

jkl

χ
(3)
ijklEj(ω)Ek(ω)E∗

l (ω) (2.21)

Now to find the absorption coefficient we should write the wave propagation equation in

this medium. Combining two of Maxwell’s equations in a source-free and non-magnetic

medium:

∇× E = −µ0
∂H

∂t
, ∇× H =

∂D

∂t
(2.22)

we obtain the general form of the wave equation:

∇×∇× E + µ0
∂2D

∂t2
= 0 (2.23)

Writing D in terms of E and P and separating p into a sum of linear and nonlinear terms,

we have:

D = ε0E + P = ε0n
2E + PNL (2.24)

Where PNL is the nonlinear term in the polarization vector which in the current case is

the third-order nonlinearity. n is the linear (intensity independent) refractive index of the

medium. The ∇ × ∇ operator can be reduced to −∇2 provided the refractive index of

the medium is spatially invariant which is true for a linear homogeneous medium, and

approximately true for the nonlinear materials considered in this work. Now combining



2. Theory and Applications 16

these equations we get to the nonlinear wave equation:

−∇2E(r, t) +
n2

c2
∂2E(r, t)

∂t2
= −µ0

∂2PNL(r, t)

∂t2
(2.25)

In the sinusoidal regime assuming fields with frequency ω we can rewrite this equation in

this form:

−∇2E(r, ω) − n2ω2

c2
E(r, ω) = µ0ω

2PNL(r, ω) (2.26)

Now assume that we have a linearly polarized light propagating as a plane wave and since

the medium is isotropic we can take the (x, y, z) coordinate system such that the electric

field is linearly polarized along the x axis and the z axis is the direction of propagation of

the wave. Substituting the single component electric field in Eq. 2.21 we get:

P (3)
x (ω) = 3ε0χ

(3)
xxxxEx(ω) (2.27)

substituting this in Eq. 2.26 gives:

∂2Ex(z)

∂z2
+
n2ω2

c2
Ex(z) = −3

ω2

c2
χ(3)

xxxx |Ex(z)|2Ex(z) (2.28)

The nonlinear term can be thought of as a small perturbation in the linear wave equation. If

A(z) is the slowly-varying amplitude of the wave and k =
nω

c
is the propagation constant
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of the wave in the low-intensity limit, we have:

Ex(z, ω) = A(z)e−jkz (2.29)

And by substituting this in Eq. 2.28 we can find the differential equation showing the

variation of A(z) as a function of z. Since A(z) slowly varies with z we can neglect the

term including
d2A

dz2
and by simplifying the equation we obtain this equation:

dA(z)

dz
= j

3ω

2nc
χ(3)

xxxx |A(z)|2A(z) (2.30)

In this equation χ(3)
xxxx = Re(χ

(3)
xxxx) + jIm(χ

(3)
xxxx) and there will a real and an imaginary

term for
dA

dz
. But the real term is the one that gives the TPA coefficient and in order to find

this coefficient we only consider the real part of
dA

dz
which comes from the imaginary part

of χ(3)
xxxx. Therefore we have:

dA(z)

dz
= − 3ω

2nc
Im(χ(3)

xxxx) |A(z)|2A(z) (2.31)

Now let us go back to Eq. 2.7 where we assumed the electric field corresponding to a

wave of frequency ω can be written as Exe
−jωt + E∗

xe
+jωt. This form of treating the prob-

lem keeps the electric field a real number although we use complex analysis to solve the
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problem. The time-average intensity of light is [1]:

I = 2n

(

ε0

µ0

)1/2

|Ex|2 = 2n

(

ε0

µ0

)1/2

|A|2 (2.32)

And by this formula we can write
dI

dz
in terms of the evolution of A(z):

dI(z)

dz
= 2n

(

ε0

µ0

)1/2 (

A(z)
dA∗(z)

dz
+ A∗(z)

dA(z)

dz

)

(2.33)

And by combining this equation and Eq. 2.31 we have:

dI(z)

dz
= − 3ω

2ε0n2c2
Im(χ(3)

xxxx)I
2(z) (2.34)

The TPA coefficient β will be:

β =
1

I2

dI

dz
=

3ω

2ε0n2c2
Im(χ(3)

xxxx) (2.35)

Eq. 2.34 shows that the amount of absorbed power in a thin layer of the medium is propor-

tional to the square of the light intensity (or power). This result is important because we can

use this process to make a nonlinear detector. The two-photon absorbed power is usually

much smaller that the incident power, in this case the detector based on TPA process will
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have a photocurrent proportional to the power squared 1:

iTPA = KP 2 (2.36)

where K is a proportionality constant that depends on β, the focused spot size, and the

geometry of the medium.

As we mentioned before this treatment applies for an isotropic medium. Also the light

polarization is considered to be linear. In Chapter 4 we will discuss in more detail how

anisotropy or elliptical polarization of the light would change the TPA response.

2.6 Quantum Mechanical Interpretation of Two-photon Absorption

In this section we give a brief and simple explanation based on quantum mechanics about

two-photon absorption which will actually show why the process is called two-photon ab-

sorption. Assume that we have a semiconductor material with an energy bandgap Eg. A

single photon with energy hν ≥ Eg is able to generate a single electron-hole pair and

therefore we see a linear absorption in such a material. But now suppose that the energy

of the photon is lower such that hν ≤ Eg ≤ 2hν. In this situation one photon is not able

to move an electron from the lower edge to the upper edge of the bandgap. But a single

electron-hole pair may be produced by the instantaneous absorption of two photons. Figure

1 For example if the detector is a slab of thickness ∆z and βI∆z � 1 we can write ∆I ' βI2∆z where
∆I is the change in the intensity of the light passing through the slab. This is equivalent to Eq. 2.36
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1

2

Photon

Photon 1

Photon 2

(a) (b)

Fig. 2.2: The absorption of photons in a two-level system, (a) linear (single-photon)
absorption and (b) two-photon absorption. (figs/2/pot.eps)

2.2 shows a simple diagram of what happens in a linear absorption (a) and two-photon ab-

sorption (b). As seen in the figure the absorption occurs by taking the electron to a virtual

state by the energy from the first photon and almost simultaneously moving it to the final

state by means of the second photon. This process has been discussed mathematically in

most of nonlinear optics or quantum mechanics book [1, 9]. One can show that increasing

the intensity of the light (or the number of photons per second incident on the material) will

increase the probability of the process and therefore the absorption is nonlinear. In [9] it is

shown that the absorption coefficient of the medium is proportional to the intensity of the

light which means that the photocurrent is proportional to the square of the incident optical

power.
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2.7 Applications of two-photon absorption

Two-photon absorption as a nonlinear process is an attractive candidate for a number of

applications. This process because of its nonlinear nature is sensitive to compression of

optical power both is time and space domains. Especially the sensitivity of TPA process

to the compression of optical power in time has widely been used to build systems for

auto-correlation, cross-correlation, measurement of very short pulses and also optical com-

munication applications. The other important feature of TPA process that makes it more

attractive for these types of applications is that the response time of the process is very

short and therefore can be used for high speed communication systems or ultrashort pulses.

In this chapter we will introduce some of these applications based on the literature.

2.7.1 Autocorrelation and Crosscorrelation

Autocorrelation techniques are mostly important because they give a method for pulse-

width measurement for ultrashort optical pulses. Different methods have been used includ-

ing different nonlinear processes but a very common method that has recently been used

is the two-photon absorption. The beam of light from the optical pulse source is split into

two beams and one of the beams undergoes a controlled time delay, then both beams are

incident on a photodetector with TPA response. The output current of the detector will

have a constant background when the two pulses from the two beams do not overlap and it

will increase if the two pulses have some overlap with each other. This is the main concept
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of building autocorrelator based on TPA process. This happens because the output of the

TPA detector is proportional to the square of the optical power or the fourth power of the

electric field amplitude. In [10] an autocorrelation measurement based on TPA in a GaAsP

photodiode is reported that is able to measure pulses as short as 6 fs. A highly sensitive

autocorrelator using Si avalanche photodiode as a two-photon absorber is also introduced

in [11]. The same method can be modified to be used as a crosscorrelation measurement

technique by using two different signals. In [12] a crosscorrelator based on TPA in a Si

avalanche photodiode is used for measurement of picosecond pulse transmission character-

istics.

2.7.2 All-Optical Demultiplexing and Sampling

Future development of high capacity optical time division multiplexed (OTDM) systems

can only happen by using ultra-fast switching techniques. But it has been well understood

that constructing high speed optical switches requires employing all-optical techniques

which usually means using nonlinear effects. Different techniques based on different non-

linear effects have been reported. One of these techniques is based on TPA process and

works with the same principle as what was explained in Section 2.7.1. The system utilizes

an optical control pulse to demultiplex a high speed OTDM channel via the TPA nonlin-

earity. This method has been reported in [13] using TPA in a laser diode. The principle of

operation is very easy to understand. If the power of the signal is Ps and the the control

signal has a power of Pc � Ps, then the average TPA output current when the two pulses
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do not have any overlap will be:

i = K(P 2
s + P 2

c ) ' KP 2
c (2.37)

and when they have a full overlap we have:

i = K(P 2
s + 2PsPc + P 2

c ) ' K(P 2
c + 2PcPs) (2.38)

This equation shows that the average photocurrent has a constant background that increases

when the control and signal pulses overlap.

A similar method is used to make an all-optical sampling system that can be used as

optical oscilloscope. In this system that is reported in [14] a relatively high power sampling

pulse is injected at the same time with a signal pulse on TPA detector which is a waveguide.

A similar analysis to Eq. 2.38 shows a cross-term which is a function of the time delay

between the signal and the sampling pulses and for short sampling durations one can show

that the cross-term gives the shape of the signal pulse.

2.7.3 Optical Thresholding

The TPA process can distinguish between two optical pulses with the same energy and

different time durations. For simplicity consider two periodic pulse trains with period T.

One of the pulses has peak power 2P and duration
τ

2
and the other has peak power P and
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duration τ . Both pulses have average power of Pave =
Pτ

T
, therefore a slow linear detector

can not show any difference between the two pulses. But the average TPA photocurrent

generated by the two pulses will be:

i1 = 2K
P 2τ

T

i2 = K
P 2τ

T

(2.39)

An optical Thresholder is a system that can distinguish between properly and improperly

decoded signals using the contrast in their peak intensity. A correctly coded waveform gives

a short and intense pulse after being decoded whereas an incorrectly coded signal will give

a pulse with lower peak power and longer duration. Such a system in introduced in [15] as a

suitable all-optical signal processing tool for the coherent ultrashort pulse CDMA systems.

