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The subject of this thesis is deterministic behaviors generated from a mi-

crowave time-delayed feedback loop. Time-delayed feedback systems are especially

interesting because of the rich variety of dynamical behaviors that they can support.

While ordinary differential equations must be of at least third-order to produce

chaos, even a simple first-order nonlinear delay differential equation can produce

higher-dimensional chaotic dynamics. The system reported in the thesis is governed

by a very simple nonlinear delay differential equation. The experimental implemen-

tation uses both microwave and digital components to achieve the nonlinearity and

time-delayed feedback, respectively. When a sinusoidal nonlinearity is incorporated,

the dynamical behaviors range from fixed-point to periodic to chaotic depending on

the feedback strength. The microwave frequency modulated chaotic signal generated

by this system offers advantages in range and velocity sensing applications. When

the sinusoidal nonlinearity is replaced by a binary nonlinearity, the system exhibits

a complex periodic attractor with no fixed-point solution. Although there are many



classic electronic circuits that produce chaotic behavior, microwave sources of chaos

are especially relevant in communication and sensing applications where the signal

must be transmitted between locations. The system also can exhibit random walk

behavior when being operated in a higher feedback strength regime. Depending on

the feedback strength values, the random behaviors can have properties of a regular

or fractional Brownian motion. By unidirectional coupling two systems in the base-

band, envelope synchronization between two deterministic Brownian motions can

be achieved.
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We have to continue to learn. We have to be open. And we have to be ready to

release our knowledge in order to come to a higher understanding of reality.

- Thich Nhat Hanh.
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Chapter 1: Introduction

1.1 Deterministic Chaos

With the appearance of differential equations, the three laws of motion and

universal gravitation discovered by Newton in the mid -1600s, dynamics has become

the most active research branch in physics and mathematics. The basic problem of

dynamics is to predict the future state of a system given the system’s initial state.

The system under consideration maybe physical, chemical, or biochemical. Re-

gardless of the context, many systems are modeled mathematically as differential

equations with time as a continuous variable, or as difference equations where time

will take on discrete integer values. Systems described by deterministic evolution

equations are called deterministic dynamical systems. A basic problem in astron-

omy, the three-body gravitational system, in 1887 challenged the understanding of

scientists when they could not demonstrate the stability or any orbit of the So-

lar system. A two hundred page paper written by the mathematician H. Poincaré

showed that the problem is “impossible to solve because it may happen that small

differences in the initial conditions produce very great ones in the final state. Pre-

diction (of the future states) becomes impossible” [1]. The phenomenon Poincaré

discovered was an initial anticipation of modern deterministic chaos. However, this
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discovery wasn’t widely appreciated by the scientific society at the time because

the mathematical works were difficult to read; and the theories weren’t explicit and

general enough to convince scientists about the universality of chaos. This deter-

ministic aperiodic behavior therefore remained in the background as a curiosity of

dynamical systems for the next 70 years, until high speed computers were invented

in the 1950s and gave scientists like the meteorologist E. N. Lorenz opportunities

to work with differential equations in a way that was never possible before. While

working on modeling the weather system, Lorenz discovered that a set of three first

order, coupled and nonlinear differential equations could display solutions in which

the trajectories could be strongly divergent if the simulation is started from slightly

different initial conditions [2]. This property is illustrated in the solutions of the

equations which never settle down to an equilibrium or periodic state; instead the

solution continues to oscillate in an aperiodic fashion. Lorenz’s works provided the

strong foundations for chaos theory in the 1970s when the speed of computers im-

proved and refined experimental techniques were developed. With discovery after

discovery, it has come clear that chaos is ubiquitous in nature and could appear in

most branches of science [3]. Besides the known examples of the Solar and weather

systems, chaos could be seen in turbulent fluids [4, 5], the motion of electrons in

atoms [6], and population dynamics in biology [7].

The uniqueness and universality of chaos can bring out its relevance to a lot

of applications besides the interest in fundamental scientific problems. To name a

few, the complex and noise-like characteristics of chaotic signals could have advan-

tages in a variety of practical applications. Chaotic signals have been proposed to
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reduce interference and cross-talk in diverse contexts, including wireless networks,

sonar networks, fiber-optic links, and electric power systems [8–11]. Chaotic mod-

ulation methods have been used to encrypt or mask information in communication

systems [12–14]. The unpredictability of chaotic signals has been exploited for high-

speed random number generation [15–19]. Chaotic signals often exhibit a wide

spectral bandwidth and a short correlation time, which is useful for increasing the

precision of range and velocity detection in radar, lidar and sonar systems [20–23].

Some of the promising applications of chaos in biology involve complicated systems

whose underlying laws are not well defined. The hope is that the erratic dynamics

of these systems may be consequences of the deterministic chaos governed by non-

linear equations such as the model of blood production of Mackey and Glass [24] in

leukemia patients.

1.2 Delay Differential Equations

The wide range of possible applications of chaos raise the interest in generating

strong and well-controlled chaotic dynamics. When one seeks ways to create chaotic

behaviors, a natural question to ask is: where is chaos coming from? And what

are the requirements for a dynamical system to exhibit such complicated behavior?

Analyzing the Lorenz equations, one can see that the deterministic chaotic behavior

is neither due to external sources of noise (there are none in the equations) nor to

an infinite number of degrees of freedom (there are only three degrees of freedom

in the equations), nor the uncertainty associated with quantum mechanics (the
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equation are purely classical). The erratic behavior exhibited by the Lorenz system

is instead due to properties often seen in the nonlinear systems. These include

exponentially fast separating initially close trajectories in a bounded region of phase

space [25]. However, nonlinearity is a necessary but not a sufficient condition for

the generation of chaotic motion since linear differential or difference equations can

be solved by Fourier transformation and they do not lead to chaos. For a dynamical

system governed by a set of N first order autonomous, coupled, nonlinear, ordinary

differential equations (ODE), it is known that N must be equal or greater than three

for chaos to be possible [26]. Now, there remains the problem of describing systems

in terms of a series of ODEs to check the possibility of aperiodic behaviors. For

any system described by one or more nonlinear delay differential equations (DDEs),

chaos is possible. Delay differential equations are a different class of equations

in which the solution depends not only on the initial state but the state of the

system over some time interval. This type of differential equation was developed and

intensively studied after the First World War due to the high demand for automatic

control systems. The time delay arises because one cannot ignore the propagation

time of signals in the control systems in comparison to the time-scale of the system

dynamics. One can therefore find DDEs as the mathematical description of feedback

systems with non-negligible delay times.

The solution of a DDE is determined not only by its initial state but the whole

solution profile of the system on a given interval equal to the delay time. Therefore,

to solve a DDE, one must provide not just the state of the system at the initial

point but the history which is the solution over an interval prior to the initial point
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i.e., one must define an infinite-dimensional set of initial conditions. Thus DDEs

are inherently infinite-dimensional equations even if we only have one single linear

DDE. Because of this unique property, DDEs could have a long-time oscillatory

solution; also the short-time solutions might be affected due to the propagation of

discontinuities [27]. There are several analytical methods available to solve DDEs

although most of the time solutions are approximated using numerical techniques.

The first and most popular method is perturbation in terms of a small or large limit

of control parameters. One can also use the linear stability technique [28, 29], or

multiple time-scale methods [30]. The results are often presented as a bifurcation

diagram where a property of the solution is recorded as a function of a control

parameter.

DDEs have played an important role in modeling population dynamics with

their inherent maturation and gestation time delays [31]. DDEs also have been

used extensively to study traffic flow with the car- following model in which the

location and the speed of the following car is determined by the speed pattern

of leading vehicles [32]. One can derive a DDE to model problems in nonlinear

optics [33–35], fluid dynamics [36,37], mechanical engineering [38–40], epidemics [41],

economics [42](time delay coming from the lag between the investment decision

and installation of investment goods) and in radio-frequency (RF) communication

systems since the time it takes signals to propagate through many RF devices is

comparable to the time scale of dynamics. In electrical engineering, one can use

DDEs to describe nonlinear time-delayed feedback loops which contain a passive

nonlinear element, an amplifier for gain, a loop delay and band-limited feedback.
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This architecture has been an effective method to generate chaos using a combination

of optical and electronic components [43–45]. The chaotic signals generated by

these systems are examples of amplitude chaos, i.e., a signal with an irregular time-

varying amplitude or envelope. However, for some applications in communication,

it is preferable to use phase chaos, in which the chaotic RF signal has a constant

amplitude and a chaotic phase or frequency. Within the framework of this thesis,

we will apply the architecture on a frequency modulated microwave loop to study

chaos and associated dynamical behaviors.

1.3 Microwave Signals

In 1873, the existence of electromagnetic waves was predicted by J. C. Maxwell

[46] using his equations for electric and magnetic fields with the implication that light

was a form of electromagnetic energy. His work, after being modified by the vector

notation of O. Heaviside, was tested by a well-known experiment conducted by H.

Hertz. Signals with frequencies as high as 450 MHz were generated from the spark

gap radio transmitter in 1888 as the first demonstration of microwaves [47]. From

then on, the term microwave was reserved for the signals whose frequencies range

from 300 MHz to 300 GHz, with a corresponding electrical wavelength from 1m to

1 mm. In electromagnetic and circuit theory, this term has more technical meaning.

Generally speaking, a system or any apparatus might be described qualitatively as

microwave when the frequencies are high enough that the wavelengths are short and

roughly the same as the physical dimension of devices. Therefore most microwave
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components are distributed elements and transmission-line theory is used to analyze

microwave circuits instead of the lumped-element circuit theory.

Although short wavelengths can cause difficulty in the analysis and design

microwave components, this factor also provides opportunities for the application

of microwave signals. Since most of molecular, atomic and nuclear resonance phe-

nomena occur at high frequencies, studying microwaves helps to create unique ap-

plications in basic sciences, medical treatment and diagnostics, remote sensing and

heating methods [48, 49]. The majority of microwave applications are related to

radar and communication systems. Radar technology was developed intensively

during the Second World War due to its great military utility in locating targets.

Microwave signals are used in radar systems to detect the range and speed of re-

mote projects because it produces more antenna gain at higher frequencies for a

given antenna physical size; it also increases the effective reflection area (i.e., radar

cross section) for a given target’s electrical size. Modern radar systems have been

used not only in military applications but for traffic- control, missile tracking, auto-

mobile collision avoidance, weather prediction, and a wide variety of remote sensing

applications [49,50]. Communication systems using microwave technology were also

developed soon after the birth of radar. The fact that more bandwidth can be real-

ized at higher frequencies helps to have a larger capacity for information- carrying

signals in communication in comparison to radio frequencies. Moreover, microwave

signals travel with the speed of light and are not bent by the Earth’s ionosphere

as are the lower frequencies signals, thus making possible satellite and terrestrial

communication links. Today, microwave communication systems handle a big frac-
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tion of the world’s telephone, data and television transmission. Modern wireless

telecommunication systems such as direct broadcast television, cellular video sys-

tems, global positioning satellite systems operate in the frequency range 1.5 to 95

GHz, and therefore rely heavily on microwave technology.

1.4 Modulation Methods

In communication systems, information is transmitted using modulation tech-

niques. Modulation is the process of encoding information from a message source

in a manner suitable for transmission. Modulation is used to overcome the risk of

overlapping or jamming that would occur if signals were transmitted at their natural

bandwidths. It also helps to increase the speed of communication because some car-

rier wavelengths are more conveniently generated and propagated than wavelengths

in the message. Modulation generally involves translating a baseband message sig-

nal to a band- pass signal centered at frequencies that are very high compared to

the baseband frequency. The baseband signal is called the modulating signal and

the band-pass signal is called the modulated (or carrier) signal. The modulation in-

dex therefore is defined to describe how much the modulated variable of the carrier

signal varies around its un-modulated level. Today, modulation is done by many

ways, both digital and analog. In this thesis, we discuss two most popular analog

encoding methods: Amplitude modulation (AM) and Frequency modulation (FM).

AM is seen to be the simplest technique to encode the information into the carrier

signal. In AM, the amplitude of the modulated signal is varied in accordance with
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the amplitude of the message signal. The information thus is stored in the ampli-

tude of the carrier signal and is transmitted with the speed of the carrier frequency.

The modulation index k of an AM signal is the ratio of the peak message signal

amplitude to the peak carrier amplitude. The spectrum of the AM signal appears

simply as symmetrical sidebands around the carrier frequency in which the spec-

trum width is double the bandwidth of message signals. The sidebands above and

below the carrier frequency are called upper and lower sideband, respectively.

FM is a part of a more general class of modulation known as phase modulation.

Phase modulation varies a carrier signal in such a way that the angle of the carrier

is varied according to the amplitude of the modulating baseband signal. In FM, the

amplitude of the carrier signal is kept constant while its instantaneous frequency is

varied linearly with the modulating message signal. Thus FM signals have all their

information in the phase or frequencies of the carrier. The FM modulation index β

defines the relationship between the message amplitude and the bandwidth of the

carrier signal. The spectrum of an FM signal usually is a complicated function and

depends strongly on the message signal.

Fig. 1.1 illustrates AM and FM methods with a sinusoidal modulating signal

x(t) both at the fifty percent modulation index. The AM signal spectrum consists

of a sharp component at the carrier frequency and two sidebands which replicate

the message spectrum while the spectrum of the FM signal consists of a carrier

component and an infinite number of sidebands located on either side of the carrier

frequency, spaced at integer multiples of the modulating frequency. The amplitude

of the spectral components are given by the Bessel function of the modulation index
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β.

