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We experimentally study the complex dynamics of a unidirectionally coupled ring of four identical

optoelectronic oscillators. The coupling between these systems is time-delayed in the experiment

and can be varied over a wide range of delays. We observe that as the coupling delay is varied, the

system may show different synchronization states, including complete isochronal synchrony,

cluster synchrony, and two splay-phase states. We analyze the stability of these solutions through a

master stability function approach, which we show can be effectively applied to all the different

states observed in the experiment. Our analysis supports the experimentally observed multistability

in the system. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4829626]

Synchronization between delay-coupled oscillators has

many applications in biological and technological con-

texts. In the specific configuration of periodic oscillators

connected in a unidirectional ring, changing the coupling

time delays can lead to different synchronization rela-

tionships between the oscillators. In this paper, we pres-

ent an experiment of four oscillators coupled in a

unidirectional ring, with coupling delays that can be

changed to observe different synchronization states.

I. INTRODUCTION

Synchronization between coupled oscillators is of interest

to numerous areas of research. In particular, understanding the

phase relationship between synchronized oscillators could

have applications to coupled neurons in the brain, where syn-

chronization can play a role in neurological disorders. Prasad

and his colleagues observed a phase-flip bifurcation, or a tran-

sition from in-phase synchrony to out-of-phase synchrony as

the coupling delay between two oscillators is increased, both

in simulations and in an electronic circuit.1 Adhikari and his

collaborators observed similar transitions for neuron models,

including larger numbers of coupled nodes.2 There are other

examples in nature and applications in technology where the

role of synchronization patterns between clock signals is im-

portant. For example, specific rhythmic patterns of neural ac-

tivity generated by groups of neurons which go by the name of

central pattern generators are known to regulate complex

coordinated tasks such as locomotion and respiration.3–5

Previous work has focused on rings of unidirectionally

coupled Stuart-Landau oscillators,6–8 both in the absence

and in the presence of delays. Choe et al. have theoretically

considered and numerically simulated systems of delay

coupled oscillators, and have shown the ability to control the

presence of different synchronization states as the coupling

delay is changed.9 Other papers have focused on unidirec-

tional rings of coupled chaotic oscillators and found that due

to the ring structure, chaos may be suppressed in favor of

periodic solutions.10–13 Experimental circuital realizations of

unidirectional rings of coupled Lorenz systems were studied

in Refs. 11 and 14. However in Refs. 11 and 14, coupling

delays were not considered.

Here, we present an experiment of coupled optoelectronic

oscillators configured so that the coupling delays can be easily

varied. By changing the coupling delays, we observe different

synchronization states. The network topology, shown in Fig.

1(a), is composed of four oscillators, each with its own feed-

back delay sf. This feedback creates dynamics in each oscilla-

tor, even when they are uncoupled from the other nodes. The

four oscillators are delay-coupled together in a unidirectional

ring. Each coupling link has delay sc, and here we restrict our-

selves to the case where sc � sf . For different values of sc, we

observe different behaviors of this system, and for some pa-

rameter values, we see different behaviors that are dependent

on initial conditions, or a multistability of two or more behav-

iors. We can use a master stability function analysis15 to evalu-

ate the stability of the observed behaviors.

II. EXPERIMENT

The experimental setup of a single optoelectronic oscil-

lator is shown in Fig. 1(b). In Fig. 1(b), the red lines indicate

an optical signal, and the black lines indicate an electronic

signal. The coupling delay sc is varied by discrete steps by

programming the digital signal processing (DSP) board, and

sf remains fixed. For each measurement, the system alwaysa)Electronic mail: williamscrs@gmail.com.
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starts with both the feedback and coupling disabled, so that

only noise is present. Then feedback is enabled, followed by

the coupling.