2.7.4 Chirp Measurement

The chirp measurement is very similar to optical thresholding system. In a chirp measure-

ment the most important parameter of the pulse that can be measured is the width of the

pulse. As an unchirped pulse goes through a dispersive medium it spreads in time and

therefore TPA process is suitable for detecting this change in the pulse duration. In [16]

this method and the system built to measure the chirp are explained.
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2.7.5 Other Applications

In this section we summarize some other applications of TPA that have been reported in the

literature. Reduction of optical intensity noise is done by using the TPA in ZnSe [17]. In

this work it is shown that the fluctuations in the intensity of a laser can be reduced by means

of a two-photon absorber. Infrared image detection with a Si-CCD image sensor that uses

the TPA in this detector is reported in [18]. The method is based on the autocorrelation of

the light intensity in this sensor by means of TPA process. Two-photon absorption spec-

troscopy is the other application for TPA that has been discussed in [8] and an experimental

work is reported in [19]. Finally a reflectometry method based on TPA in a Si avalanche

photodiode is reported in [20].



3. SENSITIVITY ISSUES IN TWO-PHOTON ABSORPTION

In the previous chapter we discussed two-photon absorption as a nonlinear susceptibility in

the optical material besides looking briefly at the quantum mechanical explanation of the

phenomenon. In the current chapter we focus on the generation of two-photon absorption

current in a photo detector. In optical communication systems we are interested in the

wavelength of 1550 nm and a good candidate for the detection of TPA signal is silicon.

Silicon has an energy band-gap more than the photon energy at 1550 nm and therefore

does not have any linear absorption in this wavelength. But since the band-gap of silicon

is less that twice the photon energy, some two-photon absorption can be observed. This

is explained more in Section 3.1. Observing two-photon absorption in a detector is the

first issue discussed in this chapter and all of the experimental results given in the chapter

are generated with the experimental setup introduced in Section 3.1. There are a number

of factors that determine the TPA photo-current of a detector and the main goal of the

chapter is to define and quantify these factors. Section 3.2 shows the experimental results

taken from the setup introduced in Section 3.1. Section 3.2.3 gives an experimental result

showing the effect of the long-pass filter on the current-power curve of the detector. In

Section 3.3 we will see how the two-photon absorption depends on the spot size of the beam

26
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focused on the photo-detector. In Section 3.4 we show the experiment used to determine

the spot size for different lenses. Section 3.5 presents a theoretical model of the detector

that gives a more realistic formula for the effect of spot-size on the TPA current. The

experimental data confirming the theoretical results in Section 3.5 is given in section 3.6.

As mentioned before there are a variety of factors affecting the sensitivity of TPA process

in a detector. One other effect is the anti-reflection coating designed for low wavelengths

on commercial photo-detectors. This parameter is discussed in Section 3.7 of this chapter.

The last section of this chapter examines how the two-photon absorption varies over the

detector surface, in comparison with the single-photon absorption process.

3.1 Experimental setup to study two-photon absorption

Before giving a schematic of the experimental setup used for the research we summarize

the main requirement for a system to be able to show two-photon absorption.

1. Suitable Detector: The detector used should be made of a material with a band-gap in

the range (hν, 2hν) where ν is the frequency of the light. For wavelength of 1550nm

a Si avalanche photodiode (APD) is a good choice since Silicon has this property

(Eg ' 1.12 eV which is about 1.4hν at 1550 nm) and also the internal gain provided

by an APD makes it easier to see the small signal due to the TPA.

2. Focusing the light: Two-photon absorption as explained later in Section 3.3 is very

sensitive to the spot size of the light incident on the detector. The smallest spot can
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usually be the best choice and that is why using a focusing lens right before the

detector is necessary.

3. Long-Pass filter: In some cases the light incident on the detector may have frequency

components in the normal absorption range of the detector. For when an EDFA is

used, a weak 980 nm residual pump component may be in the output of the ampli-

fier which can give a linear absorption photocurrent comparable to the two-photon

absorption. In order to avoid this we used a long-pass filter at 1200nm in our experi-

ment.

4. Fine movement of the detector: It is very important to align the system to get a beam

normal to the surface of the detector and also adjust the detector to be on the focal

plane of the focusing device. This can only be done by means of a precise translation

stage.

5. Output noise reduction: The output of the detector can be so small that using a lock-

in detection system may be necessary, especially in the initial alignment process. In

our system a chopper and lock-in amplifier is used.

6. Polarization control: As we will see later in Chapter 4 two-photon absorption is also

sensitive to the polarization state of light. In the experiment we need to tape all the

movable optical components and fibers to the table in order to avoid the change in

polarization affect the experiment. We also used a polarization controller, a linear

polarized and waveplates to study the polarization dependence of the TPA process.
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Considering these requirements we set up an experiment which is the main setup used

for most of the experiments in the following sections. The schematic of the experiment is

shown in figure 3.1.

In this setup the power of the laser is increased to about 100 mW using an EDFA and

5 percent of this power is tapped off with a coupler to be used to monitor the input power

to the system. An inline polarization controller is used to study the polarization sensitivity

of the TPA process. A variable attenuator changes the input power to the collimator. After

point A in the figure the system in under a box to minimize the effect of room light. Light

coming out of the collimator is chopped using a chopping wheel. A linear polarizer and

quarter- or half- waveplate are used in the experiments of polarization sensitivity. LPF

as mentioned before is a long-pass optical filter at 1200 nm that eliminates the optical

radiation with short wavelengths. The focusing lens is usually a microscope objective that

focuses the collimated light into a very small spot (a few microns) on the surface of the

detectors. The detector used in the TPA experiment is a Si avalanch photodiode (APD) and

is followed by an amplifier to convert the photocurrent to voltage. A translation stage is

used to align the detector to the incident beam and adjust the location of the detector on the

focal plane of the lens. More details about the devices and instruments used in this setup

are given in Appendix A.
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Fig. 3.1: Experimental setup used for observing TPA process (figs/3/setup.eps)
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Fig. 3.2: Schematic of the circuit used to convert the photocurrent to voltage
(figs/3/circuit.eps)

3.1.1 Detector circuit

The APD detector needs a high voltage source (about 200 V) to provide the required volt-

age for the avalanche process. The photocurrent generated in the detector is converted to

voltage using the circuit shown in figure 3.2. In this circuit HV shows the high voltage

supply and Rb is the bias resistor. Appendix A shows more details about the circuit.

3.1.2 Alignment Technique

The TPA photocurrent is very sensitive to the alignment of the system. The reason is that

the laser can only provide enough intensity for a measurable TPA process when it is focused
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to a very small spot on the detector. In order to align the system we initially use a 980 nm

laser (which produces a single-photon absorption) and maximize the photocurrent. This

allows for coarse alignment of the detector, because the linear photocurrent is much less

sensitive to the detector position. After the coarse alignment, the system is connected to

a 1550 nm source when we should be able to observe TPA current. This is possible by

moving the detector in the z direction and finding the focal point of the focusing lens.

3.2 Two-photon Absorption Experimental Results

The system described in the previous section gives a good observation of the TPA process

in silicon. In this part of the experiment a 10× microscope objective is used as the focusing

lens and the power of the beam is changed using the attenuator. The output voltage mea-

sured by the lock-in detector is plotted vs. the input power to the detector in figure 3.3. The

measurement of the power is explained in Section 3.2.1. As seen in the figure the slope of

the curve is very close to 2 decades of photocurrent per decade of optical power in a log-log

scale and it shows a saturation effect as the power is increased. Figure 3.3 shows the points

taken from the experiment and also the ideal two-photon absorption curve corresponding

to the equation:

VLIA = RP 2 (3.1)

In this equation VLIA is the voltage read from the lock-in amplifier and P is the power

focused on the detector. R is the equivalent of responsivity for the TPA case. From this
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Fig. 3.3: Output voltage vs. input power showing a slope of 2 in the log-log scale.
(figs/3/tpa.eps)
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experimental data as seen in the figure, the input power range to see two-photon absorption

effect without any saturation is:

0.2 mW < P < 10 mW (3.2)

Off course the lower limit is due to the noise limitation but the upper limit is because of the

saturation effect. This power range gives an output voltage range of:

0.01 mV < VLIA < 10 mV (3.3)

The value of R calculated from this range is:

R ' 0.168
mV

mW2 (3.4)

3.2.1 Calibration of the input power

The incident power to the detector was measured using a power meter installed at the focal

plane of the lens. The power plotted on the horizontal axis of figure 3.3 refers to the

constant power not the chopped power. In other words the power is measure when optical

signal is unchopped. The attenuation is then multiplied by this measured power. The power

monitor at the 5% output of the detector is to account for any power fluctuations that may

occur.
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3.2.2 Photocurrent calculation

The photocurrent when power is ON can be related to the the voltage being read on the

display of the lock-in amplifier. If V is the output of the circuit shown in figure 3.2 and

i is the photocurrent we have: i =
V

R
where R is the resistor shown in figure 3.2. But

the output of the lock-in amplifier can be related to the ON voltage of the circuit using the

relationship: V ∼= 2.7VLIA where VLIA is the lock-in amplifier voltage. Therefore finally

assuming R = 200 kΩ we have:

i(µA) ' 0.0135VLIA(mV) (3.5)

3.2.3 Effect of the Long-pass Filter

The fiber amplifier used in these experiments contains a pump laser operating at 980 nm.

The isolator and WDM coupler at the output of this device should ideally remove all 980nm

radiation but there may be a weak residual 980 nm light coming out of the EDFA. In this

part of the experiment we removed the long-pass filter to see the difference between the

filtered and not filtered inputs. The output is plotted in figure 3.4 and the dashed line shows

the line with slope of 2 corresponding to the TPA process. The slope of the curve at low

powers is closer to 1 as expected for single-photon absorption. Single-photon absorption is

easier to see at lower powers because TPA photocurrent is proportional to the square of the

power and decreases more rapidly when power is decreased. In figure 3.4 two dashed lines
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Fig. 3.4: Output voltage of the detector when LP filter is removed. Dashed lines
show the lines with slope of 1 and 2 corresponding to the linear absorption and the
TPA process (figs/3/filter.eps)
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show the two lines corresponding to single-photon and two-photon absorption processes.

This experiment proves that using the LP filter is of great importance in TPA experiments

and there is always some residual low frequency power in the beam coming out of the

EDFA. This would not be an issue for GaAs devices and it could also be avoided if we used

a 1480 nm pumped EDFA.