In communication applications, FM provides many advantages over AM. Since

message signals are represented as frequency rather than amplitude variations, FM

signals are less susceptible to noise which tends to cause rapid fluctuations in the am-

plitudes of the received signals. It is possible in FM systems to trade off bandwidth

occupancy for improved noise performance due to a variable modulation index. It

can be shown that, under certain conditions, the FM signal-to-noise ratio improves

by 6dB for each doubling of bandwidth occupancy [51]. Moreover, an FM signal is a

constant envelope signal hence the transmitted power of an FM system is constant

regardless of the amplitude of the message signal. In AM, however, it is critical to

maintain the linear relationship between the applied message and the amplitude of

the transmitted signal, thus, only linear amplifiers- which are not power efficient-

are used in AM system. FM also exhibits a capture effect characteristic that is a

direct result of the rapid nonlinear improvement in received quality for an increase

in received power [51]. This inherent ability to pick up the strongest signal and re-

ject the rest make FM systems very resistant to co-channel interference and provide

excellent received quality. In AM, all of the interferences are received at once and

must be discriminated. Combining the benefits that FM brings to communication,

with the deterministic properties of chaos, an FM chaotic microwave signal is an

ideal candidate for communication applications. This thesis presents both numer-

ical modeling and experimental realization of a system that uses time delay and

nonlinearity to generate FM chaotic microwave signals.
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Figure 1.1: The demonstration of amplitude modulation (AM) and fre-
quency modulation (FM) with the message as a simple sinusoidal signal
with frequency fm. The information is stored in the amplitude of the
carrier signal in AM and in the frequency of the carrier signal in FM.
The spectrum of AM signals consists of an impulse at carrier frequency
fc and two side bands at fc+fm and fc−fm. The FM signal has a spec-
trum of a carrier frequency fc at the center and two symmetric infinite
side bands.
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1.5 Deterministic Brownian Motion

Brownian motion is named in honor of the Scottish naturalist and cleric Robert

Brown (1773-1858), who, while looking through a microscope at grains of pollen sus-

pended in water, noticed that a group of grains always disperses and that individual

grains move around continuously and irregularly. Upon systematically observing

these irregular motions in pollen from live and dead plants, in pieces of other parts

of plants, in pieces of animal tissue, in fossilized wood, in ground window glass,

volcanic ash, siliceous crystal and even in a fragment of the Sphinx, Brown rea-

soned that the movement must be due to physical causes, rather than an irreducible

elements to a vitality common of all life forms. In 1905, Brownian motion was ex-

plained by A. Einstein as a consequence of the atomic theory of matter [52]. When

a particle is suspended in any fluid or air, the atoms or molecules composing the

fluid/ air hit the particle from different directions in unequal numbers during any

given time interval. While we cannot see the effect of individual molecular impacts,

the net motion caused by many impacts over a period of time can be observed.

Brownian motion is therefore a macroscopic manifestation of the molecular motion

of the liquid. The mathematical foundation for Brownian motion was established

13 years later by N. Wiener when he presented the motion as a random process in a

series of papers [53]. From there, physicists and mathematicians have developed and

analyzed different statistical processes to create an accurate description of the Brow-

nian motion. In the context of this thesis, we discuss three basic properties of the

Brownian motion to distinguish it from other random dynamical behaviors. They

12



are: Gaussian distribution of the displacement of Brownian particles over a given

time interval, self similarity, and continuous path. Consider a Brownian motion in a

plane with x and y coordinates. If one records the positions of the Brownian motion

at discrete time intervals, then the jumps in both x and y directions and the jump

length (as a normalized step length between recorded points) follow Gaussian proba-

bility distributions. The self-similarity or martingale property of a Brownian motion

is evident when one zooms into the trajectory and finds the similar irregular motion

no matter what how much the magnification is. The paths of Brownian motion are

continuous as the motion is a continuous stochastic process even though they are not

differentiable. With these properties, one can easily construct a Brownian motion

using numerical methods to randomly select steps from a Gaussian distribution with

a small enough time increment. An n-dimensional Brownian motion is simply an n-

dimensional vector of n independent Brownian motions. Today, Brownian motion

is widely used in physics and finance for modeling random behaviors that evolve

over time such as diffusion processes, the prices in the stock market, or the effect

of price stabilization scheme in investment when demand is uncertain. It also forms

the basis for the development of an enormous branch of mathematics centered on

the theory of Wiener processes [54].

Brownian motion in fact is a special member of a larger family known as

fractional Brownian motion, a generalization of Brownian motion suggested by Kol-

mogorov in 1940. The index used to differentiate members in this family is the

Hurst exponent H which quantifies the relative tendency of a time trace either to

regress strongly to the mean or to cluster in a direction [25, 28]. The value range
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of H is 0 ≤ H ≤ 1 where the special case when H = 0.5 gives regular Brownian

motion. Traces corresponding to values of H smaller than 0.5 have a tendency to

turn back upon themselves: the property is known as anti-persistence. On the other

hand, with the values of H larger than 0.5, the traces persist in its progression in

the direction in which it was moving. For a dynamical system, the Hurst exponent

can span the full range of values as a function of system parameters.

Deterministic Brownian motion is a Brownian motion produced by a deter-

ministic process without introducing the assumption typically associated with the

theory of random processes as for regular Brownian motion. There are numerous

reports on the existence of Brownian-like motion from deterministic dynamics both

in discrete maps and flows [55–62]. The first model of deterministic Brownian mo-

tion was proposed by C. Beck [55] in which the Brownian particle is subjected to

a dissipative drag and impulsive kicks that occur at a time scale of the fluctuation.

The amplitude of fluctuation force is derived from chaotic phase-mixing maps. Beck

had shown that when the time scale approaches zero, the discretized dynamics of

the Brownian particle converges to a Langevin equation describing an Ornstein- Uh-

lenbeck process which implies that the corresponding motion in the position space

is diffusive with a Gaussian distribution. The work by Chew and Ting investigated

a further limit of the model in momentum space when the fluctuation time scale is

large [61]. They used the logistic map to derive the fluctuation force, and showed

that the model can exhibit Gaussian diffusion process in position while the dis-

cretized momentum variable has a stationary, non- Gaussian distribution. Other

chaos mappings have been applied to the model such as a booster process map [62]
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to show that the erratic trajectories observed in Brownian motion could be explained

without introducing a statistical assumption or thermodynamic limit. The recent

work by J. Lei and M. C. Mackey in [63] pointed out that deterministic Brow-

nian motion could be generated from delay differential equations.Their numerical

model was developed from the Beck model with the assumption that the fluctuation

force could be continuous in time, and depend on the state of the particle with a

lag time. The results show that the system’s equation (which is delay differential

equation in a suitable parameter region) can generate dynamics with many of the

properties of the Brownian particle in spite of the fact that the evolution equation

is genuinely deterministic. The second theoretical model of deterministic Brown-

ian motion is developed from a Hamiltonian formalism in which the dynamics of

Brownian motion is viewed as a system of heavy particles interacting with a bath

of light molecules [59, 60]. Because the particle is heavier than the molecules, one

can view the particle as a slow dynamical system relative to the molecules. Using

the projection operator after integrating the fast variables out, Brownian motion

can be modeled by a Langevin equation which embodies the macroscopic physics

of Brownian motion. This approach treats the fluctuation forces as a Gaussian

distributed stochastic process while leaves open questions about intrinsic Brownian

motion. The model thus is used widely by mathematicians to explain stochastic

processes. Experimental evidences of deterministic Brownian motions were also re-

ported by the observation of long time trajectories of a colloidal particle undergoing

Brownian motion in liquid [58].

In this thesis, we illustrate the existence of deterministic Brownian motion
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numerically and experimentally from a simple time delay differential equation that

describes our microwave circuit. We discuss further the possibility of synchroniza-

tion of two systems exhibiting deterministic Brownian motion and stability of the

synchronization.

1.6 Outline of Thesis

In this introductory chapter, we have provided the motivation for studying

the subject presented in the thesis. The following chapters will be devoted to ex-

perimental set up, numerical models, dynamics and applications of microwave time-

delayed feedback loops.

In chapter 2, we introduce the components of an isolated microwave time-

delayed feedback loop, which includes a voltage controlled oscillator, a mixer, trans-

mission lines, digital voltage integral and time delay functions. For each loop com-

ponent, we briefly discuss the circuit and electronic implementation and develop a

mathematical model. We also present the experimental measurements that verify

the device characteristics.

In chapter 3, we analyze the signal path to develop the system equations. We

study the equations to find the bifurcation points. The way of generating a set of

initial conditions along with numerical methods are described. We also discuss the

measurement of chaos by presenting the Lyapunov exponents and Kaplan- Yorke

dimension which can be computed from the model.

Chapter 4 is devoted to the study of dynamical behaviors of a microwave
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time-delayed feedback loop for two different nonlinear functions: sinusoidal and

Boolean. The numerical results and experimental observations of time series are

presented. We also construct the bifurcation diagrams as system parameters are

varied smoothly. The frequency spectrum, Lyapunov exponent and Kaplan-Yorke

dimension are shown for the case of chaotic microwave frequency modulated signals.

In chapter 5, we study the microwave time-delayed feedback loop in a higher

gain regime where deterministic Brownian motion is possible. The experimental

results and numerical simulations are illustrated along with the Gaussian process.

We calculate the Hurst exponents of the Brownian traces for different values of the

system parameters to show the existence of fractal Brownian motion. We conclude

the chapter by presenting the theory of synchronization between two feedback loops

exhibiting deterministic Brownian motion.

Chapter 6 provide the summary of the thesis. We explain the significance of

the results by showing an application of the chaotic FM signal in radar systems.

Future directions in terms of experiments and analyses are also discussed.
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Chapter 2: Components of a Microwave Time-delayed Feedback Loop

Over the past thirty years, scientists have proposed and demonstrated many

effective methods to produce chaotic signals. A popular method dates back from

early 1980 when Ikeda [64] introduced a way to generate chaos using basic electron-

ics devices comprising a delay feedback loop. The novelty of this architecture has

been proven by a wide collection of chaotic systems ranging from optics to electronic

to microwaves [43, 65, 66]. In this chapter, we describe the design of a microwave

chaotic signal generator that employs commercial microwave components together

with time-delayed feedback through a field-programmable gate array (FPGA) sig-

nal processing board. We first present an overview of the loop, followed by basic

electrical properties of key components such as the voltage controlled oscillator, RF

mixer, transmission lines, a digital implementation of voltage integration and time

delay.

2.1 Description of a Microwave Time-delayed Feedback Loop

The time-delayed feedback loop considered here is composed of a nonlinear ele-

ment, amplifier, time-delay, and band-limiting filter. The nonlinear element is neces-

sary for a system to exhibit aperiodic behavior. Several types of nonlinear functions
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have been employed in feedback loops to produce chaotic dynamics. Interferometry

optical systems (such as a Mach-Zehnder intensity modulator) produce a cosine-

squared nonlinearity [43]. Some electronic systems use transistor circuits [65]for

nonlinearity, however, this nonlinear function is hard to describe mathematically,

and depends sensitively on the transistor bias. The delay can be produced by signal

propagation through a span of optical fibers or transmission lines. It also could be

implemented using a series of LC delay units. The filter functions are generated

using commercial electronic devices such as op-amp, resistors and capacitors. With

the availability of low-cost digital signal processing hardware, the electrical filter-

ing and signal delay can also be conveniently implemented digitally, which has the

advantage of allowing flexible adjustment of parameters.

An experimental illustration of a microwave time-delayed feedback loop is

shown in Fig. 2.1 in which the nonlinear element consists of analog microwave devices

while the rest of the loop is digitally implemented via discrete-time signal processing

using a field programmable gate array (FPGA) board. The path of a signal in the

loop is described as following: A microwave- controlled oscillator (VCO) provides

a constant- amplitude microwave signal with an output frequency that is a linear

function of the applied tuning voltage. The microwave signal then splits into two

paths, one of which is phase-delayed with respect to the other by an amount of delay

of several the microwave signal cycles. The amount delay is controlled by the length

of a semi-rigid microwave cable, which is designed to have a group delay of 5ns/m.

The two signals are fed into a double-balanced mixer, completing a homodyne phase

discriminator as depicted in the figure. This phase discriminator is assembled on
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Figure 2.1: Experimental microwave time-delayed feedback system.
The system uses a conventional microwave voltage-controlled oscillator
(VCO) with a homodyne microwave phase discriminator to produce a
sinusoidal nonlinearity. The output is then fed back to the input through
a time-delayed integrator.
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a microwave printed circuit board and, together with the VCO and delay line, can

produce an output signal that is a sinusoidal function of the voltage applied to the

VCO, thus producing the nonlinearity in the loop. The output of the mixer is then

fed back to the VCO input voltage through a time delay and a filter. The amount

delay (which from now, is denoted by the signal delay to differentiate from a short

time delay used in microwave band) as well as the gain of the integrator could be

changed smoothly by programming the logic circuits inside of a FPGA board. To

understand dynamical characteristics of the loop, we investigate in detail electric

properties of each component, starting with voltage controlled oscillator.

2.2 Voltage Controlled Oscillator

Voltage controlled oscillator (VCO) is one of the frequently used microwave

sources used widely in microwave engineering, especially in modern microwave com-

munication systems. A VCO is a device that converts an input baseband analog

voltage into a signal whose frequency is a proportional linear function of the ap-

plied input voltage. There are two popular types of analog VCOs, characterizing

by the waveforms they produce: relaxation VCO which can generate saw-tooth or

triangular signal and harmonic VCO that can emit the sinusoidal waveform. In

the microwave time-delayed feedback loop that is the subject of this thesis, we use

the harmonic VCO because of its advantages of frequency stability with respect to

temperature, noise and power supply’s fluctuations. A harmonic-type VCO circuit

consists of an amplifier that provides adequate gain and a resonant circuit that feed

21



Vcc

Out

Tune

Figure 2.2: A typical monolithic circuit implementation of the VCO used
in our system. This process technique allows VCOs to have a compact
size, easily integrated with other microwave devices

the signals back to the input. Oscillation occurs at the resonant frequency where

a positive gain arises around the loop. Fig. 2.2 shows a typical monolithic VCO

circuit implementation used in our system.

