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A “chimera state” is a dynamical pattern that occurs in a network of coupled identical oscillators

when the symmetry of the oscillator population is broken into synchronous and asynchronous parts.

We report the experimental observation of chimera and cluster states in a network of four globally

coupled chaotic opto-electronic oscillators. This is the minimal network that can support chimera

states, and our study provides new insight into the fundamental mechanisms underlying their for-

mation. We use a unified approach to determine the stability of all the observed partially synchro-

nous patterns, highlighting the close relationship between chimera and cluster states as belonging

to the broader phenomenon of partial synchronization. Our approach is general in terms of network

size and connectivity. We also find that chimera states often appear in regions of multistability

between global, cluster, and desynchronized states. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4953662]

We provide experimental evidence of chimera and cluster

synchronous states in a globally coupled network of four

opto-electronic oscillators. Since this is the minimal net-

work in which a chimera state can occur, our apparatus

provides the ability to experimentally test some of the

fundamental properties of chimera states. Cluster syn-

chronization has thus far been studied independently of

chimera states; however, here we present a unified

approach that exploits the symmetries in the network to

determine the stability of chimeras and clusters. We

obtain two important results: (a) we provide a first exper-

imental demonstration that chimeras can appear in small

networks, contrary to the conventional assumption that a

large network with non-local coupling is necessary,
1 and

(b) we show that both cluster states and chimera states

can be regarded as special cases of the more general phe-

nomenon of partial synchronization. The methods apply

to networks of different size and topology, opening up

potential applications to chimeras and other partial syn-

chrony patterns in real world networks such as power

grids.

I. INTRODUCTION

Since their original discovery,2,3 there has been a great

deal of discussion about the definition of chimera states and

the conditions for their existence. It was originally thought

that chimeras could exist only in large networks of non-

locally coupled oscillators and only from special initial

conditions.1 These assumptions were reflected in the decade-

long gap between their theoretical discovery2 and the first

experimental realization of chimeras in a spatial light

modulator feedback system4 and a chemical oscillator sys-

tem.5 However, recent studies have shown that chimeras can

actually appear in a much wider variety of networks: chime-

ras have now been observed experimentally in a mechanical

system of metronomes,6 optical frequency combs,7 electro-

chemical systems,8 star networks of Lorenz oscillators,9 and

electronic and opto-electronic delay systems.10–12 This sug-

gests that chimeras may exist more widely than at first

expected. Indeed, recent work has found chimeras in small

networks,9,13 from random initial conditions,14,15 and for

global coupling.14,16–18 Additionally, chimera-like states

with one large cluster and many small ones have long been

observed in numerical simulations from random initial con-

ditions19 and for global coupling.20 These are well beyond

the conditions initially assumed necessary for the existence

of chimera states.

While chimeras can exist in many different systems, one

common characteristic seems to be that chimeras often appear

in regions of multistability with other synchronous pat-

terns.5,6,12,20,21 Recently, B€ohm et al. proposed a network of

four globally coupled lasers in which chimera states can emerge

from random initial conditions and have linked the emergence

of chimeras to a multistable region of parameter space.22

Chimeras are a special type of partially synchronous

state. The study of cluster synchrony, another type of par-

tially synchronous state, has developed independently of chi-

meras; however, recent work has begun to link the existence

of chimeras in globally coupled networks to clusters.17,18

One major development in the study of cluster synchrony

has been the ability to determine the clusters that are allowed

to form from the symmetries in the network topology and to

exploit those symmetries to derive the variational equations
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for stability calculations.23,24 An extension of this theory

has recently been used to explain phase-lag synchroniza-

tion in networks of chemical oscillators;25 however, as far

as we are aware, this powerful new method has not yet

been applied to study the existence or stability of chimera

states.

In this paper, we report the experimental observation of

chimera and other partially synchronous states in a minimal

network of four identical, globally coupled opto-electronic

oscillators with time-delayed feedback and coupling. We

show that these states emerge from partial (or subgroup)

symmetries in the network topology, and we calculate their

linear stability using methods23,24 recently developed for the

study of cluster synchronization, highlighting that chimera

and cluster states are closely related patterns of partial syn-

chrony. We conclude with a discussion of the importance of

multistability of partially synchronous states for the exis-

tence of chimera states.