3.3 Spot-size Sensitivity

Assume a single-photon absorption process in a detector from a beam focused to a very

small spot so that the spot is completely inside the detector area. In this case as long as the

detector includes the whole spot, the photocurrent generated by the detector should remain

almost the same. Mathematically if the photocurrent generated from the area dA of the

detector is di then one can write: di = k1IdA where I is the intensity of the light at that

point and k1 is a coefficient that relates the current to the power. Using this formula for a

Gaussian beam 1 from a lens with the spot size of w0 centered on a detector with a radius

of R we can write:

i =

∫

di = k1I0

∫ R

0

exp

(

− 2r2

w0
2

)

2πrdr =
1

2
k1I0πw

2
0

[

1 − exp

(

−2R2

w0
2

)]

(3.6)

i = k1

[

1 − exp

(

−2R2

w0
2

)]

P (3.7)

1 See Appendix B for the Gaussian beam formulation
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Where I0 is the peak intensity of the beam, P is the total power of the beam and r is

the cylindrical coordinates radius. This calculation shows that for R � w0 the current is

almost constant and is equal to k1P where P is the total optical power of the beam. In our

experiment the radius of the detector is about 250µm and w0 from the focusing lens is a

few microns only. Therefore no significant change in the linear photocurrent is expected if

the spot size changes.

Now let us look at the similar case with the two-photon absorption phenomenon. The

model for this two dimensional detector can be written as: di = k2I
2dA where k2 is a

constant. In this case, if all other parameters of the beam and detector are the same as

single-photon absorption case we can write:

i =

∫

di = k2I
2
0

∫ R

0

exp

(

− 4r2

w0
2

)

2πrdr =
1

4
k2I

2
0πw

2
0

[

1 − exp

(

−4R2

w0
2

)]

(3.8)

i =
k2

πw2
0

[

1 − exp

(

−4R2

w0
2

)]

P 2 (3.9)

In this analysis one can easily see that the photocurrent strongly depends on the spot

size of the beam (w0). According to this simple model, the photocurrent increases as
1

w2
0

by

making the spot size smaller. But as we will see in section 3.5 this is not true and depending

on the thickness of the absorbing medium this regime changes.

Since the spot-size plays a significant role in the TPA process we measured the beam

spot-size produced by two different focusing lenses and the results are given in the next
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section.

3.4 Spot-size Measurement

The focusing lenses used in this experiment are two microscope objectives with 10× and

20× magnifications. The optical features of these lenses are given in table 3.1. In this

table EFL and NA stand for effective focal length and numerical aperture of the lens. The

collimated beam has a beam width of about 5.5 mm that covers the whole area of both

lenses. Also the calculation of spot-size is based on the following approximate formula:

w0 '
λ

2NA
(3.10)

The experimental setup to measure w0 is based on measuring a Gaussian beam intensity

distribution in the far-field. Measurement of w0 at the focal point can be hard and inaccu-

rate due to the small dimensions of the spot-size but we can measure the diffracted beam

far from the focal point and infer the focal point spot-size using the Gaussian beam for-

Magnification NA EFL (mm) Working Distance (mm) Calculated w0 (µm)
10× 0.25 17.13 6.14 3.1
20× 0.4 8.55 3.3 1.94

Tab. 3.1: Optical features of two microscope objective lenses including calculated
spot-size based on the numerical aperture of the lens
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mulation. The experimental setup in shown in figure 3.5. The collimated beam is focused

to a small spot and the beam profile is measured at a distance z from the focal point. The

measurement of the beam profile is accomplished with a 1550nm detector that is moved

along the radial direction by means of a one-directional translation stage. The translation

stage measures the position of the detector with a precision of 1 mil or 25 µm . In figure

3.5, r is the radial distance from the axis of the beam and the area of the detector is assumed

to be much smaller than the size of the diffracted beam which means than the intensity at

each point is proportional to the power detected by the linear photodetector.

From Gaussian beam formulation we have:

I(r) = I(r = 0) exp

(

− 2r2

w(z)2

)

⇒ V (r) ' V (r = 0) exp

(

− 2r2

w(z)2

)

(3.11)

In this equation I and V are the intensity and detector output voltage respectively and w(z)

is the spot size at a point z (mm) far from the focal point. Data points of (r, V ) are plotted

in MATLAB and w(z) is determined by performing a least-square fit to Eq. 3.11. The two

plots corresponding to both lenses are given in figure 3.6 and the numerical value for w(z)

from the fitting program is indicated on the figures.

Now it is easy to find w0 from w(z) by using the following formula:

w(z)2 = w2
0

[

1 +

(

z

z0

)2
]

(3.12)
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Fig. 3.5: Beam radius measurement experiment (figs/3/beamsize.eps)
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Fig. 3.6: Measured gaussian profile of the beam for two lenses: microscope objec-
tive with 10× magnification (a) and microscope objective with 20× magnification
(b) (figs/3/beam.eps)
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Magnification z (mm) w(z) (mm) Measured w0 (µm) Calculated w0 (µm)
10× 45.4 6.84 3.28 3.1
20× 44.7 12.47 1.77 1.94

Tab. 3.2: Measured values for the spot-size measurement experiment and compar-
ison with the calculated values

where z0 =
πw2

0

λ
is the confocal beam parameter. Table 3.2 gives the calculated and

measured beam sizes for the two lenses. This measurement shows a good agreement with

the calculation based on the numerical aperture and therefore is an accurate method for

spot-size measurement. In the next section we discuss a more detailed model for the spot-

size effect on TPA photocurrent in a detector.

3.5 Further Considerations in the Spot-size Sensitivity

In section 3.3 we considered a very simple two-dimensional model for the TPA photocur-

rent generation in a circular detector. In practice the thickness of the absorption region

is not negligible compared to the confocal beam parameter (z0) and therefore should be

considered in the calculations. Two examples of the typical structure of Si avalanche pho-

todiode is shown in figures 3.7 (a) and (b) [3]. In both structures the absorption of light

occurs in the intrinsic region labeled as π and the avalanche process occurs in the p region

which can be in the front or back of the intrinsic region and is connected to a n+ region.

The thickness of the intrinsic (lightly doped) absorbing region is typically 50-100 µm,
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Fig. 3.7: Structure of Si Avalanche Photodiode. The avalanche region can be in the
back (a) or in front (b) of the absorption region [3]. (figs/3/si-apd.eps)
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as required to achieve a high quantum efficiency at the shorter wavelengths for which the

detector is designed. The avalanche region multiplies the number of electron-hole pairs

by a gain (usually in the order of 100) and therefore can produce relatively high output

photocurrent compared to conventional PIN photodiodes. In the model discussed in this

section we consider TPA process in a slab of silicon of thickness d with infinitely large

area. A Gaussian beam incident on this slab generates TPA photocurrent in the detector.

First we calculate the total TPA absorbed power in the slab. Figure 3.8 shows a detailed

image of the Gaussian beam and the detector. When the beam enters the silicon slab, it

undergoes refraction and therefore the beam waist position changes. There can be different

situations for solving this problem considering different positions of the beam waist (inside

the slab, before or beyond the slab) but one can easily show that the final formula holds

for all these situations. Now let us solve the problem for the case that the beam waist is

inside the slab. When the Gaussian beam undergoes refraction from air into a medium of

refractive index n we can show using Gaussian beam formulation that 2:

• The distance from the beam waist to the boundary is n times the distance from the

beam waist to the boundary if n = 1 (see figure 3.8).

• Spot-size of the beam at the beam waist (w0) does not change by entering the slab.

• Evolution of the spot-size with z follows the same formula as a beam in the air but

the confocal parameter z0 should be multiplied by n.

2 These statements are shown in Appendix B
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Fig. 3.8: Gaussian beam incident on a slab of silicon. Figure shows the refraction
of the beam and the parameters used for the calculations. (figs/3/gauss-slab.eps)

Two-photon absorption coefficient β gives the change in the intensity of light as it

travels through the medium:

dI

dz
= −βI2 (3.13)

But β is very small (βId � 1) and the amount of power that is absorbed is negligible

compared to the incident power. Therefore one can assume no variation of the intensity

with z. In this case intensity at any point with a distance z ′ from the front face of the slab

and radial distance r from the axis of the beam can be given by:

I(r, z′) = I0(z
′) exp

(

− 2r2

w2(z′)

)

(3.14)
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In this equation I0(z′) is the intensity on the axis of the beam at a distance z ′ from the front

face of the slab. w(z′) is also the beam radius at this point. According to the assumption

that the absorbed power is much smaller than the incident power I0(z
′) can be written as:

I0(z
′) =

2P

πw2(z′)
(3.15)

Where P is the power of the incident beam 3. Also w(z′) can be easily written in a form

similar to Eq. 3.12 after considering the situation in figure 3.8:

w2(z′) = w2
0

[

1 +

(

z′ − nz

nz0

)2
]

(3.16)

Where z0 =
πw2

0

λ
. The power absorbed in a differential slab of thickness dz ′ can be written

as:

dPabs = βdz′
∫

∞

0

I2(r, z′)2πrdr =
1

4
βπI2

0 (z′)w2(z′)dz′ (3.17)

Therefore to calculate the total absorbed power one should evaluate the following integral:

Pabs =
β

π
P 2

∫ d

0

1

w2(z′)
dz′ (3.18)

Now by substituting from Eq. 3.16 we can evaluate the integral and the final absorbed

power will be:

Pabs =
nβ

λ

[

tan−1

(

d− nz

nz0

)

+ tan−1

(

z

z0

)]

P 2 (3.19)

3 In fact P is the part of the incident power that is transmitted into the slab.
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The absorbed power is a function of z and is maximized when z =
d

2n
. The maximum

power through two-photon absorption would be:

Pmax
abs =

2nβ

λ
tan−1

(

λd

2πnw2
0

)

P 2 (3.20)

Now let us look at the limiting cases of this maximum power:

• The spot-size is big enough so that the detector can be considered as a very thin slab,

mathematically: z0 � d

2n
. In this case one expects to get the same result of the

calculations in section 3.3. By approximating the inverse tangent with its argument

we get:

Pmax
abs ' βd

π

P 2

w2
0

(3.21)

This equation shows that the absorbed power is inversely proportional to πw2
0 which

is the spot area.

• The spot-size is very small and the thickness of the detector is much bigger than the

confocal parameter of the beam, mathematically: z0 �
d

2n
. In this case the value of

the inverse tangent is approximately
π

2
and we get:

Pmax
abs ' nβπ

λ
P 2 (3.22)

This equation shows that for very small spot-sizes the absorbed power has a limit

and cannot be further increased by making the spot-size smaller. This is the most
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Fig. 3.9: Normalized maximum TPA power vs. normalized spot-size. Tha satura-
tion point and the 2-D approximation are shown. (figs/3/abs-power-curve.eps)

important result of this calculation which indicates a limit for the TPA photocurrent

as the spot-size of the beam is decreased.

Finally let us consider the plot of the normalized maximum absorbed power (Pn) vs. the

normalized spot-size (wn). The power is normalized to the value at very small spot-size,

nβπ

λ
P 2, and the spot-size is normalized to the value

√

λd

2πn
. Therefore formula given in

Eq. 3.20 can be simplified as : Pn =
2

π
tan−1(w−2

n ). The plot is shown in figure 3.9 and

shows that making w0 smaller than a saturation point can only improve the TPA current by

at most a factor of 2 which is not anticipated by the two-dimensional model of the problem.