The input voltage of a VCO is called tuning voltage or tuning signal. The

tuning voltage amplitudes of most VCOs can go from 0 to 5 V with the tuning

bandwidth varies up to few MHz. The tuning bandwidth or modulation bandwidth of

a VCO is the range of tuning signal’s frequencies where the VCO performs normally

without losing too much power. The tuning sensitivity, which we denote γ, is given

in units of Hz/V and describes the proportionality factor between the voltage and
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Figure 2.3: The tuning curve of the VCO used in our system. The base
frequency as y-intercept, f0 = 2.6 GHz; tuning sensitivity as the slope
is measured using a linear interpolation, γ = 180 MHz/V

RF frequency. The frequency of the oscillator when no input signal is applied is

called the base or natural frequency, denoted f0. Another important characteristic

of VCO is its phase noise which describes short term random frequency fluctuations

or the degree to which a VCO maintains the same value of frequency over a given

time. The phase noise of the VCO is therefore determined primarily by the overall

quality factor Q of the circuit. In order to design a circuit with high Q, the tuning

bandwidth must be made small. Therefore, a VCO designed for low phase noise

performance will have a smaller tuning range.

Fig. 2.3 displays the experimentally measured tuning curve of the microwave

VCO (Mini-Circuits SOS-3065-119+) [67] used in our system. The frequencies of

the microwave output signals were measured using spectrum analyzer while the
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tuning voltages were varied smoothly. The tuning range is from 0.5 to 4.5 V and

has an electrical input bandwidth of 10 MHz. The typical phase noise of the VCO

is -56 dBc/Hz at offset frequency of 1kHz. The base frequency, f0, is 2.6 GHz; and

the tuning gain γ is estimated to be 180 MHz/V. The VCO can therefore sweep its

frequency over a 700 MHz range within the C-band of the electromagnetic spectrum.

This frequency band matches the frequency range of the microwave communication

networks such as those used for cell-phones, radar, satellite communication and

WiFi. The nonlinear part of the tuning curve is due to non-ideal properties of

reactor diodes at the edge of tuning range such as the microwave output signal has

non-constant amplitude due to the effect of varying frequency.

The microwave signal produced by the VCO is sent to a 3 dB splitter which is

a linear device to split into two identical microwave signals, each with half power.

One of these signals is then delayed by an amount of 10 ns by a 2 m length semirigid

microwave cable. The two signals are finally fed into a double-balanced mixer. The

mixer is a nonlinear device whose characteristics will be discussed in the next section.

2.3 Microwave Mixer

Microwave mixers translate the frequency of electromagnetic signals. This

functionality is vital for an enormous number of applications ranging from mili-

tary radars and surveillance to radio astronomy to biological sensing networks [68].

Microwave mixers are nonlinear electrical devices that are designed to mix (or mul-

tiply) two microwave input signals, and producing a low frequency baseband electri-
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cal signal at the output. (They are also used in reverse, to up- convert a baseband

signal onto a microwave carrier). Despite their ubiquity, however, microwave fre-

quency mixers remain one of the most misunderstood components available in the

RF/microwave engineer because of its nonlinear properties.

A frequency mixer is a 3-port electronic circuit. Two of the ports are input

ports and the other is an output port. The ideal mixer multiplies the two input

signals such that, after filtering, the output signal frequency is either the sum (up-

conversion) or difference (down-conversion) frequency of the inputs. The terms for

the 3 mixer ports are the Local Oscillator (LO) port, the Radio Frequency (RF)

port, and the Intermediate Frequency (IF) port. The LO port is typically driven

with either a sinusoidal continuous wave (CW) signal or a square wave signal. The

choice to apply a CW or square wave signal depends on the application and the

mixer. The IF/RF signals tend to be information-bearing signals. During frequency

conversion, the information carried by the RF/IF signal is frequency translated to

the IF/RF output. Therefore, mixers perform the critical function of translating in

the frequency domain.

The most important figure of merit of a mixer is conversion loss which is a

measure of the efficiency in providing frequency translation from the RF/IF input

signal to the IF/RF output signal. Conversion loss is defined as the ratio in power

between the input RF power level and the desired output IF frequency power level

[48]:

25



Lc = 10log
available RF input power

IF output power
(dB) . (2.1)

Typical values of conversion loss range between about 4.5 to 9 dB, depending

on the mixer. For a down-converting mixer, since the output frequency has been

shifted down or reduced, the conversion loss becomes the down conversion gain which

tells us how much the IF was attenuated. Other mixer terms which relates closely

to conversion loss are isolation and compression. Isolation is a measure of circuit

balance within the mixer or the amount of power that leaks from one mixer port to

another [69]. Three types of isolation are commonly quoted in microwave mixers: L-

R isolation, L-I isolation and R-I isolation. Since the RF power is normally smaller

than the power drive at LO, the R-I isolation is not an important factor to evaluate

mixer. The L-R (L-I) isolation is the amount of the LO drive power get attenuated

when it is measured at the RF (IF) port while the IF(RF) port is terminated by

a 50 Ω load. The higher the LO isolation means smaller power leak through the

ports. The compression point of a mixer (normally named 1dB compression) is a

measure of the linearity of the mixer and is defined as the input RF power required

for which the mixer will provide the linear operation in terms of conversion loss.

Conceptually, the 1 dB compression point occurs when the RF signal can no longer

be considered a small signal, normally when the RF power is within 10dB of the

LO drive level. Mixer compression usually changes with the LO power level. It is

therefore important to select a mixer which has input drive level that affords the

required compression point for the application [70].
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Figure 2.4: The double balanced mixer is composed of a diode ring and
the 180◦ hybrid junctions. The design helps the mixer to have better
isolation and higher conversion gain.
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The mixer used in our system is a double-balanced mixer whose schematic

diagram is illustrated in Fig. 2.4. The mixer circuit which consists of four diodes

configured in a ring and two 180◦ hybrid junctions. The circuit symmetry helps to

have a better isolation among all mixer ports, especially the RF/LO isolation. It

also can give cancellation of AM noise from the LO port. Both are resulting in a

lower conversion loss. The hybrid junction, which is a four port circuit that provides

mutual isolation between input ports and equal power division at the output ports,

helps to isolate the input LO and RF from one another, thus providing frequency

band independence and equal power division to the load [69].

The double-balanced mixer used in our system (Mini-Circuits MCA1-80LH+)

[71] has typical RF/LO isolation of 35 dB and a down conversion gain of 6 dB. The

mixer output frequency ranges from DC to 1250 MHz while LO and RF frequencies

ranges cover the whole C and S microwave bands. This low noise and high efficiency

double-balanced mixer meets the designing requirements of a mixing component in

our feedback loop.

Since all the components of the homodyne phase discriminator operate in mi-

crowave frequencies, the connections between them are transmission lines. This is

due to the fact that the physical dimensions of microwave devices are a considerable

fraction of a wave length or many wavelengths. The circuit theory and normal elec-

trical wires thus cannot be used. Also, impedance mismatch in microwave systems

can cause significant power loss. Therefore, designing and implementing appropriate

transmission lines are critical for our microwave feedback loop. We will discuss this

process in next section.
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2.4 Microwave Transmission Lines

The term transmission line is commonly reserved in electromagnetic for those

structures which are capable of guiding Transverse Electromagnetic (TEM) waves.

As a special class of the more general electromagnetic wave guides, transmission

lines, help to transmit electrical signals between two points in space. There are

different types of transmission lines used in various range of frequencies such as

wires, coaxial cables, electric power lines. Another way to classify transmission lines

is by the number of orthogonal physical dimensions. For example, a coaxial line

might be considered one dimension (its length), a transition from a coaxial line

to a strip line would be considered three dimensional, and a lumped element has

zero dimensions. One can always model the transmission line by a lumped-element

circuit made up of RLC network [48,68] . With the aid of Maxwell’s equations and

Kirchhoff’s laws, the characteristic impedance of an ideal transmission line could be

derived. This value is independent of frequencies which provides the perfect method

for power transfer in high frequency systems. However, a transmission line is usually

not an isolated component but is terminated by load impedances in the circuit. As

a result, the wave on the transmission line now is a superposition of an incident

and reflected (standing) wave. To minimize this reflection effect, one must use load

impedance that is matched to the characteristic impedance of the transmission line.

With their physical dimensions as the criteria, one can categorize microwave

transmission lines as three groups: coaxial lines, rectangle and circular wave guides,

and strip-type transmission lines. The most popular microwave transmission lines
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used are coaxial lines. They are very convenient for test application with the oper-

ation frequencies can go up to 5 GHz. Because of the large physical size, they are a

difficult medium to fabricate with complex microwave components. Rectangle and

circular wave guides are one of the earliest types of microwave transmission lines.

They are cheap to build and have high power capacity which is very useful in many

precision test applications. The wave guides operation bandwidth however isn’t as

high as in coaxial lines. Strip-type transmission lines stand out with advantages

such as compactness, low cost and easy integration with active devices to form mi-

crowave integrated circuits. Their small physical dimension fits in with the recent

trend toward to the miniaturization and integration in microwave communication.

There are two types of strip-type transmission lines which differ in their geomet-

rical symmetry: symmetric strip transmission lines or strip lines, and asymmetric

transmission lines or micro-strip lines, as illustrating in Fig. 2.5.

With the goal of constructing a compact stable system to generate microwave

chaotic signals, we put the homodyne phase discriminator on a printed circuit board

with a continuous ground plane. The micro-strip lines therefore the best-suited

transmission line for this application. We start to design these connections by first

specifying the dielectric material and then calculate the required width of the top

conductor as well as the required thickness of the board. Since our microwave phase

discriminator functions in C-band of microwave bandwidth (frequencies from 2-4

GHz) and the goal is to generate chaotic microwave signals which are sensitive to

any small change in initial conditions, we must choose a material with low loss at

high frequencies and less dependent on any frequency fluctuation. Rogers 4350B
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Figure 2.5: The geometry of a strip line (a) and a micro-strip line (b).

satisfies such requirements. The thickness of the printed circuit board is chosen as

one of standard thicknesses recommended by the manufacturer. In our case, it is

0.508mm. Since all of the microwave devices used in the loop have 50 Ω impedance,

we calculate the width of micro-strip lines equal to 1.12 mm to yield the same

value using impedance formulas in [72]. The design is then simulated using high

frequency structural simulator (HFSS) to verify the impedance and S parameters.

The physical dimension of the micro-strip line is reasonable to fabricate.

Fig. 2.6 (b) shows our finished microwave printed circuit board with Ro4350B

as a dielectric material, copper as a metal; the bottom layer of the board is grounded

continuously. The board is illustrated along with the block diagram in Fig. 2.6 (c).

To test the nonlinear function provided by the self-homodyne phase discrim-

inator, we varied the tuning voltage of VCO from 0.5 V to 3.5 V and recorded
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Figure 2.6: (a) The block diagram of the self- homodyne phase discrim-
inator. (b) The implementation of the self-homodyne phase discrimina-
tor: a finished microwave printed circuit board, where all the components
are put on a continuous ground plane. The transmission line is made by
Rogers 4350B with 1.12 mm wide to yield 50 Ω impedance. (c). Experi-
mental measured relationship between input v(t) and output w(t) of the
self- homodyne phase discriminator comprising 10 ns microwave delay
line and mixer. The solid curve is the best-fit sinusoidal function.
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the value of mixer output using a multi-meter. Fig. 2.6 (c) plots the experimentally

measured sinusoidal relationship between the tuning voltage v and the mixer output

w, together with a best-fit sinusoid. From these measurements, one can determine

the two constants A = 0.2 V and V2π = 0.5 V. The deviation from a perfect si-

nusoidal nonlinearity is attributed to non-ideal voltage-dependent power from the

VCO and non-ideal mixer characteristics. The output of the mixer is electronically

integrated and time-delayed and then being fed back to the VCO. From here, the

signal has the frequency as low as DC. We therefore design a delay and voltage

integral functions with appropriate values to complete the feedback loop. The delay

integrated feedback part of the loop is discussed in the next section.

2.5 Time Delay and Voltage Integral Functions

In this section, we will discuss the time-delayed and voltage integral functions

which are the components that operate in baseband frequencies in our feedback loop.

The voltage integrator has a low-pass bandwidth due to the finite gain at DC. Since

the mixer output has frequency range from DC to 1250 MHz but tuning bandwidth

of the VCO is in the order of 10 MHz, the voltage integrator sets the upper frequency

limit of the signal coming out from the mixer to fit within the tuning bandwidth.

The time-delayed function is scaled to the integrator bandwidth so that the feedback

loop functions in band-pass frequencies of microwave discriminator.

In our system, the time-delayed integrated feedback part was constructed dig-

itally using a field-programmable gate array (FPGA) board. A FPGA is an in-
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tegrated circuit designed to be configured by a customer or a designer after man-

ufacturing. Unlike other digital processing boards, the configuration of a FPGA

is specified using a hardware description language on a series of logic gates. The

FPGA used in our system (Altera Cyclone II EP2C5) has a high-density architec-

ture with 4608 logic elements (LEs) and twenty-six M4K embedded memory blocks

along with 1.1 Mbits of RAM available without reducing available logic. The cir-

cuit allows the flexible clock management with programmable duty cycle, external

clock outputs and two phase-locked loops (PLLs) available for clock multiplication

and division. It also provides up to 622 usable Input/output pins and thirteen em-

bedded multipliers. The FPGA therefore can support a high level, complex design

at low cost and low power consumption. To combine the FPGA with our analog

microwave components, we use a FPGA board (Saxo Q) whose the general block

diagram is shown in Fig. 2.7. The board uses a USB interface to power and configure

FPGA. In addition to the embedded memory, this board offers 4 Mbits for FPGA

boot-PROM to conveniently store programs. The two 8-bit 200 MSPS analog to

digital converters (National Semiconductor, ADC 08200) [73] and four 10-bit digital

to analog converters (TI DAC 900) [74] connect the digital FPGA chip with the rest

of the feedback loop. More detail about this FPGA board could be found at [75].

