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We present a chaotic frequency-modulated microwave source that is governed by a simple, first-order

nonlinear delay differential equation. When a sinusoidal nonlinearity is incorporated, the

dynamical behaviors range from fixed-point to periodic to chaotic, depending on the feedback

strength. When the sinusoidal nonlinearity is replaced by a binary nonlinearity, the system exhibits

a complex periodic attractor with no fixed-point solution. VC 2013 American Institute of Physics.

[http://dx.doi.org/10.1063/1.4772970]

Time-delayed feedback systems are especially interesting

because of the rich variety of dynamical behaviors that

they can support. While ordinary differential equations

must be of at least third-order to produce chaos, even a

simple first-order nonlinear delay differential equation

can produce higher-dimensional chaotic dynamics.

Although there are many classic electronic circuits that

produce chaotic behavior, microwave sources of chaos

are especially relevant in communication and sensing

applications where the signal must be transmitted

between locations. Such applications invariably involve

time-delays associated with the signal propagation. Here,

we describe a new way to generate chaotic frequency-

modulated microwave signals by using time-delayed feed-

back, and we explore the dynamical characteristics and

route to chaos as the feedback strength or time delay is

varied. We further introduce, implement, and analyze a

new type of Boolean time-delayed feedback system that

shows complex periodic orbits and fractal characteristics

in its bifurcation behavior.

I. INTRODUCTION

After decades of research, chaos remains a fast-growing

and exciting area in science and engineering. The evolution

of the state of a chaotic system is deterministic, yet impossi-

ble to predict—a property that distinguishes chaos from ran-

domness. Chaotic phenomena are observed in a wide variety

of fields including electronics, mechanics, chemistry, biol-

ogy, and acoustics. The complex and noise-like characteris-

tics of chaotic signals could have advantages in a variety of

practical applications. Chaotic signals have been proposed to

reduce interference and cross-talk in diverse contexts,

including wireless networks, sonar networks, fiber-optic

links, and electric power systems.1–4 Chaotic modulation

methods have been used to encrypt or mask information in

communication systems.5–7 The unpredictability of chaotic

signals has been exploited for high-speed random number

generation.8–12 Chaotic signals often exhibit a wide spectral

bandwidth and a short correlation time, which are useful for

increasing the precision of range and velocity detection in ra-

dar, lidar, and sonar systems.13–16

Because many communication and ranging systems oper-

ate at microwave frequencies, a chaotic signal generator in this

regime is of considerable interest. Although there are many

classical electrical circuits that can produce broadband chaotic

waveforms, it is often difficult to scale these systems to the

microwave regime because in high-speed systems, the time

delay associated with signal propagation is often non-

negligible in comparison to the dynamical timescales. Chaotic

generators that expressly rely on time-delayed feedback can

take advantage of these unavoidable signal propagation delays.

One architecture that can be adapted to producing high-

speed chaos is a nonlinear time-delayed feedback loop17

composed of a nonlinear circuit with time-delayed feedback

through a band-limiting filter. The dynamical behavior of

such a loop can be mathematically described by nonlinear

delay differential equations. Recent works show that chaos

can be generated with this architecture using a combination

of optical and electronic components.18–20 The chaotic sig-

nals generated by these systems are examples of amplitude
chaos, i.e., a signal with an irregular time-varying amplitude.

However, for some applications in communication, it is pref-

erable to use phase chaos in which the chaotic RF signal has

a constant amplitude and a chaotic phase or frequency.21

In this paper, we introduce a chaotic signal generator

that utilizes a time-delayed feedback loop architecture and

operates in the microwave band (2 GHz–4 GHz). This fre-

quency range matches the frequency range of modern com-

munication networks such as those used for cell-phones,

radar, satellite communications, and WiFi. The chaos gener-

ator circuit takes advantage of widely available inexpensive

components. Chaotic frequency-modulated microwave

signals have been shown to offer advantages such as low

probability of detection or interception in radar systems,a)Electronic mail: lehiendao@gmail.com.
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reduced interference with existing channels, and less suscep-

tibility to noise or jamming.16

The remainder of the paper is organized as follows:

Section II introduces the design of the system and a mathe-

matical model based on a delay-differential equation derived

from basic electronics principles. In Sec. III, the system

implementation is discussed. We describe the characteristics

of the components comprising the feedback loop and discuss

how the nonlinearity, delay, and filter functions work to-

gether to produce chaotic behavior. The results of the numer-

ical calculation along with experimental data are presented

in Sec. IV, in which we show typical dynamical behaviors

and the route to chaos of the system. Section V introduces a

new Boolean time-delayed feedback system, obtained by

replacing the sinusoidal nonlinearity with a binary function.