The point defined as the saturation point is shown in figure 3.9 and refers to wn = 1 or :
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w0,sat =

√

λd

2πn
(3.23)

This formula helps us to find the right spot size for a certain detector assuming that the

thickness of the absorption region is known. Also knowing the minimum achievable spot-

size we can find the suitable thickness of the intrinsic region which is corresponding to the

saturation point shown in figure 3.9:

dsat =
2πnw2

0

λ
=

πnλ

2(NA)2
(3.24)

In the next section we will provide experimental results that confirms the spot-size depen-

dence of the TPA photocurrent and we will give a rough estimation for the thickness of the

absorbing region.

3.6 Spot-size Sensitivity Results

In Eq. 3.19 parameter z can be controlled using the translation stage. As explained before a

three-axis translation stage is used to move the detector in x,y,z directions and therefore by

movement in the z direction TPA photocurrent should follow a function similar to Eq. 3.19.

The stage moves in the z direction with 1µm steps and since the confocal parameter of the

beam z0 is about 20µm this stage has sufficient precision for this experiment. A MATLAB

program is written that fits the data points of output TPA voltage on the lock-in amplifier

and distance z to the formula given in Eq. 3.19. Parameter z is measured with respect to
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an arbitrary origin but then in the fitting program the amount of shift is determined. In this

program we tried two fitting methods:

1. In the first method, four fitting parameters are used: w0, d, A (a parameter that in-

cluded all constants that are multiplied by the output voltage) and D (the shifting

parameter that gives the amount of shift for z to get to the right origin). The beam

waist w0 is already known but by this method we can check that the model is accept-

able for this type of problem if the calculated w0 is close to what was independently

measured.

2. In the second method we eliminate one of the parameters w0 and therefore obtain a

better estimate of d. But as we will explain later this model may not be an accurate

measurement technique to find the thickness of the absorption layer.

Figures 3.10 (a) and (b) show the data and the calculated curves with the MATLAB pro-

gram for 10× and 20× lenses respectively. The results obtained from the fitting program

are summarized in table 3.3, which gives the values of w0 found by method 1 and d found

by method 2 after plugging in the actual spot-size values. Calculation of d has an un-

certainty due to different values obtained from different measurements and the reason for

having different results will be discussed in Section 3.8 where we see that the surface of

the detector does not seem to be uniform. Therefore this value of d just gives the effec-

tive thickness of the absorbing layer inside the APD. The results agree with what would

be expected based on the vendor-specified quantum efficiency at λ ' 1µm and the linear
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Fig. 3.10: Output voltage of the lock-in amplifier vs. the distance in the z direction
for 10× (a) and 20× (b) lenses. The curve calculated from the fitting program is
shown. (figs/3/spotsize-result.eps)
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Magnification w0(µm) d(µm)

10× 3.6 120
20× 2.2 100

Tab. 3.3: Measured values of the spot-size and the thickness of the absorption
region from fitting Eq. 3.19 to the experimental data

absorption coefficient α at this wavelength.

3.7 Surface Reflection Effect

Most optical detectors have an antireflection coating that is designed to maximize the

amount of light delivered to the absorption region. But the antireflection coating works

best at one specific wavelength. In order to reduce the reflection of the light incident from

air on the surface of a material with refractive index n, one can show using transformation

of impedance method [21] that:

• The coating material should have a refractive index of
√
n.

• The thickness of the coating layer should be
λ

4
√
n

where λ is the wavelength of the

light in air.

Because the detector is designed for use at 830 nm wavelength, when used in 1550 nm

the reflectivity of the surface is in general non-zero. In this section we give a calculation
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of the reflected power from the antireflection coated detector when it is used at a different

wavelength.

If λ is the wavelength for which the antireflection coating is designed and λ′ is the

actual wavelength used, let t =
λ′

λ
and using the method of impedance transformation we

can show:

R =
(1 − n)2

(1 + n)2 + 4n tan2(
πt

2
)

(3.25)

where R is the power reflectivity of the surface. In this equation it is easy to observe that

for t = 2 the value of R approaches the reflectance of a surface without any antireflection

coating. Now using Eq. 3.25 we calculated R for a Silicon detector (n ' 3.5) and λ =

830nm and different wavelengths to use on the detector. The calculated power reflectivity

is given in table 3.4. The TPA photocurrent that is generated is proportional to square of

the transmitted power. The relative values of TPA photocurrent is given for a few different

wavelengths in table 3.4. Note that this analysis assumes that the antireflection coating

has an index of refraction of
√
n, which can only be approximately achieved in practice.

Also, we have assumed that the refractive indices do not vary appreciably with wavelength.

This table shows that the TPA photocurrent can be reduced by a factor of 2 because of

this reflection which is another sensitivity issue to consider especially in order to make a

detector customized for TPA process.
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Wavelength (nm) t Power reflectivity (%) Relative TPA (%)
950nm 1.14 2.2 95.6
1100nm 1.32 9.6 81.6
1250nm 1.51 18.5 66.4
1400nm 1.69 25.7 55.1
1550nm 1.87 29.9 49.1

Tab. 3.4: Calculated power reflectivity and relative TPA for different wavelengths
used on a silicon detector having an antireflection coating at 830nm.

3.8 Nonuniform Surface of the Detector

In most of the formulas derived in this chapter we assumed that the surface of the detector

is uniform enough to assume that the efficiency of the TPA process is uniform over the

active area of the detector. But we observed experimentally that there are significant issues

with this assumption. In order to look at this problem first we moved the detector in the

transversal directions (x and y). The detector’s active area is circular shape with a diameter

of 500µm and the beam size at the focal point as mentioned before was about 6µm for

the 10× lens and 4µm for the 20× lens. These numbers show that a uniform detector

should not be sensitive to movements in x and y directions as long as the beam is inside the

detector and z is kept constant. However, measurements show a nonuniform response over

the area of the detector. Some areas show more uniform response while in other areas local

peaks are observed. The results of this experiment are shown in figure 3.11 (a) and (b). In

this experiment the beam is scanned along the two main diameters of the detector area in

the x and y directions. The translation stage used in this measurement has a limitted travel
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of 200 µm, which prevents one from travelling the entire 500 µm diameter in a single scan.

The data plotted therefore only cover half of the detector. Results in figures 3.11 (a) and

(b) show the TPA output voltage only for the x direction in the two halves of the detector

diameter. Also in this figure we plot the single-photon absorption with the 980nm source

which shows a uniform result for the single-photon absorption experiment on the exactly

same path. The power used for 980nm source is much lower than the 1550nm source but

still the output voltage from the single-photon absorption is plotted 3 orders of magnitude

lower to be able to be compared with the two-photon absorption voltage. The results shown

in this figure are really unexpected especially the fact that linear absorption is uniform over

the surface while two-photon absorption is greatly enhanced is some regions. Qualitatively

similar results are seen in the y direction.

The first conclusion of this experiment is that the experiment described in Section 3.6

should be done on the areas of the detector that the TPA output is more uniform. In the

following subsection we will consider possible explanations for this effect.

3.8.1 Possible Explanations

Following reasons can be considered as different possibilities for this effect:

• Defects in the detector material : If the silicon in the detector contains some impu-

rities or defects this may cause a nonuniform pattern similar to what we see in figure

3.11. But looking at the single-photon absorption response of the same path on the



3. Sensitivity Issues in Two-Photon Absorption 57

0 50 100 150 200 250
0

10

20

30

40

50

60

70

80

90

100

x(um)

V
ou

t (
T

PA
:1

0µ
V

, S
PA

:1
0m

V
)

0 50 100 150 200 250
0

10

20

30

40

50

60

70

80

90

100

Two-Photon Absorption

Single-Photon Absorption

(a)

Two-Photon Absorption

Single-Photon Absorption

x(um)

(b)

V
ou

t (
T

PA
:1

0µ
V

, S
PA

:1
0m

V
)

Edge of the Detector
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detector makes this possibility weak since one expects to see the same pattern for this

response. Although the defects may effect only the TPA process.

• Reflection from the surface of the detector : This assumption is based on the fact

that some light gets reflected from the glass window or the silicon surface. The reflec-

tion from the glass is about 5% and from the silicon is about 30% which can not make

any effect similar to figure 3.11. If we assume that the antireflection coating does not

work for 1550nm wavelength, this is something that distinguishes between the SPA

and TPA processes but can explain only a few percent variation in the transversal

plain.

• Reflection from the back surface : This possibility is the strongest since it com-

pletely separates the cases of a 980 nm and 1550 nm wavelengths. The absorption

coefficient of the detector at 980 nm wavelength is much higher than at 1550 nm

wavelength, therefore the intensity of 980 nm light decays much faster than 1550

nm light when it enters the detector. Figure 3.12 shows the typical decay rate of

the optical power for 980 nm and 1550 nm signals passing through a slab of silicon.

Therefore the reflection on the back surface should not have any effect on the 980

nm light whereas the effect on 1550 nm can be significant. In some devices a metal

contact is deposited on the back surface and this makes a highly-reflective surface for

the light. Now if this surface has some roughness or irregularity due to fabrication

issues it might cause the nonuniform pattern similar to fig 3.11. This nonuniform

response could be caused by some complex interference effect.
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Fig. 3.12: Decay of power for 980nm and 1550nm light entering a slab of silicon.
Figure shows how the power of the 980nm decays faster. (figs/3/decay.eps)

3.8.2 Explanation of the Nonuniform Response

After discussing 3 possible explanations for what causes the nonuniform response of the

detector, reflection from the back surface seems most likely to be the real cause of this irreg-

ular response. In order to confirm this explanation, we did another measurement in which

we vary the wavelength of the light around 1550 nm. If the cause of this nonunifromity is

some interference effect we expect to see variations in the output by sweeping the wave-

length. Figure 3.13 shows the response of the detector when the light is focused on a fixed

point of the detector as the wavelength of the input light is changed. As we clearly see

in figure 3.13, the TPA photocurrent changes by a factor of about 5 as we go from a peak

to a minimum. This experiment proves that some interference effect occurs in the device.
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Fig. 3.13: TPA output voltage vs. the input light wavelength. (figs/3/wavelength.eps)

The other observation is that the peaks are spaced evenly and the wavelength difference

between them is about 8 nm in the wavelength domain, which corresponds to 1000 GHz in

the frequency domain. This observation gives an idea about what could be happening in the

device. In a Fabry-Perot interferometer the same frequency dependence can be observed.