Implementing the delay and voltage integral functions on the FPGA board

provides us the flexibility of varying the amount of delay and integral function’s

gain. This offers significant advantages over conventional analog filters and delay

circuit when studying the dynamics of the loop because one can look at the system’s

dynamical behavior in wider range values of parameters. Furthermore, a FPGA
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Figure 2.7: Simplified block diagram of a FPGA board. The board
is powered and configured by a USB controller. The FPGA contains
an analog to digital converter (ADC) that samples an incoming analog
signal at regular intervals. The sampled data is then processed by pro-
grammed logic circuits on FPGA. The processed digital signal is then
converted back into an analog signal by a digital to analog converter
(DAC).
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board is compact and easily to connect to other components in the loop unlike

the normal analog implementation of voltage integrator and delay (using amplifier

and basic elements such as inductors, capacitors and resistors). Incorporating the

FPGA board in the feedback loop also has the advantage of allowing two separately

constructed systems to be closely matched in their performance, which is essential

to the study of synchronization dynamics.

The voltage integral function could be described by the mathematical rela-

tionship:

vout(t) =
1

T

t∫
−∞

vin(t′)dt′. (2.2)

where T is the integration time constant. The continuous transfer function is written

as following:

Ĥ(s) =
1

Ts
. (2.3)

Using bilinear transformation [76], when one can transfer the continuous variable s

into a discrete one z:

s =
2

Tsample

z − 1

z + 1
. (2.4)

The transfer function could be written in discrete form as following:

Ĥz =
Tsample
T

(
z−1

1− z−1
)
, (2.5)

The inverse z-transform gives the time-domain equation:

vout[n] = vout[n] +
Tsample
T

vin[n− 1], (2.6)

which is seen to be a simple algebraic accumulator. The process of implementing

a digital voltage integral function on FPGA is described as follows: The output

36



101 102 103 104

Frequency (Hz)

G
ai

n 
(d

B
)

105 106 107

50

-50

-100

0

Figure 2.8: Measured amplitude response of a digital voltage integral
function implemented on FPGA board. The noise at the low frequency
is due to instrument artifact of the network analyzer.

analog signal coming from the mixer is sent to one of four analog inputs of FPGA

board. It is then being sampled at regular time intervals using one channel of the

ADC. The sampling interval, i.e. the time between samples, is set by configuring the

sampling rate Fs. In our experiment, we use the frequency 75.7575 MHz generated

by a local crystal oscillator on the board as the base clock for the ADC sampling

frequencies. This odd frequency is guaranteed to be asynchronous to any periodic

signals might occur on the FPGA (a condition required in equivalent time sampling

mode). The digitized input sequences created by the ADC are manipulated by a

programmable logic circuit to perform the simple summing accumulator in (2.6) on

FPGA processor. The signal is finally converted back into an analog form using one

of two DACs before being output.
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Figure 2.9: Digital time delays implement process on the FPGA. The
digitized input signals are stored in a memory buffer before output by
DAC.

Fig. 2.8 describes the measured amplitude response of the voltage integral

implemented on FPGA at the sample rate of 15.15 Msample per second (which

is derived using a PLL to perform frequency division on the basic 75.7575 MHz

clock). The 3 dB bandwidth of the integrator is 1 MHz due to the finite gain at

DC frequency. The noise observed at low frequencies is an instrument artifact that

arises because the network analyzer used to measure the behavior cannot measure

at low frequencies. The time constant T (as the slope of the frequency response

curve) could be varied by changing the reprogramming FPGA.

The time delay function is created on the FPGA board using the shift register

method which is illustrated by a block diagram in Fig. 2.9. The discrete-time samples

from the ADC are collected in an indexed memory buffer of length k. At each

sampling instant, the stored samples are moved down the buffer by one unit and
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simultaneously the value in the kth unit is output through the DAC. This process

produces a time-delay equal to k sampling intervals. Thus by configuring the length

of the memory buffer a desired delay can be set. With the flexibility to produce

customized sample rates using two PLLs, and a large memory storage on FPGA, this

method could create a large value of delay time up to minutes as well as vary this

delay in a wide range. The delay time created by this method also is independent

on frequencies. This is another advantage of the digital delay line over conventional

analog electrical time delays implemented with either coaxial cables or a series of

LC delay units. Moreover, the analog LC delay lines generally introduce additional

frequency dependence that is undesirable. And implementation of a cable time-

delay of the order of a few milliseconds requires an impractically long cable and can

be very lossy. For the experiments reported here, we use the sample rate of 15.1515

Msample per second and a 600-stage shift register to create 40µs delay.
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Chapter 3: Mathematical Model

In this chapter, we develop a mathematical model for the microwave time-

delayed feedback loop. Because the system is connected in a feedback loop, it is

possible to describe the dynamics in terms of the dynamical variable at any point

in the loop. For convenience, we choose the VCO input as the point of reference,

and derive a differential equation to describe the tuning voltage. The equations are

derived by combining the mathematical description of the individual components

of the feedback loop that were discussed in chapter 2. The present mathematical

model, however, does not include electronic noise terms and assumes that all the

components work ideally. Despite these simplifying assumptions, the model includes

all the essential features of the dynamics by incorporating the nonlinearity, time

delay and voltage integral functions.

We first analyze the signal path in the feedback loop to derive the mathematical

description for the tuning voltage of the VCO. The equation is one of the simplest

nonlinear delay differential equations [77] that exhibits chaotic behavior. In order to

more accurately model the hybrid analog-digital experimental system, we re-write

the differential equations in discrete-time as a recursive map equation. The method

to solve for solutions is then presented, beginning with the analytical technique
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to find the first critical value of the dimensionless system parameter at which the

system undergoes a change in dynamical behavior (the first bifurcation point). The

numerical method to compute the solutions is discussed along with the procedure for

constructing a bifurcation diagram as the loop gain is varied. The chapter concludes

with a discussion of dynamical metrics, namely the maximum Lyapunov exponents,

spectrum of the Lyapunov exponents and Kaplan-Yorke dimensionality.

3.1 System Equation

As discussed in the previous chapter, the microwave signal generated by a

VCO has a constant-amplitude with a frequency that varies linearly with an applied

tuning voltage. This output signal from the VCO can be described by the complex

microwave signal:

E(t) =
√

2Aej[ω0t+θ(t)] (3.1)

where A is a constant that is proportional to the microwave power, the factor of

√
2 is for introduced to simplify the subsequent algebra; ω0 is the natural frequency

of the VCO (i.e., the free-running frequency when no voltage is applied), and the

phase θ(t) is related to the applied voltage v(t) by:

dθ

dt
= 2πγv(t) (3.2)

The factor γ is tuning sensitivity of the VCO a property of the VCO that represents

the gain of a frequency modulation process in the VCO.

The signal E(t) is sent to the 3dB microwave power splitter to create two

identical signals. One of them is then delayed by an amount of τd from another.

41



The signals are sent to the mixer as the LO input:

ELO(t) =
√
Aej[ω0t+θ(t)] (3.3)

and RF input

ERF (t) =
√
Aej[ω0(t−τd)+θ(t−τd)] (3.4)

The output IF of the down-converting mixer is described as following:

w(t) =
1

2
Re
{
ELO(t)E∗RF

}
= A cos [θ(t)− θ(t− τd)− ω0τd] (3.5)

If we further assume that θ(t) varies slowly on the timescale τd, so that

θ(t)− θ(t− τd) ≈ τd
dθ

dt
= τd2πγv(t) (3.6)

The mixer output, therefore, maybe approximated as:

w(t) = A cos
[
2πγτdv(t)− ω0τd

]
. (3.7)

Finally, the output signal of the mixer is fed back to the VCO tuning input through

a time delay τ and integrating function, so that v(t) and w(t) are related by

v(t) =
1

T

t∫
−∞

w(t′ − τ)dt′ (3.8)

where T is the integration time constant and τ is the feedback time delay, which is

assumed to be much larger than the microwave delay τd. Differentiating (3.8) and

making use of (3.7), we obtain a first-order delay differential equation for the tuning

voltage v(t),

dv

dt
=
A

T
cos
[
2πγτdv(t− τ)− ω0τd

]
(3.9)
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where the scale factor A is now understood to include the microwave power, mixer

efficiency, splitter loss, and any baseband electrical gain in the feedback path.

We next define a normalized dimensionless voltage x(t) as

x(t) ≡ 2πγτdv(t)− ω0τd −
π

2
(3.10)

which leads to the delay differential equation

dx

dt
= −2πγA

τd
T

sin
[
x(t− τ)

]
(3.11)

Furthermore, by normalizing time in terms of the feedback delay τ , (3.11) simplifies

to

ẋ(t) = −R sin
[
x(t− 1)

]
(3.12)

where the single dimensionless constant R is defined as

R ≡ 2πγAτdτ

T
. (3.13)

R is the system parameter that characterizes the gain and the dynamical time scales

of the loop. R could be varied by changing the length of microwave cable, or the

ratio of the time delay or the integrator time constant.

(3.12) is a realistic physical model for the microwave time-delayed feedback

loop dynamics. It could be illustrated by a mathematical block diagram depicted in

Fig. 3.1 The model assumes that all the components of the loop are ideal, and the

electrical noise is small. The system equation appears as a nonlinear delay differen-

tial equation with single effective control parameter R. This equation was considered

by Schanz et al. [78], who observed that phase-locked loops with a feedback delay
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Figure 3.1: Mathematical block diagram of microwave time-delayed feedback loop.

can also be described by this equation. It was later independently analyzed by

Sprott, who pointed out that it is one of the simplest nonlinear delay differential

equations that can exhibit chaotic behavior [77].

When we use the FPGA in the loop to to implement delay and integration,

the same mathematical model could be applied. However, because the FPGA uses

discrete-time digital sampling, a mathematical description in discrete time is more

appropriate. Instead of considering the variable x(t) whose domain is all of time

t, the discrete time solution is given only at the sample times nTs where Ts is the

time interval between successive samples of the ADC and n is an integer. The

discrete feedback loop could be illustrated by Fig. 3.2, in which the integral and

delay function are illustrated by digital implementation.

The digital delay and integral function are described in discrete time domain
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Figure 3.2: Mathematical block diagram of hybrid analog-digital mi-
crowave time-delayed feedback loop.H(z) is taken the form of (2.5).
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as a summing accumulator:

v(t) = v(t−∆t) + αw(t− k∆t) (3.14)

where ∆t is the sampling period. The discrete-time parameters k and α determine

the feedback delay τ and integration time constant T , respectively, according to:

τ = k∆t, T = ∆t
1

α
(3.15)

We next introduce the dimensionless system parameter G is defined as G = 2πγτdα

such that the discrete-time system equation can be written as:

x
[
n
]

= x
[
n− 1

]
+Gsin(x

[
n−N

]
) (3.16)

This map equation is simple and captures all the features of the microwave time-

delayed feedback loop. By iterating x while varying the parameter G, one can study

how the dynamical behavior of the system depends on the gain. [79]. The method to

numerically solve the system equation, both in continuous time and discrete time,

will be discussed further in the next section.

3.2 Solution Methods

Like many DDEs, the system equation described here is impossible to solve

exactly, because of the nonlinearity and the discontinuities that arise because of in-

consistent initial conditions [80–82]. Consequently, solutions are approximated using

numerical or analytical techniques and illustrated using the bifurcation theory. In

this section, we present the method using both analytical and numerical techniques
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to solve for bifurcation points (the points in which a small smooth change made to

the parameter values of a system causes a sudden qualitative or topological change

in dynamical behavior) of the system when the system parameter R is varied.

The common methods used to solve DDEs analytically are linear stability

analysis [83], synergetic system analysis [84], and multiple scaling methods [78]. As

one of the simplest DDEs, the some of the bifurcation points of the system equation

of the microwave delay feedback loop can be solved exactly using these methods

. We illustrate briefly here the process of finding the first critical value of R in

which the system undergoes the sudden dynamical changes using the linear stability

analysis method. As we recall the system equation (3.12)

ẋ(t) = −R sin
[
x(t− 1)

]
(3.17)

The equation has the stationary solution x0 = lπ in which l denotes an arbitrary

number. To study the stability of these fixed points, we consider a small deviations

xst from x0 as xst = x0 + ε(t) and insert this into the equation ((3.12)):

ẋst(t) = −R sin
[
xst(t− 1)

]
(3.18)

Linearizing the sin function near the stationary points gives us

sin
[
xst(t− 1)

]
= sin(x0) + cos(x0)ε(t− 1) + Ø(ε2) (3.19)

Dropping the higher order terms, we obtain

sin
[
xst(t− 1)

]
≈ cos(x0)ε(t− 1) (3.20)

The linearizion equation of the system around the stationary solutions x0 = lπ is
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written as

ε̇(t) = −R(−1)lε(t− 1) (3.21)

Next, we establish the eigenvalue equation by inserting the general ansatz ε(t) =

Θλeλt into (3.33) and considering the requirement for non-trivial eigenvectors:

λ+ (−1)lRe−λ = 0 (3.22)

For non-zero, positive values of R, the equation (3.22) admits solutions with real,

positive values of λ if l is an odd integer number. The fixed point solutions x0 = π

(mod 2π) are therefore unstable. The stable fixed point solutions x0 = 0 (mod 2π)

will lose its stability when λ becomes pure imaginary, that is, when λ = iω. This

condition leads to nonlinear algebraic system

R cos(ω) = 0 (3.23)

ω −R sin(ω) = 0 (3.24)

The solution of the above system equation indicates that the first bifurcation point

of the system occurs when the feedback gain Rc = π/2.

From (3.22), one can also calculate the first derivative of eigenvalues dλ
dR

as a

function of feedback gain R as following:

dλ

dR
=

e−λ

Re−λ − 1
(3.25)

The condition
[
dλ(R)/dR

]
|R=Rc means that the Hopf bifurcation occurs at R = Rc

[26]. This result is confirmed with the multiple scaling method in [78] and the

synergetic system analysis in [84] . The next system bifurcation points, however, are
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hard to find analytically. Therefore, we use the numerical techniques implemented

in Matlab to locate them.