The resulting system is shown to exhibit complex periodic

orbits and self-similar characteristics in its bifurcation

diagram.

II. SYSTEM DESIGN

In Fig. 1, we illustrate the experimental configuration of

a time-delayed feedback loop used to produce chaotic micro-

wave signals. The microwave signal is generated by a

voltage-controlled oscillator (VCO), which produces a

constant-amplitude microwave signal with a frequency that

varies linearly with an applied tuning voltage. The output

signal from the VCO can be described by the complex

microwave signal

EðtÞ ¼
ffiffiffiffiffiffi
2A
p

ej½x0tþhðtÞ�; (1)

where A is a constant that is proportional to the microwave

power, x0 is the natural frequency of the VCO, and the

phase hðtÞ is related to the applied voltage v(t) by

dh
dt
¼ 2pcvðtÞ: (2)

The factor c is a property of the VCO that describes the tun-

ing sensitivity, typically given in MHz/V.

The microwave signal is then split into two paths, one of

which is delayed with respect to the other by an amount sd . The

two signals are fed into a down-converting double-balanced

mixer, thereby comprising a homodyne phase discriminator.

The output w of an ideal balanced mixer with RF inputs E1 and

E2 may be modeled as

wðtÞ ¼ RefE1ðtÞE�2ðtÞg : (3)

For the power splitter and delay line configuration shown in

Fig. 1, the two mixer inputs are E1ðtÞ ¼ EðtÞ=
ffiffiffi
2
p

and E2ðtÞ
¼ Eðt� sdÞ=

ffiffiffi
2
p

, which produces the output signal

wðtÞ ¼ 1

2
Re EðtÞE�ðt� sdÞf g

¼ A cos ½hðtÞ � hðt� sdÞ � x0sd�:
(4)

If we further assume that hðtÞ varies slowly on the timescale

sd , Eq. (4) may be approximated by

wðtÞ ¼ A cos ½sd
_hðtÞ � x0sd� ¼ A cos ½2pcsdvðtÞ � x0sd�:

(5)

Finally, the output signal of the mixer is fed back to the

VCO tuning input through a time delay s and integrating fil-

ter, so that v(t) and w(t) are related by

vðtÞ ¼ 1

T

ðt

�1

wðt0 � sÞdt0; (6)

where T is the integration time constant and s is the feedback

time delay, which is assumed to be much larger than the

microwave delay sd. Differentiating Eq. (6) and making use

of Eq. (5), we obtain a first-order delay differential equation

for the tuning voltage v(t)

dv

dt
¼ A

T
cos ½2pcsdvðt� sÞ � x0sd�; (7)

where the scale factor A is now understood to include the

microwave power, mixer efficiency, splitter loss, and any

baseband electrical gain in the feedback path.

We next define a normalized dimensionless voltage x(t)
as

xðtÞ � 2pcsdvðtÞ � x0sd �
p
2
; (8)

which leads to the delay differential equation

dx

dt
¼ �2pcA

sd

T
sin½xðt� sÞ�: (9)

Furthermore, by normalizing time in terms of the feed-

back delay s, Eq. (9) simplifies to

_xðtÞ ¼ �R sin ½xðt� 1Þ�; (10)

where the single dimensionless constant R is defined as

R � 2pcAsds
T

: (11)

This equation was considered by Schanz et al.,22 who

observed that phase-locked loops with a feedback delay can

FIG. 1. Experimental system used to produce chaotic frequency-modulated

microwave signals. The system uses a conventional microwave VCO with

a homodyne microwave phase discriminator to produce a sinusoidal

nonlinearity. The output is then fed back to the input through a time-delayed

integrator which is implemented on a field-programmable gate array (FPGA).
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also be described by this equation. It was later independently

analyzed by Sprott, who pointed out that it is one of the

simplest nonlinear delay differential equations that exhibits

chaotic behavior.23

III. SYSTEM IMPLEMENTATION

The VCO used in these experiments (Mini-Circuits

SOS-3065-119þ) had a center frequency of 3 GHz and a lin-

ear tuning coefficient of c ¼ 175 MHz=V. The microwave

power produced by the oscillator was approximately 4 mW

and was approximately independent of the input voltage v(t).
The microwave phase shift was implemented using a 2 m

length semirigid coaxial cable, which produced a time delay

of sd ¼ 10 ns. The double-balanced mixer (Mini-Circuits

MCA 1-80LHþ) had a downconversion gain of 5.9 dB,

which produced a baseband voltage amplitude of A¼ 0.2 V.