II. PARTIAL SYNCHRONIZATION
IN AN OPTO-ELECTRONIC NETWORK

A. Experimental apparatus

The experiment consists of a network of four globally

coupled identical, opto-electronic, time-delayed feedback

loops, whose individual and coupled dynamics have been

studied previously.26–31 A layout of the network and a sche-

matic of a single node are shown in Fig. 1. As shown in Fig.

1(b), each node consists of a fiber-coupled laser diode whose

light passes through a Mach-Zehnder modulator (MZM)

with Vp¼ 3.4 V and is converted to an electrical signal by a

photoreceiver. This electrical signal is delayed and filtered

by a digital signal processing (DSP) board (Texas

Instruments TMS320C6713) before being amplified and fed

back to drive the MZM. The normalized voltage xðtÞ � pviðtÞ
2Vp

applied to the MZM is measured and used as our dynamical

variable. The digital filter is a two-pole Butterworth band-

pass filter with cutoff frequencies xH/2p¼ 100 Hz and

xL/2p¼ 2.5 kHz and a sampling rate of 24 kSamples/s.

The incoming coupling signals are optically combined

and converted into a second electrical signal by a second

photodiode. The DSP board receives this electrical signal,

implements the filtering and coupling delay sc (which is in

general different from the feedback delay sf), and couples

this second electrical signal with the first (feedback)

signal.

The equations governing the dynamics of the network of

opto-electronic oscillators are derived in Ref. 26 and are

given by

_uiðtÞ ¼ EuiðtÞ � Fb cos2ðxiðtÞ þ /0Þ; (1)

xi tð Þ ¼ G ui t� sfð Þ þ
e

nin

X
j

Aij uj t� scð Þ � ui t� sfð Þ
� � !

;

(2)
where

E ¼ �ðxL þ xHÞ �xL

xH 0

� �
;F ¼ xL

0

� �
; and G ¼ ½ 1 0 �:

Here, ui is a 2� 1 vector describing the state of the digital

filter at node i, and xi(t) is the observed variable, the normal-

ized voltage of the electrical input to the Mach-Zehnder

modulator. The nodes are coupled by the adjacency matrix

A¼Aij; for the case of identical global coupling considered

here, Aij¼ 0 for i¼ j and Aij¼ 1 otherwise. Thus for our four

node network, the number of incoming links nin¼ 3 for all

nodes. We emphasize that the coupling is not Laplacian in

general, and only becomes Laplacian in the limit sc¼ sf. In

this work, we fix the round-trip gain b¼ 3.8 and the feed-

back time delay sf¼ 1.4 ms and vary the global coupling

strength e and coupling time delay sc. We choose the phase

bias /0 ¼ p=4 so that for our value of b the MZM nonli-

nearity becomes important and an uncoupled oscillator

behaves chaotically. E, F, and G are matrices that describe

the filter.

For each trial of the experiment, the nodes are initialized

from noise by recording the random electrical signal into the

digital signal processing (DSP) board for 50 ms. Then feed-

back is turned on without coupling for 500 ms in order for

transients to die out. At the end of this period, the coupling is

turned on for 1450 ms. We use the last 400 ms of recording

to determine which synchronous state is exhibited by the

network.

FIG. 1. (a) Sketch of our globally coupled network. Each node has a self-

feedback with feedback time delay sf (red) and is coupled to every other

node with coupling time delay sc. (b) Experimental schematic of a single

node, showing the coupling to the other nodes. Optical connections are

shown in red, electronic in black.
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B. Observation of partial synchronization

We name each synchronous state (or “pattern”) by the

number of nodes in each cluster. By “clusters,” we mean

groups of synchronized nodes. Thus for a network of four

nodes, the five possible states of synchrony are (Fig. 2): (a)

the globally synchronized state, (b) the doublet-doublet state,

(c) the triplet-singlet state, (d) the doublet-singlet-singlet

(DSS) state, and the desynchronized state (not shown). We

refer to doublet-doublet and triplet-singlet as “cluster states,”

and DSS as a “chimera state.”