The solution of an ODE is determined by its value at the initial point. For

DDEs, we must provide not just the value of the solution at the initial point, but also

the history the solution at times prior to the initial point. It has been proven that

DDEs could be solved using an ODE solver that uses a modified way to generate

initial conditions [80,82]. The effective solvers for DDEs like dde23 [80] involve the

technique of breaking down the system history, thus, solving DDEs become a process

of solving series of an initial value problem for an ODE in a time interval with a

known initial point. Using this solver, one must keep track of how the discontinuity

(generated from the breaking down history) at the initial point propagates due to the

delay time. In our system, we use the method which utilize the same principle with

dde23 solver and iterate the system equation for long enough time for the transients

to die down so that we could avoid the discontinuity. The system equation (3.12)

can be understood in a compact way as:

dx

dt
= f(x(t− τ)) (3.26)

where f is a nonlinear function of the previous normalized tuning voltage. We can

rewrite (3.26) from continuous evolution in delay time into iterative mapping at

discrete but small time step h = τ/N where N is the number of steps

x(t+ h) = x(t) + hf(x(t−Nh)) (3.27)

The above equations can be solved by any of the integration methods, such as

Euler or Runge-Kutta in Matlab. Running the numerical calculation for different
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parameter R values will give us a range of types of dynamics of the tuning signal

separated by bifurcation points.

Generating the initial conditions of the system equation, however, is not an

obvious step. The initial point and history of the equation should be produced

randomly and have zero average. Because we do not know the dynamical state or

the attractor, we begin the system from low amplitude noise. In practice, we run the

simulation for long enough that the effect of our initial condition becomes irrelevant.

We use the randn function in Matlab and averaging out the mean value to have a

Gaussian distribution initial conditions around zero.

3.3 Measuring Chaos

Since chaos was discovered, scientists have developed different tools to differ-

entiate chaos from noisy, random behaviors and and provide quantitative measures

of the complexity of a chaotic system.. Some commonly used metrics for describ-

ing chaotic dynamics include the maximal Lyapunov exponent and Kaplan-Yorke

dimensionality.

3.3.1 Maximal Lyapunov Exponent

The general acceptable definition of chaos states: chaos is an aperiodic, long

term behavior of a bounded, deterministic system that exhibits sensitive dependence

on initial conditions [28]. While it is straightforward to establish that a system is

deterministic (i.e., there is no noise or random factors presenting in the system),
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bounded and aperiodic, it is not clear how one could quantify the sensitivity of the

system on initial conditions. In the context of this thesis, we use the Lyapunov

exponent as the quantity whose sign indicates chaos and its value measures the rate

at which initially nearby trajectories exponentially diverge. The Lyapunov exponent

was named after the Russian mathematician Alexandr Lyapunov (1857-1918) who

was the first to give out the complete definition of stability in order to quantify it

in physical systems. General speaking, Lyapunov exponents measure the growth

rates of generic perturbations, in a regime where their evolution is ruled by linear

equations. In context of deterministic chaos, Lyapunov exponents quantify how fast

the system diverges from one trajectory to another when initial conditions undergo

a small change. For simplicity, we illustrate the concept of Lyapunov exponents in

the context of iterated one-dimensional maps. This discussion is easily generalized

to higher dimensional and continuous time systems.

Given some initial conditions x0 of a one-dimensional map, consider a nearby

point x0 + δx0, in which the initial separation δx0 is an extremely small. Iterate

the map n times and watch how the separation grows to δxn. If one can describe

the relationship of δx0 and δxn as |δxn| = |δx0|enλ, then λ is called the Lyapunov

exponent.

For an n-dimensional map, there exists n Lyapunov exponents to characterize

the growth of the separation vector in n directions. The maximal Lyapunov expo-

nent λmax is defined as the average growth rate of the separation vector between

the nearby trajectories in the phase space. The inverse of λmax is called Lyapunov

time which is an average time-scale on which the system is chaotic, or the effective
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prediction horizon. For non-chaotic system, the maximal Lyapunov exponent is neg-

ative (in which the nearby trajectories converge) or zero (the separation vector has

a constant length as the system is periodic). A positive λmax thus indicates chaos.

For low-dimensional systems, one can calculate λmax by simply analyzing a

sufficiently long time series of the dynamical signal [85]. This method involves con-

structing a system phase-space and finding the average rate at which the nearest

neighbors diverge [86]. For DDEs, which are inherently infinite-dimensional equa-

tions due to the presence of the time delay, this method proves challenging because

it is impossible to keep track of the growth rate of separation vector in all dimen-

sions. In our system, we use the conventional method [28] which involves solving

the linearized system equations to estimate λmax.

The microwave time-delayed feedback loop system equation, we recall, is de-

scribed by equation (3.12). We need to determine whether the points near solution

x(t) diverge as t increases. To do so, we perform a linearization about the solution

x(t) to see how the linear perturbation vector δx(t) changes as t increases. The

linearized limit of equation (3.12) could be written as:

dδx

dt
= −R cos

[
x(t− 1)

]
δx(t− 1) (3.28)

This equation is solved along with the system equation. Because this equation is

linear in δx, the initial perturbation vector δx0 could be generated as an unit-length

vector without losing generality. If the trajectory x(t) is chaotic then δx(t) will

approximately follow the relation |δx| ∼ e+λmaxt which suggests that the growth
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rate λmax could be calculated as:

λmax =
1

t
ln
|δx(t)|
|δx(0)| (3.29)

Since the growth rate could be positive if x(t) is chaotic, the solution δx(t) may

overflow. We overcome this by periodically re-normalizing the value of the growth

vector to 1 by dividing δx(t) by its magnitude. We then keep track of the magnitude:

αi = |δx(ti)| (3.30)

where ti is the discrete timing, and computed as a number of time step ∆t

ti = i∆t (3.31)

The calculation is repeated for a long enough time -after L iterations- so that the

solution vector x(t) will visit all the regions of system phase-space, thus we obtain

the maximal Lyapunov exponent as [26]

λmax =
1

Lτ

L∑
i=1

lnαi (3.32)

3.3.2 Kaplan- Yorke Dimensionality

Besides describing by its positive maximal Lyapunov exponent, one can use a

geometrical argument to illustrate the dynamical behavior of a chaotic system. This

method includes interpreting differential equations as vector field and characteriz-

ing the dynamics in phase- space. Dissipative systems often have attractors. While

rigorous mathematical definitions of attractors exist [25, 26, 28], a heuristic defini-

tion suffices for our discussion. An attractor is a subset of phase space with zero
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volume, which is invariant under the dynamics of the system. This means that if

the state of the system is on the attractor, the system will never leave the attractor.

Attractors are associated regions of phase space with non-zero volume called basins

of attraction. In the limit that time goes to infinity, the state of any system whose

initial state was within the basin of attraction will approach the attractor. For

chaotic systems, these attractors have fractal structure and non-integer dimension.

Measuring this dimensionality quantifies the complexity of the chaotic system. It

also has been shown that there is a relationship between the fractal dimension of

a typical chaotic attractor and Lyapunov exponents [87, 88]. Let the set λi be the

Lyapunov exponents of n-dimensional dynamical system, in which λi characterizes

the growth rate of the ith separation vector in in phase space. The set is ordered

in descending direction i.e., λ1 ≥ λ2 ≥ ... ≥ λn With K is the largest integer such

that:
K∑
i=1

λi ≥ 0 (3.33)

The Kaplan- Yorke dimension or Lyapunov dimension is then defined:

DL = K +
1

|λK+1|
K∑
i=1

λi (3.34)

Due to the presence of delay, the delay differential equation is understood as an

inherently infinite-dimensional problem. Numerous results however, indicate that

the equation could have a discrete spectrum Lyapunov exponent and finite dimension

attractors [87]. The method of calculating the dimensionality of chaotic attractors

as computing the full Lyapunov spectrum, in the delay system is illustrated in

[87]. After transforming the delay differential equation into N-dimensional mapping
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by sampling the delay time at different intervals ∆t = τ/(N − 1), the Lyapunov

exponents are computed using a method similar to that described in section 3.1

with N infinitesimal separation vectors δxi(t), 1 ≤ i ≤ N . We start by selecting

an initial separation vector. After iterating for a time tau, the vector is normalized

to have length 1. Using the Gram-Schmidt procedure [26, 87], we normalize the

second separation vector relative to the first, the third relative to the second, and

so on. This procedure is repeated for L iterations then the exponent λi is calculated

similarly to (3.32) as:

λmax =
1

Lτ

L∑
i=1

ln
|δxi(k)|
|δxi(k − 1)| (3.35)

After ordering the spectrum of Lyapunov exponents in descending direction, we

use (3.34) to calculate the dimensionality to obtain the dimensionality of chaotic

attractors.
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Chapter 4: Dynamical Characteristics

In this chapter, we describe the dynamics of the microwave time-delayed feed-

back loop through numerical and analytical solutions as well as experimental mea-

surements of the tuning voltage signals. The chapter is divided into two sections

in which we discuss the dynamics of the system with two different nonlinearities:

sinusoidal and Boolean (binary). For the case when the sinusoidal function is im-

plemented, we simulate and experimentally observe the phase portrait at different

values of the feedback strength R. We prove the existence of chaos in the system

by calculating the maximal Lyapunov exponents and Kaplan-Yorke dimensionality.

We discuss the broadband spectra of the chaotic tuning signal and the FM chaotic

microwave signal. We also describe the route to chaos by constructing the bifur-

cation diagram recording the simulated and experimental time series of the tuning

signal when R is smoothly varied. We created the Boolean (binary) nonlinearity by

applying the threshold function to the sinusoidal relationship. When the sinusoidal

function is replaced by this binary nonlinearity, the time-delayed feedback loop ex-

hibits complex periodic behaviors and the bifurcation diagram shows an intricate

self-similar structure. We also discuss the bifurcation diagram to show that the

system has no fixed point solutions.
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The simulated results were obtained by numerically integrating (3.12), starting

from random initial conditions, using a 5th order Dormand-Prince method with

a constant step-size. The equation of motion used to model our feedback loop

was pre-iterated for a sufficiently long time to eliminate any transient behavior

associated with non-physical initial conditions. The experimental tuning voltage

time series were observed and recorded on a digitizing oscilloscope. Additionally,

we programmed the FPGA and auxiliary DAC channel to also produce a second

output channel that corresponds to the signal immediately prior to the integrator,

which allows us to simultaneously observe and plot the tuning voltage signal and its

time derivative to create a two-dimensional phase-portrait of the dynamics.

Because the nonlinear function is periodic in x, the solutions to (3.12) are

easily seen to be translationally invariant up to an integer multiple of 2π. That

is, if x(t) is a solution, then x(t) + 2πm is also a solution, for any integer m. In

practice, the voltage applied to the VCO is constrained to a limited range; we

therefore choose to present here the dynamics of the system in the regime which

the numerical solutions remain bounded within one cycle of the nonlinear function,

with a peak-to-peak amplitude that is smaller than 2π. The dynamical behaviors

of the tuning voltage in case of unbounded regimes will be discussed in chapter 5.

4.1 Sinuisoidal Nonlinearity

We discuss here the dynamical behaviors at different values of R of the tuning

signal of the VCO when the sinusoidal nonlinear function is employed in the loop. In
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Table 4.1: Summary of system parameters.

parameter value

Fs = 1/∆t 15 Ms/s

k 600

τ 40 µs

A 0.2 V

γ 180 MHz/V

τd 10 ns

ω0/2π 3 GHz

α 0.0067 – 0.0175

R 1.5 – 4.20

experiment, to change the feedback gain R, we vary the integration proportionality

constant α in (3.15) while keeping the feedback delay τ constant. This allows the

dynamical timescale of the system to remain unchanged, while the feedback gain is

increased. The parameter α can be adjusted to a precision of 40 bits by suitably

programming the FPGA. A DC offset voltage was added to the output voltage from

the DAC using a summing amplifier in order to keep the system within the linear

tuning range of the VCO. Table 4.1 summarizes the parameters implemented in

the experiment along with the value range of R used in mathematical model. As

described in chapter 3, the system equation can be solved exactly using the lineariza-
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tion technique when R is small enough. The results show that for R ≤ π/2, the

system exhibits the fixed point solutions at x = 0 and x = π. The stable fix point,

x = 0, becomes unstable when R = π/2 as the system undergoes the Hopf bifurca-

tion into the periodic regime. Fig. 4.1 illustrates the characteristic phase portraits

obtained from experimental measurements and numerical simulations, showing the

variety of behaviors of the system when R ≥ π/2.

The periodic experimental time trace is displayed in Fig. 4.1(a) in which the

period is estimated as four times of the feedback delay τ , 160 µs equivalent to the

frequency of 6.25 kHz. The simulation and experiment phase-portrait both show

the limit cycle which exhibits the point symmetry with respect to the origin. The

system can also exhibit a different periodic state in Fig. 4.1(b), (e) and (h). The

point symmetry is broken as the limit cycle splits into two coexisting cycles in phase

portraits as shown in (e) and (h). Both of the coexisting limit cycles are symmetric

to each other appearing as two “arms” inside the fundamental cycle. The time

series shows qualitatively change in the shape of the waveform near the peaks of the

sinusoidal function, both in the positive and negative slopes. These parts appear

in all the cycles of the periodic behavior at a frequency of 13 kHz which is twice

the system fundamental periodic frequency. The aperiodic behavior of the system

is seen in Fig. 4.1 (c), (f) and (i) at R = 4.176, where the phase portraits become

dense as more cycles fill in. Time series shows more and more unsmooth parts near

extreme points appearing with frequencies as twice, four times and eight times the

fundamental frequency of periodic behavior.

To show that the system exhibits chaotic behavior, we calculate the maxi-
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Figure 4.1: Phase portraits of the system recorded experimentally (top)
and simulated numerically (bottom) as the normalized feedback gain R
is varied.
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mal Lyapunov exponents and Kaplan-Yorke dimensionality using the methods de-

scribed in chapter 3. For the aperiodic behavior described in Fig.4.1(c), the maximal

Lyapunov exponent λmax = +5.316/τ indicating chaos; and K-Y dimensionality

DK−Y = 2.15 showing the fractal structure of the phase portrait. The baseband

spectrum of the tuning voltage v(t) and the corresponding microwave spectrum

produced by the VCO, for the case of R = 4.176, are also plotted in Fig. 4.2. Be-

cause of the large tuning sensitivity of the VCO (γ in Table 4.1 ), the microwave

signal occupies a much larger spectral bandwidth than the corresponding baseband

signal. In this demonstration, the bandwidth of v(t) was approximately 10 kHz and

could be scaled to approximately 10MHz, at which point the dynamics would be

constrained by the modulation bandwidth of the VCO. The microwave spectrum

displays the broad band behavior which is ideal for communication applications.