The system is well-modeled by a system of coupled

time-delay differential equations:16

_unðtÞ ¼ EunðtÞ � Fb cos2ðxnðt� sf Þ þ /0Þ; (1)

xnðtÞ ¼ G unðtÞ þ e
X

j

Knj½ujðt� sc þ sf Þ � unðtÞ�
� �

; (2)

for oscillators n ¼ 1;…;N, where xn 2 R are the voltages

input to the MZMs and un 2 R2 are the vectors describing

the states of the filters. For our ring of four nodes, N¼ 4. The

filter is described by constant matrices

E¼ �ðxHþxLÞ �xL

xH 0

� �
; F¼ xL

0

� �
; and G¼ð1 0Þ;

(3)

and the filter parameters are chosen as xL ¼ 2p� 2:5 kHz

and xH ¼ 2p� 0:1 kHz. The adjacency matrix for a unidir-

ectional ring is given by

K ¼

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

0
BB@

1
CCA: (4)

The coupling strength is e¼ 0.2, the modulator bias is

/0 ¼ p=4, and the feedback strength is b¼ 1.21. The feed-

back delay is fixed at sf¼ 1.4 ms. All parameters are identical

for the four nodes. The feedback strength (b) and feedback

delay (sf) were chosen so that, when uncoupled (e¼ 0), each

node in the network would oscillate periodically.

We vary the value of sc and observe the relative phases

between the oscillators. As the coupling delay increases from

sc¼ sf, we observe in each measurement one of four distinct

synchronization states between the four coupled oscillators, as

shown in Fig. 2. We can categorize these states by the relative

phase dk between successive oscillators in synchronization state

Sk, k¼ 0,…,3. These states can also be described as isochronal
synchrony (state S0, d0¼ 0), splay-phase synchrony, (state S1 or

state S3, d1 ¼ p=2 or d3 ¼ 3p=2) and cluster synchrony (state

S2, d2¼p), which have been described and observed in this

and other systems.9,17–19 At some values of the coupling

delays, bistability is observed between pairs of these synchroni-

zation states. For longer coupling delays, we also see multi-

stability between three or all four of these states. Note that in

the case of multistability, the phase relationship is determined

by the initial conditions, and once the four-node system has

established a particular phase relationship after a transient pe-

riod, the relative phases are maintained. While the time traces

shown in Fig. 2 are for the coupled oscillators, they all resem-

ble the time evolution of an uncoupled (isolated) system.

III. STABILITY PREDICTIONS

We also use a master stability function (MSF) approach

to evaluate the stability of the system. Previous work using a

MSF has focused on the stability of identically synchronous

states, though the MSF theory has been extended recently for

systems displaying group synchrony.17–19 Here, we exploit

the fact that all the dynamical states displayed in the experi-

ment are periodic and can be written in the following form:

unðtÞ ¼ unðt� TÞ; (5)

for n¼ 1, 2, 3, 4 where T is the period of oscillation, which

corresponds to the feedback delay of an individual node, sf.

The different synchronous solutions can be written as

unðtÞ ¼ un�1 t� dk

2p
T

� �
; n ¼ 2; 3; 4; (6a)

u1ðtÞ ¼ u4 t� dk

2p
T

� �
: (6b)

Similar periodic patterns, called rotating waves, have

also been observed when chaotic oscillators are coupled in a

unidirectional ring.10,11,13

The adjacency matrix has eigenvalues fkm ¼ ðiÞmg (i is

the imaginary unit) and eigenvectors ‘m ðK‘m ¼ km‘mÞ;
m ¼ 0;…; 3. Moreover, each observed state Sk corresponds

to the eigenvector ‘k; k ¼ 0;…; 3. In order for state Sk to be

stable, perturbations orthogonal to ‘k must be decaying.