We observe all possible synchronous states in the

experiment, as shown in Figs. 2(a)–2(d), including a chimera

state that persists for many delay times and appears to be sta-

ble. For realizations from different initial conditions, nodes

appear in different clusters, confirming that the partially syn-

chronous patterns are not a result of parameter mismatch

between the oscillators. As far as we are aware, this is the

first time a chimera state has been experimentally observed

in such a small network. In fact, this is the minimal network

of globally coupled oscillators that can support a chimera

state.13,22

III. SYNCHRONIZATION PATTERNS AND NETWORK
SYMMETRIES

Recent studies have shown that symmetries in a net-

work’s topology determine the patterns of synchronization

that the network can display.23,24 We briefly review the

main results. The symmetries of the adjacency matrix form

a mathematical group. The nodes which are permuted

among one another by these symmetries (i.e., the orbits of

the group) make up the full symmetry clusters. The orbits

of the subgroups of the symmetry group give the partial

(subgroup) symmetry clusters that can emerge via symme-

try-breaking.

We now show that these techniques can be applied to chi-

meras in globally coupled networks of identical oscillators.

For a globally coupled network of N nodes, the nodes are

indistinguishable, so the group of permutation symmetries of

the adjacency matrix is the symmetric group SN (the group of

all the permutations that can be performed on N nodes). Since

any node can be permuted with any other node, the orbit of

the symmetric group is all of the nodes, and the maximal sym-

metry case is global synchrony. To understand the allowed

partial symmetry cases, the subgroups of the symmetry group

must be considered. The orbits of the subgroups of SN are

such that any partition of the N oscillators is allowed to exist.

In particular, a chimera state (that is, a state of one large

synchronized cluster of Ns oscillators and N – Ns singlet

“clusters”) is permitted by the equations of motion. Whether

these chimera states are possible to observe is determined by

the linear stability analysis.

A. Stability analysis

To calculate the stability of the allowed synchronization

patterns, we use group theoretical techniques recently devel-

oped for the analysis of cluster synchronization.23,24 The

technique transforms the adjacency matrix to a block diagon-

alized form through a coordinate transformation that

preserves the structure of the partially synchronous state.

The advantage of this technique is that the transformation

matrix T also transforms the variational equations, decou-

pling the motion along the synchronization manifold from

the directions transverse to it. As a result, the stability of the

FIG. 2. Experimentally observed synchronous states. Illustration and typical

experimental time series of all synchronous states for a globally coupled net-

work of four nodes: (a) global synchrony, (b) doublet-doublet synchrony, (c)

triplet-singlet synchrony, and (d) doublet-singlet-singlet synchrony (chi-

mera). Nodes of the same color are part of the same cluster. This global state

was observed with e ¼ 0:40 and sc¼ 1.8 ms, the doublet-doublet and triplet-

singlet states with e ¼ 0:45 and and sc¼ 1.8 ms, and the chimera state with

e ¼ 0:40 and sc¼ 2.3 ms. Numerical simulation of Equations (1) and (2)

gives similar time series.
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partially synchronous state can be calculated by considering

only the (lower dimensional) equations for the transverse

directions. We refer to the original coordinate system as the

node coordinates and the transformed coordinate system as

the irreducible representation (IRR) coordinates.

As an example, we describe the steps for calculating

the stability of (DSS) chimera states. The stability for the

other partially synchronous states was determined in a simi-

lar manner.

It is straightforward to determine the equations of

motion of the partially synchronous state under consideration

(in this case, the (DSS) chimera state). The variational equa-

tions are determined by considering the time evolution of a

small perturbation Du to the synchronous state and are given

by

d

dt
Dui tð Þ ¼ EDui tð Þ þ Fb sin 2xi tð Þ þ 2/0

� �
Dxi tð Þ; (3)

Dxi tð Þ ¼ G 1� eð ÞDui t� sfð Þ þ
e
3

X
j

AijDuj t� scð Þ
" #

; (4)

where the xiðtÞ is the behavior of node i in the desired par-

tially synchronous state and we have used the fact that the

network contains four globally coupled nodes.