The peaks of the reflected or transmitted light in a Fabry-Perot interferometer are spaced

evenly in frequency domain (or approximately evenly in wavelength domain). If the dis-

tance between the two plates in a Fabry-Perot interferometer changes, the locations of the

peaks and minimums in the wavelength domain shifts depending on the amount of change

in the distance. Now assume that the back surface of the detector (which is possibly a metal

contact) has irregularities such as not being parallel to the front surface in some areas or
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roughness. In this case the distance between Fabry-Perot plates (or their angle) changes

and this can make significant variations in the places of peaks and minimums and there-

fore cause the nonuniform pattern such as what we see in figure 3.11. In order to confirm

this we moved the detector in the transverse direction from a maximum to a minimum and

then tuned the wavelength in the minimum so that we get the same output of the maximum

point. This was done at a few points on the detector and each time we were able to adjust

the wavelength to get a relatively flat response instead of the nonuniform response that is

shown in figure 3.11. In the next section we will give a simple analysis of this assumption.

3.8.3 Fabry-Perot Model

In this section we consider a simplified model for the reflection from the back surface of

the detector. As mentioned in Section 3.8.1 the intensity of the light for a TPA process does

not decay significantly as it goes through the slab of silicon in the device. This is because

of the fact that β, the TPA coefficient, for silicon is about 2 cm/GW and therefore the

parameter βId is very small for this thickness of the device. Therefore in order to analyze

the problem we will assume no attenuation in the electromagnetic fields propagation in the

medium. In figure 3.14 4 propagating waves are shown. Ei is the amplitude of the electric

field of the incident light propagating in the direction of the z axis and Er is the amplitude

of the reflected light into the air travelling in the opposite direction of the z axis. Ef and

Eb indicate the amplitudes of the forward and backward waves inside the medium. Now to

analyze the problem we have to write the boundary conditions at the two boundaries. The
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Fig. 3.14: Simple Fabry-Perot analysis for the reflection from the back surface of
the detector. (figs/3/fp.eps)

assumptions are:

• All waves are plane waves.

• The reflection coefficient of the front surface is r1 and the reflection coefficient of the

back surface is r2. The transmission coefficient from the air into the medium is t1.

• There is no loss inside the medium.

The boundary conditions required for solving the problem are:

Ef = t1Ei + r1Eb

Ebe
jkd = r2Efe

−jkd

(3.26)
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where k =
2πn

λ
is the wave constant. Solving these two equations for |Ef | and |Eb| gives:

|Ef | =

∣

∣

∣

∣

t1Ei

1 − r1r2e−j2kd

∣

∣

∣

∣

|Eb| = |r2||Ef |
(3.27)

The electric field inside the medium is the summation of the forward and backward fields

and since |Eb| = |r2||Ef |, the two-photon absorption photocurrent generated in the medium

should be proportional to |Ef |4:

i = K|Ef |4 (3.28)

where K is a proportionality constant 4. substituting this in Eq. 3.28 and simplifying we

obtain the following equation for the output photocurrent:

i(d) = K
|t1|4

|1 − r1r2e−j2kd|4
|Ei|4 (3.29)

From this equation one can easily see that the maximum and minimum values of the pho-

tocurrent are:

imax = K
|t1|4

(1 − |r1||r2|)4 |Ei|4

imin = K
|t1|4

(1 + |r1||r2|)4 |Ei|4
(3.30)

4 since |Eb| = |r2||Ef |, K depends on |r2|
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If k changes by ∆k =
π

d
, the photocurrent does not change. Therefore the difference

between the wavelengths of the peaks in figure 3.13 is:

∆λ ' λ2

2nd
(3.31)

Using figure 3.13 we can substitute ∆λ = 8nm and we get d ' 43µm. This value of

d is reasonable according to design considerations discussed is Section 3.5 but is different

from the value found in this section because the models are different. In fact the amount

of d found before is the effective d which is more than the actual d. In figure 3.15 we have

plotted the relative photocurrent
(

i

imax

)

as a function of wavelength for the same range

of wavelength in the experiment and the amount of d found from figure 3.13. Now let us

give some numerical values for |r1| and |r2|. Calculation of |r1| is based on the equation

given in Section 3.7 where we discussed the existence of an antireflection coating on the

surface of the detector. If we assume that the material used for this coating is silicon nitride

with refractive index of about 2 and the detector is designed for the wavelength of 830 nm,

then |r1| ' 0.4. The value of |r2| depends on the structure of the detector. If we assume

that the back of the detector is coated with a metal contact we can assume that r1 ' 1. In

order to compare this theoretical result with out results we calculate the ratio between the

maximum and minimum output photocurrents:

imax

imin

=

(

1 + |r1||r2|
1 − |r1||r2|

)4

(3.32)
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Fig. 3.15: Theoretical plot of the TPA photocurrent vs. wavelength for a simple FP
model. (figs/3/fp-theory.eps)

By substituting r1 = 0.4 we get:

• imax

imin

' 30 for r2 = 1

• imax

imin

' 20 for r2 = 0.9

• imax

imin

' 14 for r2 = 0.8

Therefore depending on what the value of the reflection coefficient is the ratio between the

maximum and minimum values of the photocurrent can change significantly. Now if we

look at figure 3.13 this ratio is about
imax

imin

' 5. Even with a low reflectivity of 0.8 for the

back surface we get 3 times bigger value for the ratio between the maximum and minimum

values of the photocurrent.
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We believe that the discrepancy arises because the simple Fabry-Perot analysis de-

scribed here assumes that the field is a plane wave, whereas in our experiment a focused

beam was used. The beam has a full divergence angle of about θ ' sin−1(NA) = 24o for

the 10× lens. So multiple reflections from the boundaries will not have a complete overlap

with each other as a plane wave model assumes. This may be the main reason for getting

a different numerical value. Another possible explanation is that the back surface may not

be completely flat or smooth and therefore the reflection coefficient from this surface may

be lower than what we have assumed.

3.8.4 Conclusions from the Fabry-Perot model

The results of this analysis on the nonuniform response of the detector can be summarized

as:

1. The Fabry-Perot model can explain the nonuniform response of the detector.

2. Based on this analysis one can estimate the thickness of the absorbing region of the

detector.

3. In order to fabricate customized detectors for TPA process one important consider-

ation would be choosing the right antireflection coating on the front surface of the

detector to reduce r1 as much as possible.

4. The other consideration in fabricating detectors would be depositing absorptive ma-
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terials to the 1550 nm light on the back of the actual absorption region which can

reduce r2.

3.9 Bias Voltage Sensitivity

The last parameter we considered in this chapter is the effect of the bias voltage in the

detector. In an APD the bias voltage changes the avalanche gain (M ) of the detector. The

reverse biased detector is very close to breakdown and as the bias voltage gets closer to the

breakdown voltage, M increases. For the TPA process we observed the same behavior that

is expected because the bias voltage should not have a significant effect on the absorbed

power and only changes the avalanche gain. Figure 3.16 shows output voltage vs. input

power for the TPA process under three different bias voltages.



3. Sensitivity Issues in Two-Photon Absorption 68

10-1 100 101 10
10  -2

10  -1

100

101

102

103

Power (mw)

L
oc

k-
in

 O
ut

pu
t V

ol
ta

ge
 (m

v)

2

200 V
196 V

191 V

Fig. 3.16: TPA output voltage vs. input power for different bias voltages. (figs/3/bias.eps)



4. POLARIZATION SENSITIVITY

In the last chapter we discussed most of the parameters that can change the TPA photocur-

rent of the detector and gave experimental results. In this chapter another parameter is

introduced which falls into a different category and therefore is discussed separately. In

a regular detector with single-photon absorption which is made of an isotropic material,

there is no change in the detected photocurrent when the light polarization changes. In

other words as long as the power of the beam is constant, the polarization of light does

not have any effect on the output current. But in a TPA process as we will show in this

chapter, theoretically and experimentally, changing the polarization from linear to circular

can change the photocurrent by a factor of 1.5. This is due to the nonlinear nature of the

process, not any anisotropy in the detector material.

4.1 Rotation of linearly polarized light

First to make sure that the detector does not have any axis along which it enhances the TPA

process, we rotated the polarization of linearly polarized light. The method of rotation of

polarization is simply shown in figure 4.1 (a). In this method first a polarization controller

69
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shown in figure 3.1 is adjusted to get the maximum power out of the polarizer. The linearly

polarized light coming out of the polarized enters a half waveplate (
λ

2
plate) that rotates

the orientation of the polarization. The power of the light incident on the detector does not

change by rotating the waveplate and the polarization stays purely linear.

The principle of operation of such a waveplate is shown in figure 4.1 (b). The plate

has a slow and a fast axis. The permittivity of the medium is higher for the electric field

along the slow axis than the fast axis. The thickness of the plate is designed in a way

that the component of the electric field along the fast axis will have a positive phase shift

of π with respect to the component along the slow axis after they pass through the half

waveplate. In figure 4.1 the xy coordinate is fixed to the fast and slow axes and the electric

field Ein(t) = E0 cos(θ) cos(ωt)x̂ + E0 sin(θ) cos(ωt)ŷ makes an angle of θ with the fast

axis. The angle θ is the rotation angle of the quarter waveplate which is measurable with a

precision of 1 degree. Therefore the electric field coming out of the quarter waveplate can

be written as:

Eout(t) = E0 cos(θ) cos(ωt)x̂− E0 sin(θ) cos(ωt)ŷ (4.1)

Now if we assume that there is no enhancement along a certain axis for TPA process (i.e.

the medium is isotropic) we can write:

iTPA = K
〈

|Eout(t)|4
〉

(4.2)

Where K is a constant, iTPA is the TPA photocurrent and 〈·〉 is time average operator. The
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Fig. 4.1: Schematic of the setup used to generate and rotate linearly polarized light.
(figs/4/lin-pol.eps)
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time average operator is to eliminate high optical frequency and can be thought of as a

low-pass filter. Now substituting from Eq. 4.1 into Eq. 4.2 we can easily show that:

iTPA =
3K

8
E0

4 (4.3)

Where we have used the formula:

〈

cos4(ωt)
〉

=
3

8
(4.4)

Eq. 4.3 shows the fact that for a linear polarization TPA power is constant as we rotate the

polarization by changing θ. Experiment shows that rotating the polarization direction of a

linearly polarized light does not have any effect on the TPA photocurrent generated in the

detector. Also we checked that 980 nm light (SPA) gives the same result, as expected. This

experiment shows that there is no certain axis on the detector that enhances or reduces the

TPA process for the light polarized along that axis. This suggest that silicon behaves as an

isotropic medium in this detector. As we will see in the next chapter, the nonlinear nature

of the process distinguishes between a circularly polarized light and a linearly polarized

light even if the medium is isotropic.
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4.2 Effect of Elliptically Polarized Light

Now to see the effect of elliptically polarized light we use the setup shown in figure 4.2 (a)

which is similar to the setup used in the last section. In this measurement we replace the

half waveplate with a quarter waveplate. Rotation of this quarter waveplate gives a phase

difference between x and y components of the electric field. The principle of operation of

the quarter waveplate is shown in figure 4.2 (b). Similar to the half waveplate, the quarter

waveplate has a fast and a slow optical axes. The permittivity of the medium is higher

for the electric field along the slow axis than the fast axis. The thickness of the plate is

designed in a way that the component of the electric field along the fast axis will have a

positive phase shift of
π

2
with respect to the component along the slow axis after they pass

through the quarter waveplate. Orientation of the input electric field in figure 4.3 (b) is

similar to what was explained for the half waveplate. Therefore the electric field coming

out of the quarter waveplate can be written as:

Eout(t) = E0 cos(θ) cos(ωt)x̂+ E0 sin(θ) sin(ωt)ŷ (4.5)

This equation shows that the output light is:

• Linearly polarized along the x axis for θ = mπ.