To evaluate the stability of a given synchronous state,

we take Eqs. (1) and (2) with the specific coupling matrix,

FIG. 1. (a) Schematic of four nodes separated into a unidirectional ring. (b)

Experimental setup for a single node, an optoelectronic, nonlinear oscillator,

with time-delayed feedback.
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Eq. (4), and linearize about a given synchronous solution (6),

obtaining,

D _un ¼ EDun þ Fb sinð2G�un�1ðt� scÞ þ 2/0Þ
�G�

X
j

KnjDujðt� scÞ; (7)

n¼ 1,…,4 and un�1 ¼ u4 for n¼ 1. We note that, by

virtue of Eq. (6), un�1ðt� scÞ ¼ unðtþ ½dk=2p�T � scÞ;
n ¼ 2;…; 4 and u4ðt� scÞ ¼ u1ðtþ ½dk=2p�T � scÞ. By

using the ansatz DunðtÞ ¼ cnvðtÞ, we obtain the result that

stability is governed by the following low-dimensional

equation:

_v ¼ Evþ Fb sin 2G�un tþ dk

2p
T � sc

� �
þ 2/0

� �

�G�kmvðt� scÞ: (8)

Now in order to evaluate stability, we would need to com-

pute the Lyapunov exponents associated with Eq. (8). The

maximum Lyapunov exponent (MLE) for a particular value

of sc is the MSF. A negative MLE indicates that the particu-

lar synchronization state under consideration will be stable.

Note that Eq. (8) still depends on the node index n¼ 1,…,4

through the driving term unðtþ ½d=2p�T � scÞ. However, the

synchronous solutions {un} are identical, apart from a tem-

poral shift, as given in Eq. (6). Therefore, the choice of the

specific n is irrelevant for determination of the Lyapunov

exponents, which are asymptotically defined quantities, and

any oscillator n can be arbitrarily chosen to drive Eq. (8).

For each synchronization state Sk, we insert the appro-

priate dk into Eq. (8), and evaluate Eq. (8) for all m¼ 0,…,3,

excluding m¼ k from our calculation of the MLE because

we are interested only in perturbations orthogonal to ‘k for

the stability of state Sk. For the isochronal synchrony case

(S0), the eigenvector corresponding to the synchronous state

is ‘0¼ [1, 1, 1, 1], so we ignore the Lyapunov exponent cor-

responding to the eigenvalue k0¼ 1 when calculating the

MSF. For the splay-phase synchronous states (S1, S3), the

eigenvectors corresponding to these synchronous states are

‘1 ¼ ½1; i;�1;�i� or ‘3 ¼ ½1;�i; 1; i�, so the ignored eigen-

values are k1¼ i and k3¼� i, respectively. For the cluster

synchrony state (S2), the corresponding eigenvector and

ignored eigenvalue are ‘2 ¼ ½1;�1; 1;�1� and k2¼�1.

The stability results for each of the four synchronization

states as a function of sc are shown in Fig. 3. For the smaller

values of sc, only one or two of the states are stable for a par-

ticular value of sc. However, as sc increases, there are win-

dows of multistability where three or four states are stable.

IV. RESULTS AND DISCUSSION

For each coupling delay 1:4 ms < sc < 3 ms, we per-

formed 10 independent experiments and 2000 simulations,

FIG. 2. Representative time traces for

four different values of the coupling

delay, each displaying a different

phase relationship between the four

nodes, as denoted by dk, the phase shift

between successive oscillators in state

Sk. Experimental traces are on the left;

simulations are on the right.
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each starting from random initial conditions and observed

how frequently each synchronization state occurred. The

results are shown in Fig. 4. As the time delay sc is increased,

the observed phase lag d between successive oscillators

increases in a step-like manner, separated by regions of bist-

ability in which the system could fall into one of two possi-

ble stable synchronization patterns. For the coupling delay

range shown in this figure, only one or two different phase

relationships were observed for each value of the coupling

delay, with good agreement between experiment and simula-

tion. For the values of sc for which a particular phase rela-

tionship synchronization state has a negative MLE, we see

the corresponding synchronization state displayed in simula-

tion and experiment. If, for a particular value of sc, more

than one phase relationship is stable, we see the correspond-

ing two or three synchronization states in simulation and

experiment. The particular state that is present depends on

the initial conditions.