In order to decouple the variational equations corre-

sponding to perturbations transverse to the synchronization

manifold from those corresponding to perturbations along

the synchronization manifold, we now transform to the IRR

coordinate system. As discussed in the Appendix, the trans-

formation matrix for the (DSS) chimera state is

T ¼

1ffiffiffi
2
p 1ffiffiffi

2
p 0 0

0 0 1 0

0 0 0 1
1ffiffiffi
2
p � 1ffiffiffi

2
p 0 0

2
66666664

3
77777775
; (5)

where the three upper rows correspond to directions along

synchronization manifold and the bottom row corresponds

to the direction transverse to the synchronization manifold.

In order to determine the stability of the partially synchro-

nous state, we need to consider only perturbations along

directions transverse to the synchronization manifold. If we

define IRR basis vectors DviðtÞ � TijDuiðtÞ, then Dv4ðtÞ is

the only IRR basis vector corresponding to perturbations

transverse to the synchronization manifold. Thus in the fol-

lowing we consider only Dv?ðtÞ � Dv4ðtÞ. Multiplying

from the left by T to transform the variational equations to

the IRR coordinate system, we obtain

d

dt
Dv? tð Þ ¼ EDv? tð Þ þ Fb sin 2xs tð Þ þ 2/0

� �
Dx? tð Þ; (6)

Dx? tð Þ ¼ G 1� eð ÞDv? t� sfð Þ þ
e
3

X
j

BijDvj t� scð Þ
" #

;

(7)

where xsðtÞ is the behavior of one node in the synchronized

cluster and

B ¼ TAT�1 ¼

1
ffiffiffi
2
p ffiffiffi

2
p

0ffiffiffi
2
p

0 1 0ffiffiffi
2
p

1 0 0

0 0 0 �1

2
66664

3
77775 (8)

is the adjacency matrix transformed to the IRR coordinates.

Explicitly performing the sum in Equation (7), we obtain

Dx? tð Þ ¼ G 1� eð ÞDv? t� sfð Þ �
e
3
Dv? t� scð Þ

� �
: (9)

To determine the stability, we calculated the largest

Lyapunov exponent (LLE) of Equations (6) and (9), which

indicates how infinitesimal perturbations transverse to the

synchronization manifold grow or decay in time. If the LLE

is negative, perturbations decay exponentially to zero, indi-

cating that the state is stable. For our calculations, we used

discrete-time versions of the equations presented above

which are more suitable for the experimental conditions. For

Lyapunov exponent calculations, we used the QR decompo-

sition method.32 Calculations were averaged over a period of

at least 500 000 times larger than the coupling delay. A simi-

lar procedure was followed to obtain the stability for the

other synchronous states.

In Fig. 3, we compare the results of experiments and sta-

bility calculations in the parameter space of coupling

strength (e) and coupling delay (sc) for all the partially syn-

chronous states that the system displays. Experiments were

performed by selecting regularly spaced points in the param-

eter space. A minimum of 20 experimental trials from differ-

ent random initial conditions were performed for each point

in parameter space. In principle, one can experimentally

observe any state in the parameter space that theoretically

shows stable solutions; however, in practice it can be diffi-

cult to observe states with small basins of attraction. As dis-

cussed in Ref. 33, the size of the basin of attraction is of

great practical interest, and in future work we hope to inves-

tigate whether symmetries in the network topology can help

to shed light on basin stability. For all four synchronous

states, agreement between experimentally observed states

and their calculated stability is quite good. However, it is not

surprising that there is slight disagreement near the boundary

where the stability behavior is quite fragmented. This slight

disagreement can be attributed to the finite number of ran-

dom initial conditions that were used for the calculations and

experiments, as well as slight mismatch between the actual

experimental parameters and the parameter values used in

simulation and stability calculations.

The procedure for stability calculations described above

can in principle be used to determine the stability of partially

synchronous states (clusters and chimeras) in networks of any

size. While our experiment is restricted to four nodes, we

have performed the same type of stability analysis for a chi-

mera state in a 10 node network consisting of one cluster of 5

and 5 singlet clusters, and found that it agrees with direct sim-

ulations of Equations (1) and (2), as shown in Fig. 4.
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IV. CHIMERA STATES AND MULTISTABILITY

Recently, the existence of chimeras has been theoreti-

cally associated with multistability in the system.22 Our

observations support this idea.

In Fig. 5, we show a direct connection between multi-

stability and chimeras in our network of four oscillators.