• Circularly polarized for θ = (2m+ 1)
π

4
.

• Linearly polarized along the y axis for θ = (2m+ 1)
π

2
.
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Fig. 4.2: Schematic of the setup used to generate and control elliptically polarized
light. (figs/4/ellip-pol.eps)
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• Elliptically polarized for any other value of θ.

Where m is an integer. Based on this formula and and using Eq. 4.2 we can find the TPA

photocurrent generated by the wave coming out of the quarter waveplate:

iTPA = K
〈

|Eout(t)|4
〉

=
K

16
E0

4 (5 + cos(4θ)) (4.6)

In this equation we have used Eq. 4.4 along with these similar formulas:

〈

sin4(ωt)
〉

=
3

8
(4.7)

〈

cos2(ωt) sin2(ωt)
〉

=
1

8
(4.8)

Eq. 4.6 shows that in case of an elliptically polarized light, TPA photocurrent is expected

to change as a function of the rotation angle θ. This function is periodic with a period of

π

2
. The minimum of the TPA power occurs when the light is circularly polarized (θ =

(2m + 1)
π

4
) and the maximum occurs when the light is linearly polarized (θ = m

π

2
). The

ratio between these two values is:

iTPA(lin)

iTPA(cir)
=

3

2
(4.9)
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Based on the formula given in Eq. 4.6 we can give the formula for the two-photon absorp-

tion coefficient (β):

β(θ) = β0

(

5 + cos(4θ)

6

)

(4.10)

Where β0 is the absorption coefficient for linear polarization. Now we can compare the

experimental results of this part with Eq. 4.6. A MATLAB program is used to fit the data

taken from the experiment to Eq. 4.6. The theoretical result (from the MATLAB program)

and the experimental data are plotted in figure 4.3 (a) for one period. In figure 4.3 (b)

the data from the same experiment is shown when the input electric field is rotated by 90

degrees. In this figure the angle θ does not start from zero and this is because the fast and

slow angles of the quarter waveplate are not defined on the plate. Therefore we plotted the

data for one period (90o) and in the MATLAB program we found the shift in the angle. The

main result of this experiment is that in a TPA process change in the polarization state of

the input light can change the photocurrent by a factor of 1.5 which is a significant factor.

Because of this effect in any TPA experiment we need to keep all the fibers taped down and

fixed to the optical table. Movement of optical fibers can change the polarization of light

and therefore vary the output TPA photocurrent.

4.3 Poincare Sphere Representation

To analyze the polarization of light Poincare sphere representation is usually used. The

electric field can be considered as E(t) = Ax cos(ωt)x̂ + Ay cos(ωt + φ)ŷ or in phaser
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Fig. 4.4: Poincare Sphere representation. (figs/4/poincare.eps)

form as E = Exx̂ + Eyŷ = Axx̂ + Ayejφŷ. In the case considered in section 4.2 we have

Ax = E0 cos(θ) and Ay = E0 sin(θ) and φ =
π

2
. Now first consider Stokes parameters

defined as [22]:

S0 = |Ex|2 + |Ey|2 , S1 = |Ex|2 − |Ey|2

S2 = 2Re(ExE
∗

y) , S3 = 2Im(ExE
∗

y)

(4.11)

It can be easily verified from Eq. 4.12 that S2
0 = S2

1 + S2
2 + S2

3 . Therefore if we look at

the coordinate system shown in figure 4.4 (S1, S2, S3) is on a sphere as long as the power
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of the light is constant. Substituting the electric field in Eq. 4.12 will give:

S0 = |Ax|2 + |Ay|2 , S1 = |Ax|2 − |Ay|2

S2 = 2AxAy cos(φ) , S3 = 2AxAy sin(φ)

(4.12)

In this sphere (S1, S2, S3) = (0, 0, S0) and (S1, S2, S3) = (0, 0,−S0) correspond to circular

polarization and the circle in S3 = 0 corresponds to linear polarization. The rotation of the

linear polarization which was done in section 4.1 is equivalent to move around this circle

(Shown in figure 4.4). Also rotating the quarter waveplate for 90 degrees is equivalent to

moving on the path shown in figure 4.4. We can easily show if γ is the angle between

the position vector of any point on the sphere and S3 axis (shown in figure 4.4), then the

two-photon absorption coefficient can be written as:

β(γ) = β0

(

5 − cos(2γ)

6

)

(4.13)

The foregoing analysis can accurately predict the polarization dependence of the TPA for

noncrystalline, isotropic materials in which the origin of the nonlinearity is electronic 1 in

nature. Examples of such materials are glass, liquids and gasses. However, silicon is a

crystalline material, and therefore an accurate treatment of the TPA in silicon requires that

we use the full χ(3) susceptibility tensor.

1 This is explained more in the next Section
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4.4 General Treatment of the Polarization Dependence

This analysis in more general than the analysis given for the isotropic material but assumes

that the material is either isotropic or a cubic crystal with m3m, 4̄3m or 432 symmetry.

This assumption is equivalent to assuming that the third-order susceptibility tensor is of the

form given in table 2.3. The difference between isotropic and anisotropic material in this

case is that for an isotropic material:

χ1111 = χ1122 + χ1212 + χ1221 , (1, 2 = x, y, z) (4.14)

where we have eliminated the superscript (3). But this relationship is not true for an

anisotropic crystal and we can introduce a new parameter as the anisotropy factor [2]:

σ =
χ1111 − (2χ1212 + χ1221)

χ1111

(4.15)

where we have used χ1122 = χ1212 according to Eq. 2.20. This factor is zero for an

isotropic medium and can be estimated based on quantum mechanics for some materials.

The numerical value of σ calculated for two zincblende semiconductor materials are given

in table 4.1 [2]. We were not able to find this number for silicon but the analysis gives an

idea about how anisotropy can cause polarization dependence in the TPA process.

In order to find the expression for β we go back to Eq. 2.21 and by expanding the
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Semiconductor Anisotropy Factor
GaAs -0.62
CdTe -0.47

Tab. 4.1: anisotropy factor for two zincblende semiconductors [2]

summation and writing three components of the polarization vector we can write:

PNL = 3ε0

[

2χ1212 (E · E∗)E + χ1221 (E · E)E∗ + σχ1111

∑

i

|Ei|2Eiî

]

(4.16)

where i = x, y, z and E is the electric field vector of a wave propagating in the direction

of a unit vector η̂ such that η̂ · E = 0. If η is the coordinate in the direction of propagation

(which need not be x, y or z), we can write E(η) = A(η)e−jkη and Eq. 2.26 can be written

as:

d2E(η)

dη2
+
n2ω2

c2
E(η) = −µ0ω

2PNL(η) (4.17)

Using Eq. 4.16, Eq. 4.17 and equations similar to Eq. 2.32 and Eq. 2.33 we can obtain the

following equation:

∂I(η)

∂η
= − 3ω

2ε0n2c2

[

2Im(χ1212) + Im(χ1221)
|A · A|2

|A|4
+ σIm(χ1111)

∑

i |Ai|4

|A|4

]

I2(η)

(4.18)

By introducing the unit vector p̂ =
A

|A| which is the unit vector representing the polariza-
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tion state we can write the TPA coefficient for the medium:

β =
3ω

2ε0n2c2

[

2Im(χ1212) + Im(χ1221) |p̂ · p̂|2 + σIm(χ1111)
∑

i

|pi|4
]

(4.19)

This formula is given in [2]. Unit vector p̂ can be complex, to accommodate circular and

elliptical states, provided that p̂ · p̂∗ = 1. Now based on this formula we can consider some

special cases:

1. Isotropic medium, linearly polarized light: First let us consider the case of an

isotropic medium and compare the results from this equation with the analysis we

did before. For this case σ = 0 and if the light is linearly polarized we have p̂ · p̂ = 1

which gives us:

β =
3ω

2ε0n2c2
(2Im(χ1212) + Im(χ1221)) =

3ω

2ε0n2c2
Im(χ1111) (4.20)

This gives us the same as that obtained in Eq. 2.35 and shows no polarization depen-

dence for the linearly polarized light.

2. Isotropic medium, circularly polarized light: In this case we have p̂ =
1√
2
x̂+

j√
2
ŷ

and therefore p̂ · p̂ = 0 and the TPA coefficient is:

β =
3ω

ε0n2c2
Im(χ1212) (4.21)

Different physical mechanisms may lead to the nonlinear susceptibility. In the case



4. Polarization Sensitivity 83

η

θ
Ε

[001][010]

[100]

[110][110]

[001]

[111][112]

[110]

(a)

(b)

(c)

Fig. 4.5: Different cuts of the cubic crystal and the relative orientation of the electric
field with respect to crystal axis. (figs/4/crystal.eps)

of the semiconductor materials the most important mechanism is the non-resonant

electronic response which provides χ1221 = χ1212 [1]. Using this condition we can

see that:

βlin

βcir

=
3

2
(4.22)

which is the result that we got from the simple analysis in Section 4.2.

3. Anisotropic cubic crystal: For the certain class of cubic crystals that we analyze in

this section, depending on the type of the crystal cut three cases can happen [2]:
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• Crystal cut perpendicular to [100] direction, linearly polarized light: In this

case figure 4.5 (a) shows the orientation of the electric field and the crystal axis.

From the figure one can easily see that p̂ = cos(θ)x̂ + sin(θ)ŷ for a linearly

polarized light rotated by an angle θ with respect to [100] axis (see figure 4.5).

Using Eq. 4.19 we can show that:

β(θ) =
3ω

2ε0n2c2
Im(χ1111)

(

1 − σ

2
sin2(2θ)

)

(4.23)

and this shows a change in the TPA coefficient by rotating the direction of the

linearly polarized light.