For longer coupling delays, near sc¼ 8 ms, the results

from simulations are shown in Fig. 5, where there can be

three different relationships shown, as we expect from the

MSF calculations shown in Fig. 3(a). In the experiment, we

also observe multistability between three synchronization

states for larger values of sc. We note that increasing the cou-

pling delay increases the overlapping areas of stability.

A comparison of Figs. 3(b) and 4 show good agreement

between simulation, experiment, and calculated stability.

The observations of particular phase relationships in experi-

ment and simulation correspond well to the regions where

the MSF analysis predicts stability for those different phase

relationships.

We have observed a transition from in-phase, isochronal

synchrony to splay-phase synchrony as we change the cou-

pling delay to values larger than the internal delay. We have

further observed three additional transitions—splay-phase!
cluster, cluster ! splay-phase, splay-phase ! isochronal—

as the coupling delay is increased to twice the feedback

delay, and the transitions appear to be cyclic as the coupling

delay is further increased. The transitions are not sharp; for

intermediate ranges of coupling delays, bistability is some-

times observed. This phenomenon was also observed in sim-

ulations of a unidirectional ring of coupled Stuart-Landau

oscillators.9

While multiple patterns of synchronization can occur in

a unidirectional ring with symmetric coupling, real systems

may have asymmetric or inhomogeneous delays between

elements. The propagation time for a signal in the nervous

system, for example, can be different for each link. Two

recent papers describe different synchronization patterns that

occur in a unidirectional ring of oscillators or modeled

FIG. 3. Master stability function, or maximum Lyapunov exponent (MLE),

of four different synchronization states: d0¼ 0 (isochronal synchrony),

d1¼p/2 or d3¼ 3p/2 (splay-phase synchrony), and d2¼p (cluster syn-

chrony). A negative MLE indicates the stability of a particular phase rela-

tionship. (a) MLE as a function of coupling delay sc calculated over a wide

range of delays. (b) Enlargement of (a) for narrow range of sc.

FIG. 4. The phase relationships present as a function of coupling delay. For

each coupling delay sc, the percentage of different random initial conditions

resulting in a particular phase relationship d is shown by the grayscale. The

top figure shows the experimental results, with 10 different initial conditions

for each delay. The bottom figure shows the simulations results, with 2000

different initial conditions for each delay.

FIG. 5. Multistability between synchronization states for long coupling

delays, as observed for 50 different random initial conditions in simulations.
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neurons, both for homogeneous delays and for inhomogene-

ous delays.8,20 By changing the coupling delays so that they

are not all equal, a variety of synchronization states can be

created, and the state is determined by the values of the cou-

pling delays.

While our investigation focused on the case of four

equal coupling delays, we also experimentally and numeri-

cally investigated the case where the coupling delays are not

identical, but the sum of the four coupling delays is held con-

stant. In this investigation, we focused on the case where the

average coupling delay corresponds to the value of sc for

which isochronal synchrony is stable in the case of four

equal coupling delays. In this case, we can write the solu-

tions as time-shifted copies of each other, with time shifts

that correspond to the differences between the coupling

delays. Because the nodes are connected sequentially and

each node acts as a time-invariant oscillator, a node followed

by a delay is indistinguishable from a node preceding delay

when viewed from the perspective of the remainder of the

system. Synchronization patterns for non-identical coupling

delays constitute an interesting problem for future study.

V. CONCLUSION

In conclusion, we have presented an experiment of

four optoelectronic oscillators coupled in a unidirectional

ring, in which the coupling delays can be varied. We have

observed four different synchronization states as the cou-

pling delay is varied, including isochronal synchrony,

cluster synchrony, and splay-phase synchrony. We have

compared our experimental results with simulations and

numerical stability computations using a master stability

function approach.

ACKNOWLEDGMENTS

The authors would like to thank Ulrike Feudel for help-

ful discussions. This work was supported by DOD MURI

grant ONR N000140710734.

1A. Prasad, S. K. Dana, R. Karnatak, J. Kurths, B. Blasius, and R.