From the stability calculations, we identified the regions

where at least two of the globally synchronized, doublet-

doublet, and triplet-singlet states are stable. In Fig. 5(a), such

regions are marked as multistable. Calculated stable chimera

solutions coincide well with these multistable regions. In

experiments, we also observe this multistability for the pa-

rameter values that exhibit chimera states, as shown in Fig.

5(b).

In addition to the multistability between different par-

tially synchronous patterns, we also observe multistability

within a single pattern. For example, while the dynamics of

the globally synchronized state in Fig. 2(a) appear chaotic,

there are other globally synchronized states which appear to

be quasiperiodic. We do not distinguish between different

dynamical behaviors of the same partially synchronous state;

for example, in Fig. 3(a) if any of the possible dynamical

realizations of global synchrony is stable, we consider the

globally synchronized pattern to be stable.

As discussed previously, partial synchronization patterns

(doublet-doublet, triplet-singlet, and (DSS) chimera states in

this case) emerge from the partial (subgroup) symmetries in

the network.23,24 In systems like ours, this can be predicted

by a detailed inspection of all the subgroup symmetries of

the network by analyzing the adjacency matrix. Still, what

mechanism breaks the maximal symmetry is an interesting

question. For our particular system, it is the presence of two

different time delays in the system introduced by the mis-

match between the coupling delay and the feedback delay.

When these two time delays exactly match (the Laplacian

FIG. 3. Comparison of experimental results and stability calculations. (a)–(d) Region of stability for different synchronous states. The shaded regions are sta-

ble; that is, the LLE of the variational equations is negative. The markers represent experimental results. Dots indicate that the state has been observed in

experiments; crosses indicate that the state was not observed in experiments. At least 20 trials from different random initial conditions were performed for

each experimental data point. For both experiments and stability calculations, the round-trip gain b ¼ 3:8 and the feedback time delay sf¼ 1.4 ms.
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coupling case), we observe only global synchrony which is

also supported by previous work on these opto-electronic os-

cillator networks.28

We understand that the dependence of the resulting syn-

chronous state on initial conditions leads to complicated

fragmented regions of stability. We refer to these regions as

fragmented rather than fractal, because our system has dis-

crete time due to the digital filter and it is not possible to

observe self-similarity at time scales shorter than the sam-

pling time of the filter. As the initial conditions change, the

high degree of multistability (both within a single synchro-

nous pattern as well as between different synchronous pat-

terns) of parameter space allows different stable states

(depending upon their basins of attraction) including global

synchrony and complete desynchrony. Thus, rather than

observing a smooth boundary between synchronized and

desynchronized regions we observe fragmented regions of

stability, as can be seen in Figs. 3 and 5.

Hence, the multistability or the possibility of various

partially synchronous solutions in the system can be seen as

a requirement for chimeras in any system, but the physical

mechanism that generates such multistability can be different

for different systems. It is well-known that time-delay in the

coupling can induce multistability between synchronous

states (Refs. 29 and 34). This is the case in our system, while

in the laser system described in Ref. 22, amplitude-phase

coupling induces the multistability necessary for the appear-

ance of chimera states.

V. DISCUSSION

Our network of four globally coupled oscillators is fun-

damentally important in the context of chimeras. This is a

small system without any breaking of symmetry in the cou-

pling topology, yet we experimentally observe chimera states

starting from random initial conditions. Our system violates

most of the conditions previously believed to be necessary

for the formation of chimera states: it is a small network, it is

initialized from random initial conditions, and it is globally

coupled. Importantly, our stability calculations show that the

observed chimeras are not long transients but stable physical

states that persist in experiments.

The mechanism that allows the partially synchronous

states to form in our system is a general phenomenon called

isolated desynchronization in which some clusters separate

out from the synchronized state without destroying the syn-

chrony completely.23 This is possible due to the partial (sub-

group) symmetries of the network. The subgroup structure

guarantees that all the nodes in one cluster receive the same

effective coupling signal from nodes in other clusters. Hence

even if one cluster is desynchronized, the others can remain

in identical synchrony. For example, in the case of our DSS

chimera, each of the oscillators in the doublet cluster

receives the same total signal from the two desynchronized

singlets, allowing them to remain synchronized even though

the two singlet oscillators behave incoherently. The idea that

FIG. 4. Comparison of stability calculations of a chimera state (one cluster

of 5 and 5 singlet clusters) with direct simulation of Equations (1) and (2)

for a 10 node, globally coupled network. Direct simulations consisted of 100

trials with different initial conditions for each point in e� sc parameter

space. For both experiments and simulations, the round-trip gain b ¼ 3:8
and the feedback time delay sf¼ 1.4 ms.