The bifurcation diagrams of the tuning signal are shown in Fig. 4.3. The dia-

grams are created by calculating the color histogram of characteristic time traces as

the feedback gain R is varied smoothly from 1.5 to 4.2. The experimental feedback

gain R is varied by changing α in a fine resolution using a 40 bit binary number on

FPGA. The proportionality between the integration factor α and the feedback gain

R was inferred by empirically locating the value of α at which the first Hopf bifur-

cation occurs and associating this value with R = π/2. The process of constructing

the diagram is described as following: For each value of R, we measured a time trace

of the tuning voltage v(t) and computed a normalized histogram of the voltage am-

plitudes. Each column of the bifurcation plot corresponds to a color-intensity plot

of one such histogram.
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while the simulation results were obtained using Matlab.
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Apart from scaling, there were no other adjustable parameters, and the theory

exhibits good agreement with the experiment. In comparison to other time-delayed

feedback systems in [43,45,65], the system exhibits periodic dynamics over most of

the accessible range of feedback gains, with chaotic behavior only seen for a relatively

narrow range of R. For R ≤ π/2, it can be seen from the bifurcation diagram that

the systems exhibits the steady state of fixed point behavior, x = 0. As R is

increased, the system undergoes a series of bifurcations and displays increasingly

complicated behavior ranging from periodic oscillations to chaotic dynamics. The

periodic behavior appears at R = π/2, where the fixed point solution losses its

stability. This behavior is characterized by two highly probable amplitude values

in the bifurcation diagram. The amplitude of x(t) increases with the feedback gain

as phase portrait opens up. At R = 3.9, the bifurcation diagram shows an abrupt

change, implying that the system makes a transition to a new dynamical regime. The

amplitude values have more than two probable values, showing periodic behaviors

in which more than one frequency co-exists. Increasing the feedback gain R leads

to more coexisting cycles. At R = 4.17, the coexisting cycles become unstable and

the system displays chaotic behavior. Fig. 4.3 (c) and (d) are zoomed-in bifurcation

diagrams at nearby chaotic regimes when the feedback gain R is larger than 3.8.

The diagrams show the system route to chaos is period- doubling, in agreement

with to the numerical results presented in [78]. Close inspection of the bifurcation

diagram obtained through simulation reveals that the system displays bi-stability.

For a range of values of R, there are two coexisting attractors, one of which follows

the period-doubling route to chaos as R is increased. The experimental bifurcation
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Figure 4.4: Maximal Lyapunov exponents for the system described in
(3.12), as a function of the feedback gain, R.

diagram does not resolve this structure, in part due to the limited resolution of the

DAC.

The maximal Lyapunov exponents for the system in aperiodic regime are also

calculated numerically and presented in Fig. 4.4 in which the chaotic behaviors are

indicated by positive values of λmax.

4.2 Boolean Nonlinearity

An interesting and easily realized variation of this system is to replace the

sinusoidal nonlinear function that relates v and w (c.f., Fig. 2.6) with a Boolean

relationship. In practice, this could be achieved by simply inserting a digital thresh-

old device (comparator) following the mixer, thereby producing either a positive or
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negative output voltage of w = ±A, depending on the sign of v. Experimentally, we

achieve this by simply discarding all but the most significant (sign) bit during the

analog-to-digital conversion of w. Mathematically, this nonlinearity may be modeled

by replacing (3.7) by the Boolean relationship:

w(t) = A sgn
(

cos
[
2πγτdv(t)− ω0τd

])
(4.1)

where sgn represents the algebraic sign function. In normalized time and amplitude

units, the time-delayed dynamical equation becomes

ẋ(t) = −R sgn
(

sin
[
x(t− 1)

])
(4.2)

=


+R, sin [x(t− 1)] < 0

−R, sin [x(t− 1)] ≥ 0

(4.3)

where the single dimensionless constant R is defined as in (3.13).

Typical time traces along with time delay-embedding plots of v(t) (or x(t))

are shown in Fig. 4.5. Unlike the earlier case, this system does not admit a fixed

point solution for any value of R. Rather, the trajectories exhibit an alternating up-

down sawtooth patterns that can be completely described by a sequence of switching

times, i.e., the times at which the slope of x(t) changes sign. These switching times

can be calculated iteratively by locating the times at which x(t − 1) crosses a mπ

threshold.

For values of R ≤ π, the trajectories are symmetric triangular waves with a

period of 4τ and a peak-to-peak amplitude of 2R centered about x = 0, as shown

in Fig. 4.5(a,d,g). For π ≤ R ≤ 4π/3, the peak amplitude continues to grow
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Figure 4.5: Experimental (blue) and simulated (green) time traces and
time delay embedding plots of the system using Boolean nonlinearity at
different values of normalized feedback gains R.
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in proportion to R, but the trajectories acquire secondary peaks on the rising and

falling edge of the triangular wave, as shown in Fig. 4.5(b,e,h). Above R = 4π/3, the

behavior becomes more complicated, showing increasingly longer-period trajectories

that depend very sensitively on the feedback gain R, as in Fig. 4.5(c,f,i). For all

cases considered, the calculated dynamical behavior was observed to be periodic

with an amplitude confined to the range −R < x(t) < +R, although the periodic

orbits could contain as many as 54 segments, with periods approaching 60τ .

For R ≥ 3π/2, the solutions no longer remain bounded, and x(t) can instead

exhibit a random-walk type behavior similar to what was observed for the sinu-

soidal case considered earlier. Even within this range, however, there exist isolated

windows of R for which finite-amplitude solutions occur.

Fig. 4.6 presents a bifurcation diagram (experiment and simulation), showing

the color-histogram of x(t) as a function of the feedback gain R. Although the

system is periodic for all points, the bifurcation diagram has a fractal characteristic

in which any enlarged regions of the bifurcation appears self-similar to the original.

This property is illustrated in Fig. 4.6(c) and Fig. 4.6(d), which show successive

enlargements of the calculated bifurcation diagram.

While such a system can be classified as a continuous-time Boolean delay

system, it does not fit the classic description of Ghil, for which the Boolean state

depends only upon its prior value(s) [89]. Rather, in this case, the Boolean slope ẋ(t)

depends on a prior value of x(t − 1). The system shares some features in common

with earlier systems that exhibit a switching nonlinearity [90], but it differs in that

the dynamics are entirely characterized by the sequence of switching times.
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The sawtooth waveforms generated by this system can have advantages for

the frequency-modulated microwave system. The linear variation of the tuning

frequency of the VCO produces a swept frequency signal with a linear chirp (positive

or negative), which can simplify the signal processing for range-finding and Doppler

velocity measurements.
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Chapter 5: Deterministic Brownian Motion

Deterministic Brownian motion is defined as a Brownian motion produced

from a deterministic process without the addition of noise. In this chapter, we dis-

cuss the existence of deterministic Brownian motion in the microwave time-delayed

feedback loop when the system operates in the high feedback gain regime. We be-

gin the discussion by a short description about the system setup, which consists

of waveguide components to produce sinusoidal nonlinearity and a FPGA board to

provide time delay and voltage integral functions. Numerical simulations of the sys-

tem show behavior reveal that the system exhibits Brownian-like motion when the

feedback gain is increases. The experimentally observed waveforms also display the

properties of a random walk. We quantify the randomness by statistically finding the

distribution function of the difference between the tuning voltages at two different

times, separated by a fixed window time. We also estimate the Hurst exponents of

the system experimentally and numerically using the method described in [25,28,91]

to show that the system can exhibit different types of deterministic Brownian mo-

tions, depends on the value of the feedback gain R. The chapter concludes with the

discussion of synchronization between Brownian motions when two such systems

are unidirectionally coupled. We present the simulation results to show the range
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of coupling strength in which two deterministic Brownian motions could synchro-

nize; we also analyze the stability of the synchronization as a function of coupling

strength and feedback gain. The possibility of having two synchronized random

walks could have diverse applications ranging from modeling the stock market or

resolving problem in financial systems [92].

5.1 Experimental Setup

The microwave time-delayed feedback loop used in this experiment is similar

to the one we discussed in chapter 2, which comprises a nonlinear element, ampli-

fier, time delay and filter. We again use a microwave homodyne phase discriminator

to produce the sinusoidal nonlinearity and an FPGA board to program the digital

delay and integrator. The system equation thus is the same as (3.12), but when

the gain is increased, the solution x(t) becomes unbounded and can traverse many

cycles of the sinusoidal nonlinear function. In order to observe random-walk be-

haviors, the system was modified to increase the number of sinusoidal cycles that

could be experimentally attained. Specifically, the VCO was replaced with a higher-

frequency yttrium iron garnet (YIG) oscillator and the phase-delay in the homodyne

phase discriminator was increased. The YIG oscillator is a different kind of tunable

microwave source that, like the VCO, can produce microwave signals at high fre-

quencies. The oscillator consists of an yttrium iron garnet (YIG) sphere mounted

on a thermal conductive rod that is positioned inside of a magnetic field. The mag-

netic field could be created either by an electromagnet, or a permanent magnet, or a
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combination of both. The magnetic field of an electromagnet can be “tuned using a

variable current. The YIG sphere is a crystal that has a high Q characteristic which

provides low phase noise and wide range frequency tuning (an order of multi-octave)

in oscillators. Although YIG oscillator is not a compact microwave device, it offers

several advantages over the normal VCOs, such as: broad band characteristic with

linear tuning curve, low level of phase jitter, and stability to electronic noise. The

YIG oscillator used in our system (Micro-Now 707 CW) could generate continuous

wave frequencies from 2 to 120 GHz depending on the tuning voltage. The tuning

range is 0 to 3.5 V with the tuning sensitivity of 2.3 GHz/V, and the tuning band-

width is reported as 1.25 kHz. Similarly to the architecture described in chapter 2,

the microwave signal after being generated by the YIG oscillator is sent to a 3 dB

power splitter, phase delay, and homodyne mixer, which produces an output signal

that is a sinusoidal function of the YIG frequency.

Since the output frequencies of YIG oscillator convey several microwave fre-

quency bands, semirigid coaxial microwave cable is longer an ideal way to provide

the delay between two signals coming out from the splitter. Instead, a K-band hol-

low rectangular waveguide is utilized in the system to create an appropriate low-loss

delay amount without losing much energy at high frequency. In the setup, we use

2m long rectangular waveguide to create 15 ns delay. The signals are then sent

to a double-balanced microwave mixer (Millitech- MXP 28A111L) [93]. This mixer

offers low conversion loss and low noise figure over a wide range of IF and LO signals

(26.5- 40 GHz). Other mixer features include high LO drive power- typically at 13

dBm, the LO/RF isolation is 15 dB; the LO/IF isolation is 20 dB depending on
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Figure 5.1: Measured nonlinearity (red) and the best fit sinusoidal func-
tion (black). The nonlinearity is produced by the homodyne phase dis-
criminator consisting of a YIG oscillator, a 2m long waveguide and a
double balanced mixer. The imperfections are due to the mixer electri-
cal noise and the YIG thermal noise.

frequency scheme; the minimum 1dB compression point is 3 dBm.

Fig. 5.1 illustrates the nonlinearity produced by the YIG oscillator, a splitter,

a 2 m long K-band waveguide and a double balanced mixer. The experimentally

measured data is shown along with the best-fit sinusoidal function. The non-ideal

features of the nonlinearity are due to the fluctuation to the operation temperature

of the YIG and the mixer electrical noise.

The output of the mixer is sampled by the ADC fed to the FPGA, which

implements the time delay and integration. The signal is finally converted back into
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the analog form with the help of the DAC and connected back to the input of the

YIG oscillator. The time delay has a constant value of 2 ms while the integration

constant is controlled though a 40-bit binary number on the FPGA.

As before, the microwave time-delayed feedback loop can be modeled with the

delay differential equation (3.12). The numerically computed and experimentally

observed tuning voltage time traces are presented in the next section.

5.2 Deterministic Brownian Motion

In this section, we present experimental and simulation results of the system

when it operates in the unbounded regime. In simulation, the delay differential equa-

tion is solved using the methods discussed in chapter 3. The numerical time trace

is obtained by iterating the DDE equation starting from random initial conditions

and iterating until transient behavior has died out.. In experiment, the time series

is recorded using an 8-bit oscilloscope. Because the dynamical state of the random

walk is unbounded, the output tuning voltage may eventually grow and surpass the

range allowed by the DAC board. This will lead to either saturation of the output

signals or rollover when the signal reaches the limit of the DAC. We overcome this

problem by programming the FPGA to produce a logic pulse whenever the time-

series saturates, which then causes the system to reset to the middle tuning voltage

range. This method of collecting time traces is equivalent to repeating the solving

process of the system equation with different random initial conditions.

Fig. 5.2(a) shows the experimentally measured tuning voltage time traces when
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Figure 5.2: Experimental observed deterministic Brownian motion in
microwave time-delayed feedback loop at feedback gain R = 6.2. (a).
The fluctuation of tuning voltage time series about the initial offset level
showing the dynamics behavior akin to the Brownian motion. (b) The
probability distribution function of the displacement ∆v. (c) Hurst expo-
nent estimation from sliding the time window and calculate the average
of absolute value of the displacement. The result shows that the tuning
voltage dynamics is a regular Brownian motion with H = 0.50
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the feedback gain R is set to approximately 6.2. The dynamics of the tuning signal

resemble that of a Brownian particle, showing irregular trajectories irrespective of

initial conditions. To quantify the Brownian nature, we examine the statistical

properties of the time trace by calculating the statistical distribution function of the

displacement ∆v = v(t)−v(0) as a function of the time interval t. The displacement

∆v is computed by sampling the voltage at discrete times ti, and computing ∆vi =

vi − vi−1, where vi is the value of the tuning signal at time ti Fig. 5.2(b) shows the

distribution function of ∆v along with the best fit normal (Gaussian) distribution

function.