• Crystal cut perpendicular to [110] direction, linearly polarized light: This

case is shown in figure 4.5 (b) and from this figure for a linear polarization we

have [2] p̂ =
sin(θ)√

2
(x̂ − ŷ) + cos(θ)ẑ. Substituting this in Eq. 4.19 gives us

TPA coefficient as a function of θ:

β(θ) =
3ω

2ε0n2c2
Im(χ1111)

[

1 − σ

2
(1 + 3 cos2 θ) sin2 θ

]

(4.24)

In this case also, we see a change in the TPA coefficient as the linearly polarized

light rotates.

• Crystal cut perpendicular to [111] direction, linearly polarized light: This
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orientation is shown in figure 4.5 (c) and one can show that [2]:

p̂ =

(

cos θ√
2

+
sin θ√

6

)

x̂+

(

sin θ√
6

− cos θ√
2

)

ŷ − 2 sin θ√
6
ẑ (4.25)

By substituting this into the equation we obtain the TPA coefficient:

β =
3ω

2ε0n2c2
Im(χ1111)

(

1 − σ

2

)

(4.26)

that shows no change when the polarization is rotated.

Comparing the results from the experiment on linearly polarized light with what we

summarized above about the anisotropic and isotropic media we have two possibilities:

1. Silicon used in this detector has a very low anisotropy factor σ. If this assumption is

correct then with any crystal cut for the silicon layer inside the detector we don’t see

a significant change in the TPA coefficient.

2. Silicon used in the detector is cut perpendicular to the [111] direction which accord-

ing to Eq. 4.26 does not have any angular dependence.

In order to have a better comparison we can consider the circularly polarized light and

compare the theoretical results of the isotropic and the (111) crystal. For the crystal cut

perpendicular to the [111] direction it is more complicated to analyze the circularly polar-

ized light. We can analyze the elliptically polarized light by assuming imaginary and real
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parts for the unit vector p̂ by defining two vectors p̂1 and p̂2 such that:

p̂ = p̂1 + jp̂2

η̂ × p̂1 = p̂2

|p̂1|2 + |p̂2|2 = 1

(4.27)

Choosing p̂1 and p̂2 of the following form satisfies the conditions in Eq. 4.27:

p̂1 = r

[(

cos θ√
2

+
sin θ√

6

)

x̂+

(

sin θ√
6

− cos θ√
2

)

ŷ − 2 sin θ√
6
ẑ

]

p̂2 =
√

1 − r2

[(

cos θ√
6

− sin θ√
2

)

x̂+

(

sin θ√
2

+
cos θ√

6

)

ŷ − 2 cos θ√
6
ẑ

]

(4.28)

where − 1√
2

≤ r ≤ 1√
2

is a factor that determines the degree of ellipticity of the po-

larization state. If r = 0 the light is linearly polarized and when r = ± 1√
2

the light is

circularly (left-hand or right-hand) polarized. The angle θ in this case is the angle between

the ellipse symmetric axis and [11̄0] axis of the crystal. After calculating p̂ from Eq. 4.28

and substituting in Eq. 4.19 we can show that:

1. The two-photon absorption coefficient β does not depend on the angle θ.

2. β depends on r (the degree of ellipticity of the polarization state):

β =
3ω

2ε0n2c2

[

2Im(χ1212) +
(

1 − 2r2
)2

Im(χ1221) + σIm(χ1111)

(

1

2
− 2r2(1 − r2)

3

)]

(4.29)

If we assume that χ1221 = χ1212 then we can simplify this equation in the following
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form 2:

β =
3ω

2ε0n2c2
Im(χ1111)

[

1

3
(1 − σ)

(

2 +
(

1 − 2r2
)2

)

+ σ

(

1

2
− 2r2(1 − r2)

3

)]

(4.30)

which can be written as a function of the angle γ in the Poincare sphere (figure 4.4)

using the relationship r = sin
(π

4
− γ

2

)

:

β =
3ω

2ε0n2c2
Im(χ1111)

(

1 − σ

2

)

(

5 − cos(2γ)

6

)

(4.31)

which is similar to Eq. 4.13 derived for an isotropic material.

3. By substituting r = 0 (cos(2γ) = −1) for linearly polarized light and |r| =
1√
2

(cos(2γ) = 1) for circularly polarized light we can show that:

βlin

βcir

=
3

2
(4.32)

which is the same result as what we found for the isotropic material.

Eq. 4.32 shows that the behavior of a crystal cut perpendicular to [111] for the circularly

polarizes light is similar to the experimental results for the silicon detector. Since we do

not have any information about the anisotropy factor for silicon and susceptibility elements

it is hard to determine whether silicon is behaving as an isotropic material or it has a (111)

crystal cut.
2 The assumption thatχ1221 = χ1212 is confirmed experimentally for GaAs and CdTe [2].



5. COMPARISON WITH ANOTHER APD

In this chapter we compare the results from the Silicon APD used in our experiments (de-

tector A) with the TPA response of another silicon APD (detector B). The three specific

experiments that we consider in this comparison are:

• Plotting the TPA photocurrent (or voltage) vs. optical power and comparing the

regions for which the two detectors show a good TPA response.

• Plotting the spot-size response with the same method explained in Section 3.6.

• Measuring the TPA response in one of the transverse directions of the detector and

comparing the degree of uniformity.

The experimental setup used in this chapter is the same as the one used in previous chapter.

The detector used in this part comes with a preamplifier circuit and the part number is given

in Appendix A.
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5.1 TPA Response of the Detector

The output voltage of the lock-in detector is plotted vs. the optical power and the voltage

and power are measured as explained is Section 3.2. The curves corresponding to the

response of each detector is given in figures (a) and (b). The most important observations

are:

1. Detector A saturates at high optical powers whereas detector B does not show any

saturation in high optical powers.

2. Detector B shows single-photon (linear) absorption in low powers whereas detector

A does not show any linear absorption in low powers.

3. The useful range of the input optical power for each detector to get a TPA response

without saturation or linear absorption is shown in table 5.1. It is important to men-

tion that the upper power limit for detector B is determined by the maximum power

from the EDFA that can be focused on the detector. Also the lower power limit for

detector A is determined by the noise level and is the lower power that the lock-in

amplifier can detect.

Detector Optical Power Range Output Voltage Range
A 0.2 mW < P < 10 mW 0.01 mV < VLIA < 10 mV
B 5 mW < P < 50 mW 0.3 mV < VLIA < 300 mV

Tab. 5.1: Comparison between the useful ranges of two APD detectors.
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Fig. 5.1: Comparison between the TPA response of detector A (a) and detector B
(b). The straight line shows the ideal TPA process (figs/5/tpa-comp.eps)
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Fig. 5.2: The spot-size sensitivity of the TPA process in detector B using 10× lens.
(figs/5/spotsize-new.eps)

5.2 Spot-size Sensitivity

In this section we repeat the experiment explained in 3.6 with detector B. The 10× lens

in used to focus the light on the detector. The curve showing the variation of the TPA

output voltage vs. distance in the z direction is given in figure 5.2. With the fitting program

explained in Section 3.6 we calculated the spot-size and the effective thickness of detector

B (this is the effective thickness because of the interference effect explained in Section

3.8.2). The effective thickness of the layer found by this method is about 130 µm and the

spot-size calculated from the fitting program is about 3.5 µm which is close to the real

spot-size of this lens.
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Fig. 5.3: The TPA and SPA voltages vs. transverse location of the beam on the
detector. (figs/5/trans-new.eps)

5.3 Uniformity of the Surface

The nonuniform response of detector A was discussed in Section 3.8 and we saw a high

degree of nonuniformity caused by a complex interference effect in the detector. Now we

do the same measurement to see if this detector has the same response. Detector B has

a wider active area of 1.5 mm diameter. In order to scan one complete diameter of the

detector with our translation stage we need to divide the path into 7 pieces. Therefore we

found an area around the center of the detector and measured the linear absorption and

the TPA as we moved the detector by 200 µm which is the maximum range of the fine

movement of the stage. The response for the two absorption processes is plotted in figure

5.3 vs. position. For detector B we can also see some nonuniformity for the TPA that
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distinguishes between the linear absorption (flat response) and the two-photon absorption.

But if we look at figure 3.11 we see much more nonuniformity for detector A. This could

be due to a greater parallelism between the front and back surfaces in detector B or lack of

a reflective surface on the back surface of detector B. The uniformity of the TPA response

is very important because a nonuniform response makes it harder to align the system. In

order to build a system for optical communication purposes it is important to make the

system insensitive to the alignment.

5.4 Conclusion

We did not have the opportunity to do measurements on the polarization sensitivity and

wavelength dependence of detector B. Comparing the measurements on the two detectors

we can summarize the conclusion as follows:

1. Two major processes limit the TPA process from the two sides. At low powers the

residual single-photon absorption becomes dominant and at high powers saturation

occurs.

2. Depending on the detector, the range of the input power needed to observe the TPA

process can be different. In this case we compared two Silicon avalanche photodi-

odes (Si-APD) and the ranges were quite different even though the focusing condi-

tions were identical. In other research, people have used different detectors such as

different types of laser diodes, waveguides and LEDs. There is a variety of power



5. Comparison with Another APD 94

ranges to observe TPA process depending on the type of the detector.

3. The TPA response of the detectors when the beam is moved in the transverse plane

was different. Detector B exhibits much less nonuniformity and one future research

direction can be working on different fabrication processes or designs that can give

the least possible nonuniformity.



6. CONCLUSION

In this thesis, different factors affecting the TPA in a Si-APD detector were investigated.

Based on these factors we discussed different considerations in the fabrication of a cus-

tomized detector for TPA. The thickness of the absorption layer inside the detector, shape

and smoothness of the metal contacts, design of the antireflection coating are some of these

fabrication issues that we considered.

As we showed in the first part of Chapter 3, a measurable two-photon absorption pho-

tocurrent may be observed even for a CW light source. Also we described some experi-

mental considerations to see the TPA with the CW source. By fabricating customized TPA

detectors one could even achieve a better response for the TPA for a wider range of the

optical input power.

TPA is a process that is sensitive to localization in the time and space domains. We dis-

cussed the spot-size sensitivity which is the localization in space. Also in the applications

of TPA, we mentioned autocorrelation and cross-correlation methods that are based on the

sensitivity of TPA process to localization in time. A cross-correlation system can also be

considered as a phase detection system that shows the amount of time delay between two
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Fig. 6.1: Phase-detection system based on TPA. The delay between the two pulses
changes the TPA photocurrent (figs/6/phase-detection.eps)

optical pulses. This gives us ideas for the future work in this research in utilizing the TPA

process for a fast clock-recovery system.