FIG. 5. Relationship between chimeras and multistability in the four node,

globally coupled network. (a) Stability calculations show that (DSS) chime-

ras tend to be stable in the regions of parameter space where other synchro-

nization patterns coexist. Here, multistable means that at least two of the

globally synchronized, doublet-doublet, and triplet-singlet states are stable.

(b) Experiments also show that chimeras tend to show up in regions of

multistability. For both experiments and simulations, the round-trip gain

b ¼ 3:8 and the feedback time delay sf¼ 1.4 ms.
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the chimeras and clusters in our system arise from the same

mechanism of isolated desynchronization and that their sta-

bility can be calculated in the same manner highlights the

close relationship between chimera and cluster states as par-

tial synchronization patterns. We emphasize that the analysis

we have presented here is not restricted to globally coupled

networks of oscillators. The group theoretical analysis and

mechanism of isolated desynchronization extend to any net-

work with cluster states or chimera states in which the coher-

ent population is identically synchronized, such as those

found in the non-locally coupled systems in Refs. 5, 6, and

35 and the star network in Ref. 9.

While in the simulations and stability analysis we con-

sider identical oscillators with identical coupling, some heter-

ogeneity and noise are inevitable in experiments. Despite the

small heterogeneities in our experiment, we still observe per-

sistent chimera and cluster states, in agreement with the simu-

lations and stability calculations. Determining the amount of

heterogeneity for which the group theoretical analysis and sta-

bility calculations remain valid is an important open question.

We have observed all possible partially synchronous

states, including a chimera state, in our experimental network

of four globally coupled chaotic opto-electronic oscillators.

We used group theoretical methods recently developed for

cluster synchrony to calculate the linear stability of these

states and found excellent agreement with our experiments.

These methods are quite general in that they extend to large

networks and can be used to analyze the stability of any chi-

mera state in which the coherent oscillators are identically

synchronized, suggesting that such chimeras and cluster states

are closely related. Our results indicate that multistability of

different synchronous patterns seems to be important for the

existence of stable chimera states and can be determined by

analyzing the symmetries of a given network topology; how-

ever, the mechanism that generates the multistability can be

different in different systems. For our case we identify it to be

the breaking of the symmetry present in Laplacian coupling

by having two different time delays in the network.
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APPENDIX: CALCULATION OF THE IRR
TRANSFORMATION MATRIX

In order to transform the variational equations to the

IRR coordinates, the IRR transformation matrix T must be

obtained. In general, the method of computing T involves

finding the IRRs for the symmetry (sub)group of a given syn-

chronous state and is nontrivial. While T can be computed

by the method in Ref. 23, for the case of the DSS chimera T

can be determined by inspection.

First, we note that for the DSS chimera, the synchroniza-

tion manifold is three-dimensional: one dimension for the

synchronized doublet cluster, and one dimension for each of

the two singlet clusters. These can be represented by

v1 ¼

1ffiffiffi
2
p

1ffiffiffi
2
p

0

0

2
666666664

3
777777775
; v2 ¼

0

0

1

0

2
664
3
775; v3 ¼

0

0

0

1

2
664
3
775: (A1)

There are four nodes so the node space is four dimen-

sional. Thus, there can be only one transverse direction

v4 ¼

1ffiffiffi
2
p

� 1ffiffiffi
2
p

0

0

2
666666664

3
777777775
: (A2)

Then T can be constructed by stacking these normalized

row basis vectors. If we stack them such that the vectors cor-

responding to the synchronization manifold are on top of the

vectors corresponding to transverse directions, when we use

T to block diagonalize the adjacency matrix the upper block

will correspond to the perturbations along the synchroniza-

tion manifold and the lower block will correspond to trans-

verse perturbations. For the DSS chimera case, we find

T ¼

1ffiffiffi
2
p 1ffiffiffi

2
p 0 0

0 0 1 0
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