To examine further the nature of the fluctuation in tuning voltage signal, we

calculate the Hurst exponents for the system [25,28]. The Hurst exponent measures

the smoothness of the time series with the value range from 0 to 1 with the higher

values leading to a smoother motion. Hurst exponents also quantify the correlation

between points in a time trace. If one consider pairs of points on a trace of a

Brownian motion, separated by sample time Ts, the mean, absolute separation in

v(t) between points, i.e., 〈|∆v|〉 = 〈|v(t + Ts)− v(t)|〉, is grows as a function of the

time of separation:

〈|∆v|〉 ∼ THs (5.1)

as H is Hurst exponent. The process of estimating H is adopted from [25, 91],

and could be described as following. With the chosen time window of length Ts,

we obtain the absolute value of the displacement ∆v(t) by sliding the time window

from the beginning to the end of the time series. We then calculate the time average
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value of the displacement 〈|∆v|〉. We next change the time windows length Ts and

again compute the corresponding value of 〈|∆v|〉. Finally, we plot log(〈|∆v|〉) versus

log(Ts); if the plot appears as a straight line then the slope of the fit line is the Hurst

exponent H of the time trace.

Fig. 5.2(c) illustrates the process of calculating the Hurst exponents for an

experimental time series at the value of feedback gain R = 6.2. The Hurst exponent

estimation data points, along with the fitted straight line are shown. We find that

the tuning signal of the YIG oscillator in a microwave time-delayed feedback loop

displays regular Brownian motion with a Hurst exponent H = 0.50.

The dependence of the system Hurst exponent H on the feedback gain R is

presented in Fig. 5.3. The experimental estimated H are shown with error bars,
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along with the simulation results. In experiment, for each value of feedback gain

we record a data set by resetting the feedback loop to ensure that the output does

not saturate. The plot shows that the system displays fractional Brownian motion

whose Hurst exponent varies with the gain, taking values between 0.45 and 0.65. The

system does not have a sudden transition in dynamics as the feedback gain is varied

from 5 to 10. When the feedback gain R is below 6.2, the Hurst exponents have

values less than 0.5. In this regime, the tuning voltage displays random dynamics,

but the correlation between the data points is negative as the trace has a tendency

to turn back upon itself. This behavior is termed anti-persistent Brownian motion.

The Hurst exponent increases with the feedback gain. With the feedback range from

6.1 to 6.7, the system exhibits regular Brownian motion. When 6.7 ≤ R ≤ 9.4, the

Hurst exponents H are greater than 0.5, implying the system tuning voltage displays

the persistent Brownian motion in which the tuning voltage traces become smoother

and the increment between values at different times are positively correlated. When

R ≥ 7.5, H value decreases from 0.65 to less than 0.5 at R = 10.

5.3 Synchronization of Deterministic Brownian Motions

The time traces shown in section 5.2 are similar to the observed Brownian

motion of small particles, therefore, provide an alternative way to understand the

erratic phenomenon whose the physical descriptions are hard to establish. The con-

cept of deterministic Brownian motion is also useful in modeling physical, biological

behaviors that have stochastic aspects. We discuss here briefly the possibility of two
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deterministic Brownian motions could proceed synchronously using the numerical

model of the system.

We consider here two coupled feedback loops, as shown in Fig. 5.4 in which the

systems are unidirectional coupled in a baseband, after the double- balanced mixer.

Part of the mixer output from the master system is sent to the combiner to drive

the slave system. In mathematical model of the coupled systems, we ignore the time

delay in coupling path, and the coupling strength κ is normalized to be a dimen-

sionless factor. We simulate the system starting from two uncoupled loops. After

the master and slave systems have each reached the statistically stable regime (i.e.,

after the transient caused by random initial conditions has decayed) the coupling is

turned on.

Before the coupling is turned on, each of the systems is governed by the same

system equation of the time-delayed feedback in (3.12). After the coupling is taken

place, the master system is modelled by the following equation:

ẋm(t) = −R sin
[
xm(t− 1)

]
(5.2)

While the equation for the slave system is:

ẋs(t) = −R
[
(1− κ) sin

[
xs(t− 1)

]
+ κ sin

[
xm(t− 1)

]]
(5.3)

where κ is coupling strength. The factor (1 − κ) in front of the slave system term

ensures the existence of a synchronous solution, but doesn’t guarantee that the

synchronous state is stable.

The results of the coupled systems are obtained after waiting for the two

systems to reach a stable behaviors. Fig. 5.5 display the evolution of x(t) the before
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and after the coupling strength is turned on at the feedback gainR = 6.2. The

simulation results are shown with two different coupling strength, κ = 0.5 and

κ = 0.75. When κ = 0.5, as illustrated in Fig. 5.5(a), after the coupling turned on,

two systems start to walk away from each other indicating there is no synchronization

nor correlation between them. When κ = 0.75, we find that two Brownian motions

start to walk parallel to each other not too long after the coupling is on. The offset

between them is multiple integer number of 2π. This implies the master system

drives the slave system to behave similarly even though their dynamics happens at

two different cycles of nonlinearity.

To quantify the synchronization, we calculate the synchronization error as

σ =

√√√√(〈(xm−2π(t)− xs−2π(t))2〉
〈x2m−2π(t) + x2s−2π(t)〉

)
, (5.4)

where xm−2π(t) = xm(t) mod 2π and xs−2π(t) = xs(t) mod 2π. With this definition,

σ = 0 when two deterministic Brownian motions exhibit the same dynamical behav-

ior with an offset value of an integer multiple of 2π. The synchronization error as a

function of coupling strength when the feedback gain R = 6.2 are plotted in Fig. 5.6.

σ = 0 when the coupling strength is in the range from 0.75 to 0.8. With the cou-

pling strength less than 0.75 or greater than 0.8, two systems are unsynchronized.

It is also observed on the plot that the range of the synchronization dependent on

the feedback gain R. Generally speaking, higher feedback gain leads to the more

complex and random solutions, resulting in a smaller synchronization range.

We next investigate the stability of the synchronization solutions. While the

stability of the synchronized solution of this system could be analyzed using the
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master stability function formalism [94], this system does not have any complex

network structure and a simpler linearization technique can be employed. When

system is linearized about the synchronization solution by a small perturbation

δx as xm = xs + δx, the goal is to check whether this perturbation vector dies

out (unstable synchronized solution) or grows exponentially (unstable synchronized

solution). The linearized equation for δx is found to be:

δ̇x(t) = −R(1− κ) cos
[
xm(t− 1)

]
δx(t− 1) (5.5)

(5.5) is similar to the equation used to calculate the maximal Lyapunov exponents

of the microwave time-delayed feedback loop. The solution of δv is obtained with

a known state of xm. Fig. 5.7 is the evolution of the synchronization perturbation

vector δv when the feedback gain R = 6.2 and the coupling strength κ = 0.75. The
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solution converges to zero after the transient time; the synchronization thus is stable

The experimental verification of the numerical works presented here can start

by building two identical microwave time-delayed feedback loops. With the hybrid

analog-digital setup of the loop, one can think of implementing the coupling function

on the FPGA to have the flexibility of changing the coupling strength. The possible

challenges of setting up coupled microwave time-delayed feedback loop come from

matching two double-balanced mixers to have the same nonlinear properties.

The results presented in this section could be viewed as a starting point for

a deeper exploration of the research on deterministic stochastic processes in time-

delayed feedback loops. The concept of synchronization between random walks is

interesting and applicable to various fields in science, technology and economics.

There are a lot of works done about chaos synchronization [86, 95] which can be

repeated to the synchronization between two or more deterministic Brownian mo-

tions.
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Chapter 6: Conclusion

Nonlinear science has remained one of the most challenging and interesting

fields of dynamics. The discovery of chaos had led to general interest of generat-

ing and utilizing chaotic signals for numerous applications, and has broadened our

understanding of how complex dynamical systems work. The main subject of this

thesis is a chaos generator in microwave frequency regime utilizing a time-delayed

feedback loop architecture. The system is studied thoroughly using experimental

measurements and numerical modelling to explore the dynamics behaviors inside

and outside the bounded regime.

In chapter 2, we discussed in detail the main components that make up the

microwave time-delayed feedback loop, presenting each component with its electrical

properties and a mathematical description of its behavior. The experimental setup of

the loop was also described, in which a time-delayed feedback loop was formed using

a homodyne phase discriminator along with a delay and a voltage integrator on a

field programmable gate array (FPGA) board. The homodyne phase discriminator is

composed of commercially available microwave devices including a voltage controlled

oscillator (VCO), 3 dB power splitter, semirigid microwave cable and a double-

balanced mixer. The system is assembled on a microwave printed circuit board in
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which connections between the devices are transmission lines designed to have a 50Ω

impedance. The system produces a sinusoidal nonlinear function which serves as a

nonlinearity of the time-delayed feedback loop. The delay and integrator functions

are digitally programmed using a FPGA board. While we create the delayed function

using a shift register, the summing accumulator is embedded on the FPGA processor

to obtain the integral relationship. The microwave time-delayed feedback loop is

thus a hybrid analog-digital system which provides flexibility in changing the system

parameters.

We developed a mathematical model of the time-delayed feedback loop in

chapter 3. The signal path was analyzed to obtain the system equation, which

constitutes one of the simplest examples of a nonlinear time-delayed differential

equation. We discussed analytical and numerical methods to solve this problem. The

first Hopf bifurcation point is obtained by linearizing the system equation about its

stationary solution. We also presented the method to quantify chaos by numerically

calculating maximal Lyapunov exponent and Kaplan- Yorke (K-Y) dimensionality.

In chapter 4, the dynamics of the system in a bounded regime is discussed,

and the experimental measurements are compared with numerical simulations. The

system shows different dynamical behaviors ranging from a stable fixed point to a

periodic to chaos depending on the value of the dimensionless feedback gain. The

calculated maximal Lyapunov exponent and K-Y dimensionality show that chaotic

behavior is present in the loop, when the feedback gain is sufficiently large. The

route to chaos as frequency doubling is demonstrated using bifurcation diagrams.

We also analyses the spectral properties of the signal, and confirm that it has a broad
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spectrum which is demanded by many of the proposed technological applications

of chaos. By reprogramming the sinusoidal nonlinearity with a simple threshold-

based nonlinearity, we realized a Boolean dynamical system that shows a range of

periodicities and fractal characteristics, depending on the feedback strength or time

delay.

Chapter 5 was devoted to a discussion of deterministic Brownian motion in the

microwave time-delayed feedback loop. We simulate the mathematical model and

operate the experimental system in a higher gain regime to show the possibility of

a deterministic Brownian motion. We use the distribution of displacements and the

Hurst exponent to quantitatively study the deterministic Brownian motion. The nu-

merically computed and experimentally estimated Hurst exponent values when the

feedback strength is varied show that the system can exhibit the fractional Brownian

motion, both anti-persistence and persistence behaviors. We consider the possibility

of synchronization between two Brownian motions by simulating two feedback loops

coupled unidirectional in the baseband. The results indicate that two deterministic

Brownian systems can be synchronized such that they maintain the same fluctuation

behavior, but with different offset levels. The allowable offset is constrained to be

an integer number of 2π implying two systems are exhibiting identical deterministic

Brownian motion at different cycles of sinusoidal nonlinearity. The synchronization

range depends on the feedback gain as the higher feedback gain requires stronger

coupling strength. We also prove the stability of the synchronization by numerically

calculating the synchronization perturbation vector to show its convergence to zero.
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6.1 Discussion: Application of Microwave Frequency-modulated Chaotic

Signals

The microwave chaotic system presented here is well modeled using nonlinear

delay differential equation and shows by excellent agreement between simulation and

experiment, as described in chapter 4. The work described here could be explored

for any time-delayed feedback loop with any filter function and nonlinearity which

is associated to sinusoidal function. As we mentioned in chapter 4, due to the

simplicity of the integral function, the system exhibits a narrower chaotic window

compared with other time-delayed feedback loops that involve, for example, band-

pass of low-pass filters [96].

With the VCO acting like a frequency modulator in the loop, the system can

generate the microwave frequency modulated (FM) chaotic signal where the tuning

voltage is deterministic and aperiodic. Unlike amplitude chaos signals, this chaotic

frequency- fluctuated signals could offer many advantages over the continuous wave

in communication applications, such as less susceptibility to noise or jamming, less

power consumption at higher frequency, and greater signal-to-noise performance .

The chaotic FM signal also potentially find applications in ranging and radar sys-

tems, which could benefit from the broadband noise-like nature of the signal. The

aperiodicity of a chaotic FM signal can provide lower probability of detection or in-

terception and reduces the susceptibility to interference from/with other microwave

channels. We describe here the idea of chaotic radar utilizing the microwave FM
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chaotic signal as a transmitted signal. This FM chaotic signal was generated from

a microwave time delayed feedback loop whose filter function is one-pole low-pass

filter [96].

To consider the effectiveness of this chaotic FM signal in target detection, we

compute the ambiguity function of the microwave chaotic signal:

χ(τ, f) =

+∞∫
−∞

s(t)s∗(t− τ)e−i2πfτdt (6.1)

where s(t) is the frequency-modulated microwave signal,

s(t) = exp

(
i2πγ

∫
vtune(t)dt

)
(6.2)

and γ is the tuning coefficient of the VCO (typically given in MHz/V).