6.1 Clock Recovery System based on TPA

One of the most critical components of a clock recovery system is the phase detection,

which determines the relative timing difference between a data sequence and a locally

generated pulse. Figure 6.1 shows how a TPA detector can operate as a phase detection

system. The delay between two pulses that are incident on the detector determines the

amount of the photocurrent. There is a peak in the TPA photocurrent when the delay
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Fig. 6.2: Block diagram of a clock-recovery system based on TPA (figs/6/clock-recovery.eps)

between the pulses is zero. The photocurrent vs. time delay between pulses is shown

in figure 6.1. A nonlinear detector can be used as a phase detection system, whereas a

linear detector would give the same average photocurrent regardless of the relative timing.

Figure 6.2 shows the block diagram of the clock-recovery system proposed. This system

has several advantages compared with other methods of clock-recovery:

• Ultrafast response time: The TPA process is a fast process, meaning that the local-

ization of power in time is detectable with a very short response time. Therefore the

electronics in the system need only be fast enough to detect changes in the average

photocurrent. This is the main advantages of this process which makes it suitable for

an ultrafast clock-recovery system.
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• Large bandwidth: The TPA in a silicon detector can be observed for a wide range

of optical frequencies:

Eg

2h
≤ ν ≤ Eg

h
(6.1)

• Less polarization sensitive: The TPA process has some polarization dependence

as we discussed in Chapter 4 but this dependence is still weaker than many other

methods used for clock-recovery systems.

• No phase matching: In systems working with the second-order nonlinearity (χ(2)),

phase matching is required, but in a TPA-based system phase matching is not re-

quired.

• High sensitivity (low power): The system can operate with low levels of optical

powers that we measured in Section 3.2.

• Possible to use for high duty cycle RZ signals: High duty cycle signals are very

close to CW light and we showed that it is possible to observe TPA with CW light.

One future direction of this research will be developing a clock-recovery system using the

nonlinear TPA detector described in this work.
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A. TECHNICAL DATA ON THE EXPERIMENTAL SETUP

In this appendix we give some technical information on the parts used in our experimental

setup. Most of the parts explained below are shown in the schematic of the setup in figure

3.1.

• Laser: Agilent 81682A tunable laser. The wavelength is set to 1550 nm in most

of the experiments and is tuned in a range of ±20 nm about 1550 nm for those

measurements involving wavelength sensitivity. The power of the laser is set to 300

µm (-5 dBm) in all of the experiments.

• EDFA: IPG Photonics erbium-doped fiber amplifier model EAD-100-C. The EDFA

is set on the power-control mode and set at the maximum power which is about 120

mW.

• Polarization Controller: Mechanically controlled polarization controller made by

Fiber Control.

• Optical Tap Coupler: The couple is a Gould Fiber Optics product and it taps off 5%

of the the input power for monitoring.
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Diameter Breakdown Voltage Spectral Range Peak Wavelength Q.E.(900 nm)
500 µm 205 V 400 to 1000 nm 830 nm 60 %

Tab. A.1: Some features of the main detector used in the experimental setup.

• Power Meter: HP 81531A power meter module.

• Variable Attenuator: JDS Uniphase optical attenuator model HA9. The attenuation

is variable from 0 to 100 dB with the steps as low as 0.001 dB.

• Chopper: Stanford Research Systems optical chopper model SR540. The frequency

of the chopper in all of the experiments was 330 Hz.

• Filter: CVI laser long-pass (LP) filter model LPD-1200-1.00. The filter passes wave-

lengths above 1200 nm and the diameter of the filter is about 1 inch.

• Microscope Objective: Both 10X and 20X microscope objectives are Edmund Op-

tics product. The part numbers are NT43-903 and NT38-339 respectively and their

technical data are gives in table 3.1

• Lock-In Amplifier: EG&G product model 5209.

• Main Detector: Silicon Avalanche Photodiode model C30902E made by Perkin

Elmer Optoelectronics. Some of the features of this detector are given in table A.1.

The avalanche gain of the device depends on the bias voltage and for a bias voltage

of 195 V is about 100.
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R Rb C OPAMP
200 kΩ 1 MΩ 10 nF OP27C

Tab. A.2: Numerical values of electronic components used in the circuit shown in
figure 3.2.

Diameter Spectral Range Peak Wavelength Q.E. (800nm) Photosensitivity (V/W)
1.5 mm 400 to 1000 nm 800 nm 78 % 1.5 × 106

Tab. A.3: Some features of the second detector used in chapter 5

• Amplifier Circuit In order to convert the photocurrent to voltage we used the circuit

given in figure 3.2. Table A.2 shows the numerical values of the components and

the type of the Opamp used in this circuit. A metal box contains the circuit and the

detector and can be mounted on regular optical table mounts.

• Second Detector: The other detector used in the experiment discussed in Chapter 5 is

a Silicon avalanche photodiode module made by Hamamatsu. The model number is

C5460 and it has a built-in amplifier circuit and high-voltage source. Some features

of this module are given in table A.3. The avalanche gain of this detector is also

variable and can be adjusted. The preset value of the gain is about 30.



B. GAUSSIAN BEAMS

A thorough analysis of the Gaussian beams is given in [23] and [21]. In this appendix we

list some of the formulas we need for the measurements we did in this thesis. Also we solve

the problem of a Gaussian beam entering a medium with a different refractive index.

B.1 Formulation of Gaussian Beams

Suppose that we have a medium with refractive index n which is constant in time, uniform

in space, and purely real. In this case we can write the well-known Helmholtz Equation:

∇2E + k2E = 0 (B.1)

where k =
nω

c
is the wave number. The kind of solution that results in Gaussian beams

is that of a nearly plane wave in which the flow of energy is predominantly along the z

direction and the electric field is in the transverse direction. If E is one of the transverse
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components of E we can write:

E(x, y, z) = ψ(x, y, z)e−jkz (B.2)

And by substituting ∇2 for the cylindrical coordinates and assuming that
∂2ψ

∂z2
� k2ψ and

∂2ψ

∂z2
� k

∂ψ

∂z
, we can show:

(

∂2

∂r2
+

1

r

∂

∂r

)

ψ − 2ik
∂ψ

∂z
= 0 (B.3)

Solving this equation leads to the following expression for ψ:

ψ = exp

(

−j
[

P (z) +
k

2q(z)
r2

])

(B.4)

By substituting this expression into Eq. B.3 we can show that:

q(z) = q0 + z = j
πw2

0n

λ
+ z

P (z) = −j ln

(

1 +
z

q0

) (B.5)

where w0 is constant and is called the minimum spot-size of the beam. By some simple

math one can show that the electric field component E can be written as:

E(x, y, z) = E0
w0

w(z)
exp

[

−j (kz − η(z)) − r2

(

1

w2(z)
+

jk

2R(z)

)]

(B.6)
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where w(z) is called the spot-size of the beam, R(z) is the radius of curvature of the phase

front and η(z) is the phase factor of the beam. These parameters can be calculated using

the following formulas:

w2(z) = w2
0

(

1 +
z2

z2
0

)

R(z) = z

(

1 +
z2
0

z2

)

η(z) = tan−1

(

z

z0

)

(B.7)

where z0 =
πw2

0n

λ
is called the confocal beam parameter. The parameter q(z) can therefore

be calculated from:

1

q(z)
=

1

R(z)
− j

λ

πw2
0n

(B.8)

If we calculate the intensity of the beam as a function of (r, z) we have:

I(r, z) = I0
w2

0

w2(z)
exp

( −2r2

w2(z)

)

(B.9)

This equation shows that the intensity of the beam in a plane perpendicular to the z axis is

a gaussian function of r. Also if we look at a plane that includes the z axis (figure B.1) the

curve indicating a constant intensity of
I0

e2
is represented by the following equation:

r2 = w2(z) = w2
0

(

1 +
z2

z2
0

)

(B.10)
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z0 θbeam
w(z)

R(z)

Fig. B.1: Gaussian beam and different parameters. The dashed line shows the
divergence angle of the beam at the far field. (figs/B/gaussian-beam.eps)

This equation shows the physical shape of the beam when looked at from the side. It is

easy to see that when z � z0 (far field) we will get to a line represented by the equation

r =
λ

πw0n
|z| which shows that the angle of diffraction of the beam is:

θbeam ' λ

πw0n
(B.11)

In figure B.1, this line and the angle of divergence are shown. As seen in the figure and

also from Eq. B.7 the spot-size of the beam, w(z) is minimum at z = 0 which is called

the waist of the beam and the radius of curvature of the phase front, R(z), is infinity at this

point.
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B.2 Transformation of the Gaussian beam

As we saw before, the parameter q(z) can represent a Gaussian beam since the real and

imaginary parts of this parameter give us the radius of curvature and the spot-size of the

beam. If a gaussian beam with parameter q1 enters an optical system with a ray matrix M ,

the output beam has a parameter q2 which can be calculated from the following formula

[23]:

q2 =
Aq1 +B

Cq1 +D
, M =









A B

C D









(B.12)

As an example of such a transformation let us consider the case of a Gaussian beam

incident on a thin lens with focal length f such that the waist of the incident beam is on

the lens. Figure B.2 (a) shows the Gaussian beam and the lens. wi is the spot-size of the

incident beam and wf is the spot-size at the focal point which is approximately within a

distance f from the lens. Using Eq. B.12 we have:

1

q2
=

1

q2
− 1

f
, M =









1 0

− 1

f
1









(B.13)

Considering n = 1 for the air and substituting
1

q1
= −j λ

πw2
i

and q2 = j
πw2

f

λ
− f we can

show that:

wf =
λf

πwi

(B.14)
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1 2

Fig. B.2: Gaussian beam transformation by a thin lens (a) and the refraction of the
Gaussian beam (b), the dashed line shows the beam if medium 2 was not present.
(figs/B/trans-gauss.eps)
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B.3 Refraction of the Gaussian Beam

Now we utilize the same analysis for the refraction of a Gaussian beam. Suppose that a

Gaussian beam with a radius of curvature R1 and spot-size w1 is incident from air (n = 1)

on a transparent material with refractive index n. The radius of curvature and spot-size

inside the medium at the boundary are R2 and w2 respectively. Using Eq. B.12 for this

transformation we have:

q2 = nq1 , M =









1 0

0
1

n









(B.15)

By substituting q1 and q2 we can write:

1

R1

− j
λ

πw2
1

= n

(

1

R2

− j
λ

πnw2
2

)

(B.16)

which gives us the following relationships between Gaussian beam parameters at the two

sides of the boundary:

R2 = nR1 , w2 = w1 (B.17)

These two equations show that:

• The spot-size of the minimum spot-size of the beam inside and outside of the medium

are the same.

• The radius of curvature of the beam is multiplied by a factor of n when the beam

refracts. It is easy to verify that this is equivalent to multiplying the distance from
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the boundary to the focal point by a factor of n. This is shown in figure B.2 (b).
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