Ramaswamy, Chaos 18, 023111 (2008).
2B. M. Adhikari, A. Prasad, and M. Dhamala, Chaos 21, 023116

(2011).
3J. Murray, Mathematical Biology: I. An Introduction, Interdisciplinary
Applied Mathematics (Springer, 2002) Chap. 12.

4A. Cohen, P. Holmes, and R. Rand, J. Math. Biol. 13, 345 (1982).
5C. von Euler, J. Appl. Physiol. 55, 1647 (1983).
6S. Yanchuk and M. Wolfrum, Phys. Rev. E 77, 026212 (2008).
7P. Perlikowski, S. Yanchuk, O. Popovych, and P. Tass, Phys. Rev. E 82,

036208 (2010).
8O. V. Popovych, S. Yanchuk, and P. A. Tass, Phys. Rev. Lett. 107, 228102

(2011).
9C.-U. Choe, T. Dahms, P. H€ovel, and E. Sch€oll, Phys. Rev. E 81, 025205

(2010).
10M. Mat�ıas, J. G€u�emez, V. P�erez-Munuzuri, I. Marino, M. Lorenzo, and V.

P�erez-Villar, Europhys. Lett. 37, 379 (1997).
11M. Matias, V. P�erez-Mu~nuzuri, M. Lorenzo, I. Marino, and V. P�erez-

Villar, Phys. Rev. Lett. 78, 219 (1997).
12M. Mat�ıas and J. G€u�emez, Phys. Rev. Lett. 81, 4124 (1998).
13X. Deng and H. Huang, Phys. Rev. E 65, 055202 (2002).
14E. S�anchez and M. Mat�ıas, Phys. Rev. E 57, 6184 (1998).
15L. M. Pecora and T. L. Carroll, Phys. Rev. Lett. 80, 2109 (1998).
16T. E. Murphy, A. B. Cohen, B. Ravoori, K. R. B. Schmitt, A. V. Setty, F.

Sorrentino, C. R. S. Williams, E. Ott, and R. Roy, Phil. Trans. R. Soc. A

368, 343 (2010).
17F. Sorrentino and E. Ott, Phys. Rev. E 76, 056114 (2007).
18T. Dahms, J. Lehnert, and E. Sch€oll, Phys. Rev. E 86, 016202

(2012).
19C. R. S. Williams, T. E. Murphy, R. Roy, F. Sorrentino, T. Dahms, and E.

Sch€oll, Phys. Rev. Lett. 110, 064104 (2013).
20S. Yanchuk, P. Perlikowski, O. V. Popovych, and P. A. Tass, Chaos 21,

047511 (2011).

043117-5 Williams et al. Chaos 23, 043117 (2013)

 This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

129.2.129.154 On: Tue, 12 Nov 2013 12:58:13

http://dx.doi.org/10.1063/1.2905146
http://dx.doi.org/10.1063/1.3584822
http://dx.doi.org/10.1007/BF00276069
http://dx.doi.org/10.1103/PhysRevE.77.026212
http://dx.doi.org/10.1103/PhysRevE.82.036208
http://dx.doi.org/10.1103/PhysRevLett.107.228102
http://dx.doi.org/10.1103/PhysRevE.81.025205
http://dx.doi.org/10.1209/epl/i1997-00159-8
http://dx.doi.org/10.1103/PhysRevLett.78.219
http://dx.doi.org/10.1103/PhysRevLett.81.4124
http://dx.doi.org/10.1103/PhysRevE.65.055202
http://dx.doi.org/10.1103/PhysRevE.57.6184
http://dx.doi.org/10.1103/PhysRevLett.80.2109
http://dx.doi.org/10.1098/rsta.2009.0225
http://dx.doi.org/10.1103/PhysRevE.76.056114
http://dx.doi.org/10.1103/PhysRevE.86.016202
http://dx.doi.org/10.1103/PhysRevLett.110.064104
http://dx.doi.org/10.1063/1.3665200