The ambiguity function is a two-dimensional function of τ and f ,which repre-

sent how well one can resolve time-delay and Doppler shift of the reflected signal,

respectively. The ambiguity function thus provides information about how well a

matched receiver can unambiguously measure the range (τ) and velocity (f) of a

signal [97]

Fig. 6.1 shows a contour plot of the magnitude |χ(τ, f)|, illustrating the ad-

vantages of using a chaotic FM signal in range and velocity sensing. Fig. 6.1(a) was

obtained by using a continuous-wave microwave signal (i.e., vtune = constant), for

which the range cannot be unambiguously determined, as expected. Fig. 6.1(b) was

obtained using a periodic vtune, in which case the Doppler shift (f) can be more accu-

rately estimated, and the position can also be determined. Because the modulation

is periodic (with a period of approximately 4 µs), the range can only be determined

up to an additive integral multiple of 4 µs. Fig. 6.1(c) was obtained using a larger
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Figure 6.1: The calculated ambiguity functions of the continuous wave-
form (a), a periodic FM signal (b) and a chaotic FM signal (c). The
function is calculated using Fourier transform with center frequency f0
on complex signals as velocity and the range of the target are varied.

feedback strength, for which the modulation is chaotic. In this case, the system is

predicted to yield more precise and unambiguous measurement of both range and

velocity.

6.2 Proposed Future Research

6.2.1 Frequency Locking (Phase Synchronization) in FM Chaotic

Signals

A surprising aspect of chaos is that despite the aperiodic nature and sensi-

tive dependence on initial conditions characteristics, two chaotic systems can be

synchronized, when they are appropriately coupled [98]. Synchronization of chaos

is an interesting phenomena with great applications in many fields of science and

92



technology. The study of synchronization leads to a better understanding of collec-

tive behaviors in nature, such as the motion of school fish or the flashing in uni-

son of fireflies. Chaotic synchronization is widely used in secure communications,

weather prediction, parameter estimation and sensing networks. The microwave

time-delayed feedback loop here could be viewed as a chaotic generator provid-

ing different type of chaotic signals: amplitude chaos in baseband frequency and

frequency-modulated chaos in microwave frequency. The two feedback loops could

be coupled in baseband or microwave bandwidths promising two possible types of

chaos synchronization: the envelope synchronization between two tuning signals and

phase synchronization (phase locking) between two microwave chaotic FM signals

(in which two signals are also locked in phase). Fig. 6.2 demonstrates the coupling

scheme in the microwave frequency of two microwave time-delayed feedback loops.

The information from microwave signals coming out of the VCOs is shared between

two systems.

While most of the past research has dealt with the baseband amplitude chaos

synchronization, the study of phase looking between two phase chaotic signals de-

serves additional study. The phase locking phenomenon of FM chaotic signals could

offer advantages in radio, telecommunications, GPS, satellite communication and

radar applications due to the complex, aperiodic and high frequency features. It

also could be used to demodulate a noisy signal from communication channels or

distribute precisely timed clock pulses in digital logic circuits. As a chaotic FM sig-

nal generator, the microwave time-delayed feedback loop is useful for experimental

and theoretical research on the interesting phase locking behavior.
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Figure 6.2: The coupling scheme of between two microwave time-delayed
feedback loops in microwave bandwidth. The information from the mi-
crowave signals coming out of the VCOs is shared between two systems.

6.2.2 Network of Periodic Oscillators

We also discussed the time-delayed feedback loop when it was incorporated

with binary nonlinear function. The good agreement between simulation and ex-

periment suggest the application of the system in studying networks of periodic

oscillators. Implementing a large network in practice is challenging because one

has to maintain the coupling between nodes while keeping each node’s features un-

changed. The FPGA in the microwave time-delayed feedback loop could be used to

program the coupling function and frequency of periodic oscillator (by changing the

time delay). The hybrid setup of the microwave time-delayed feedback system allows

individuals to change the topology of the network and properties of each oscillator
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in an easy, convenient way. Furthermore, one can think of using a digital microwave

devices to create homodyne phase discriminator on a FPGA board to form a com-

pact dynamical system. The setup offer a promising experimental system for a high

demand research area in complex networks.

6.2.3 The Feedback Loop with Multiple Time Delay

Incorporating the FPGA board in the system also makes it easy to change

the feedback delay. There have been many of theoretical papers that consider the

effect of time delay in dynamical systems [99–105]. The experimental research can

take place by using the system demonstrated in this thesis with modified time delay

function. By programming the FPGA, one not only can change the amount of

delay time but also implementing multiple delay functions, with different statistical

distributions, in the loop. The large memory of a FPGA allows those modifications

done in a great range of values.
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tors – part ii: Practical realization. IEEE Trans. Circuits Syst. I, 48(3):382–
385, 2001.

[19] A. Uchida, K. Amano, M.i Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada,
T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis. Fast
physical random bit generation with chaotic semiconductor lasers. Nature
Photon., 2:728–732, 2008.

[20] K. Myneni, T. A. Barr, B. R. Reed, S. D. Pethel, and N. J. Corron. High-
precision ranging using chaotic laser pulse train. Appl. Phys. Lett., 74:1496–
1498, 2001.

[21] B.C. Flores, E.A. Solis, and G. Thomas. Assessment of chaos-based fm signals
for range-doppler imaging. IEE Proc. Radar Sonar Navig., 150(4):313–322,
2003.

[22] F. Lin and J-M. Liu. Chaotic radar using nonlinear laser dynamics. IEEE J.
Quantum Electron., 40(6):815–820, 2004.

[23] T. L. Carroll. Chaotic system for self-synchronizing doppler measurement.
Chaos, 15:013109, 2005.

[24] M. C. Mackey and L. Glass. Oscillation and chaos in physiological control
systems. Science, 197(4300):287–289, 1977.

[25] P.S. Addison. Fractals and Chaos: An illustrated course. IOP Publishing Ltd,
first edition, 1997.

97



[26] E. Ott. Chaos in Dynamical Systems. Cambridge University Press, Cambridge,
U. K., second edition, 2002.

[27] T. Erneux. Applied Delay Differential Equations. Springer, first edition, 2009.

[28] J. C. Sprott. Chaos and Time-series Analysis. Oxford University Press, first
edition, 2003.

[29] S. Thompson. Delay differential equations. Scholarpedia, 2(3):2367, 2007.

[30] E. Ggrigorieva, H. Haken, A. A. Kashchenko, and A. Pelster. Travelling wave
dynamics in a nonlinear interferometer with spatial field transformer in feed-
back. Physica D, 125:123, 1999.

[31] S. E. Kingsland. Modeling Nature: Episodes in the History of Population
Ecology. University of Chicago Press, 1985.

[32] W. S. C Gurney, S. P. Blythe, and R. M. Nisbet. Nicholson’s blowflies revisited.
Nature, 287:17–21, 1980.

[33] K. Ikeda, H. Daido, and O. Akimoto. Optical turbulence: Chaotic behavior
of transmitted light frin a ring cavity. Phys. Rev. Lett, 45:709–712, 1980.

[34] L. Larger, J. P. Goedgebuer, and J. M. Merolla. Chaotic oscillator in wave-
length: A new setup for inverstigating differential difference equations describ-
ing nonlinear dynamics. IEEE J. Quant. Electron., 34:594–601, 1998.

[35] P. Mandel. Theoretical Problems in Cavity Nonlinear Optics. Cambridge
UniversityPress, 1997.

[36] E. Villermaux. Pulsed dynamics of foutains. Nature, 371:24–25, 1994.

[37] E. Villermaux. Memory-induced low frequency oscillations in closed convection
boxes. Phys. Rev. Lett, 75:4618–4621, 1995.

[38] R. J. Henry, Z. N. Masoud, A. H. Nayfeh, and D.T. Mook. Cargo pendulation
reduction on ship-mouted crabes via boom-lu angle actuation. J. Vibration
Control, 7:1253–1264, 2001.

[39] Z. N. Masoud, A. H. Neyfeh, and A. Al-Mousa. Delayed position feedback con-
troller for the reduction of payload pendulations of rotary cranes. J. Vibration
Control, 9:257–277, 2003.

[40] Z. N. Masoud, A. H. Neyfeh, and N. A. Neyfeh. Sway reduction on quay-
side container cranes using delayed feedback controller. J. Vibration Control,
35:1103–1122, 2005.

[41] M. Szydlowski and A. Krawiec. Scientific cycle model with delay. Scientomet-
rics, 52:83–95, 2001.

98



[42] M. Kalecki. A macrodynamic theory of business cycle. Econometrica, 3:327–
344, 1935.

[43] A. B. Cohen, B. Ravoori, T. E. Murphy, and R. Roy. Using synchronization for
prediction of high-dimensional chaotic dynamics. Phys. Rev. Lett., 101:154102,
2008.

[44] J. N. Blakely, L. Illing, and D. J. Gauthier. High-speed chaos in an optical
feedback system with flexible timescales. IEEE J. Quantum Electron, 40:299–
305, 2004.

[45] L. Illing and D. J. Gauthier. Hopf bifurcation in time-delay systems with
band-limited feedback. Physica D, 210:180–202, 2005.

[46] J. C. Maxwell. A Treatise on Electricity and Magnetism. Dover, N. Y, 1954.

[47] A. A. Oliner. Historical perspectives on microwave field theory. IEEE Trans.
Microwave Theory and Techniques, MTT-32:1022–1045, 1984.

[48] D. M. Pozar. Microwave Engineering. John Wiley & Sons, second edition,
1998.

[49] S. V. Marshall and G. G. Skitek. Electromagnetic Concepts and Applications.
Prentice- Hall, third edition, 1990.

[50] C. A. Balanis. Advanced Engineering Electromagnetics. John Wiley & Sons,
1989.

[51] S. R. Theodore. Wireless Communications: Principles and Practice. Prentice-
Hall, second edition, 2002.

[52] A. Einstein. Investigations of the Theory of Brownian Movement. Dove, 1956.

[53] N. Wiener. Differential space. Journal of Mathematical Physics, 2:131–174,
1923.

[54] G. H. Wannier. Statistical Physics. Wiley, New York, first edition, 1966.

[55] C. Beck. Higher correlation functions of chaotic dynamical system - a graph
theoretical approach. Nonlinearity, 4:1131, 1991.

[56] R. Klages and N. Korabel. Understanding deterministic diffusion by correlated
random walks. J. Phys. A, 35:4823, 2002.

[57] G. Trefán, P. Grigolini, and B. J. West. Deterministic brownian motion. Phys.
Rev. A, 45:1249–1252, 1992.

[58] P. Gaspard, M. E. Briggs, M. K. Francis, J. V. Sengers, R. W. Gammon, J. R.
Dorfman, and R. V. Calabrese. Experimental evidence for microscopic chaos.
Nature, 394:865–868, 1998.

99



[59] M. Romero-Bastida and E. Braun. Microscopic chaos from brownian motion
in a one-dimensional anharmonic oscillator chain. Phys. Rev. E, 65:036228,
2002.

[60] M. Romero-Bastida, D. Casta neda, and E. Braun. Macroscopic evidence of
microscopic dynamics in the fermi-pasta-ulam oscillator chain from nonlinear
time-series analysis. Phys. Rev. E, 71:046207, 2005.

[61] L.Y. Chew and C. Ting. Microscopic chaos and gaussian diffusion processes.
Physica A: Statistical Mechanics and its Applications, 307(34):275 – 296, 2002.

[62] M. C. Mackey and M. T-Kamiska. Deterministic brownian motion: The effects
of perturbing a dynamical system by a chaotic semi-dynamical system. Physics
Reports, 422(5):167 – 222, 2006.

[63] J. Lei and M. C. Mackey. Deterministic brownian motion generated from
differential delay equations. Phys. Rev. E, 84(14):041105, 2011.

[64] K. Ikeda and K. Matsumoto. High-dimensional chaotic behaviors in systems
with time-delayed feedback. Physica D, 29:223–235, 1987.

[65] L. Illing and D. J. Gauthier. Ultra-high-frequency chaos in a time-delay elec-
tronic device with band-limited feedback. Chaos, 16:033119, 2006.

[66] Y. C. Kouomou, P. Colet, L. Larger, and N. Gastaud. Chaotic breathers in
delayed electro-optical systems. Phys. Rev. Lett., 95:203903, 2005.

[67] Mini-Circuits, Inc. Surface Mount Voltage Controlled Oscillator SOS-3065-
119+, rev. or m122533 edr-8384/1 f1 edition.

[68] R. E. Collin. Foudations for Microwave Engineering. Wiley- Interscience,
second edition, 2000.

[69] Marki Microwave, Inc. Mixer Basic Primer, first edition, 2010.

[70] Mini-Circuits, Inc. Understanding Mixers- Terms Defined and Measuring Per-
formance, an-00-009 rev.: or m117160 edition, June.

[71] Mini-Circuits, Inc. Ceramic Frequency Mixer Wide Band MCA1-80LH+, rev.
bm102713 ed-11119 edition.

[72] B. C. Wadell. Transmission Line Design Handbook. Artech Print, 1991.

[73] National Semiconductor. ADC8200 8-Bit, 20 Msps to 200 Msps, Low Power
A/D Converter with Internal Sample-and-Hold, 200179 edition, February.

[74] Texas Instruments. 10-Bit, 165 Msps Digital-to-Analog Converter, sbas093b
edition, May.

[75] KNJN LLC. KNJN FX2 FPGA Development Boards, r92 edition, November.

100



[76] R. E. Simpson. Introductory Electronics for Scientists and Engnieers. Allyn
and Bacon, second edition, 1987.

[77] J. C. Sprott. A simple chaotic delay differential equation. Phys. Lett. A,
366:397–402, 2007.

[78] M. Schanz and A. Pelster. Analytical and numerical investigations of the
phase-locked loop with time delay. Phys. Rev. E, 67:056205, 2003.

[79] H. Dao, J. C. Rodgers, and T. E. Murphy. Chaotic dynamics of a frequency-
modulated microwave oscillator with time-delayed feedback. Chaos, 23:013101,
2013.

[80] L. F. Shampine and S. Thompson. Solving delay differential equation with
dde23. Tutorial, 2000.

[81] C. Marriott and C. Delisle. Effects of discontinuities in the behavior of a delay
differential equation. Physica D, 36:198–206, 1989.

[82] C. T. H. Baker, C.A.H.Paul, and D.R. Willé. A bibliography on the numerical
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