The baseband (IF) range of the mixer was from DC to

1250 MHz, and the tuning port of the VCO had a modulation

bandwidth of 10 MHz. Together, these limit the maximum

dynamical speed of the baseband signals v(t) and w(t) in a

way that is not modeled by Eq. (10). We therefore adjusted

the parameters of the experiment to ensure that the dynami-

cal behavior was slow enough not to be band-limited by the

mixer or VCO.

Fig. 2 plots the experimentally measured sinusoidal rela-

tionship between the tuning voltage v and the mixer output

w, together with a best-fit sinusoid. From these measure-

ments, one can determine the two constants A¼ 0.2 V and

ð2pcsdÞ�1 ¼ 0:5 V. The deviation from a perfect sinusoidal

nonlinearity is attributed to non-ideal voltage-dependent

power from the VCO and the mixer non-ideality.

The time-delayed integral feedback was constructed using

a digital delay line implemented on a field-programmable gate

array (Altera Cyclone II FPGA). The mixer output w(t) was

digitized using an 8-bit analog to digital converter (National

Semiconductor, ADC08200) at a sampling frequency

fs ¼ 15 MHz. The digitized signal was delayed through a

600-stage shift register, to produce a time delay of s ¼ 40 ls,

and the integration of Eq. (6) was approximated using a sim-

ple summing accumulator

vðtÞ ¼ vðt� DtÞ þ awðt� NDtÞ; (12)

where Dt is the sampling period. The discrete-time parame-

ters N and a determine the feedback delay s and integration

time constant T, respectively, according to

s ¼ NDt; T ¼ Dt
1

a
: (13)

The resulting signal was converted back to an analog

output voltage through a 10-bit digital to analog converter

(TI DAC900) which was in turn applied to the input tuning

port of the VCO. In the experiments reported, the feedback

gain was manually adjusted or automatically swept by vary-

ing the constant a, which could be controlled by program-

ming the FPGA.

The key experimental parameters of the system are sum-

marized in Table I.

IV. DYNAMICAL BEHAVIOR

Because the nonlinear function is periodic in x, the solu-

tions to Eq. (10) are easily seen to be translationally invariant

up to an integer multiple of 2p. That is, if x(t) is a solution,

then xðtÞ þ 2pm is also a solution, for any integer m. For val-

ues of R < 4:2, we observe that the solution remains

bounded within one cycle of the nonlinear function, with a

peak-to-peak amplitude that is smaller than 2p. For larger

values of R, the orbit is observed to hop between neighboring

bound states, executing a kind of random walk behavior.23 In

practice, the voltage applied to the VCO is constrained to a

limited range, and we therefore chose to restrict our attention

to the regime in which x(t) remains bounded. In the experi-

ment, we observe the tuning voltage v(t) on a digitizing os-

cilloscope. Additionally, we programmed the FPGA and

DAC to also produce a second output channel that corre-

sponds to the signal immediately prior to the integrator,

which allows us to simultaneously observe v(t) and _vðtÞ.
Fig. 3 compares characteristic phase portraits obtained from

experimental measurements and numerical simulations, showing

the variety of behaviors of the system. The simulated traces

were calculated by numerically integrating Eq. (10), starting

from random initial conditions, using a 5th order Dormand-

Prince method with a constant step-size. The system was pre-

iterated for a sufficiently long time to eliminate any transient

behavior associated with non-physical initial conditions. In the

FIG. 2. Experimentally measured relationship between the input v(t) and

output w(t) for the self-homodyne phase discriminator comprising a 10 ns

microwave delay line and mixer. The solid curve indicates the best-fit sinu-

soidal function. From these measurements, one can determine the two con-

stants A¼ 0.2 V and ð2pcsdÞ�1 ¼ 0:5 V, as shown.

TABLE I. Summary of experimental parameters.

Parameter Value

fs ¼ 1=Dt 15 Ms/s

N 600

s 40 ls

A 0.2 V

c 175 MHz/V

sd 10 ns

x0=2p 2.85 GHz

a 0.0067–0.0175

R 1.5–4.20
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experiments, the feedback gain R was controlled by changing

the integration proportionality constant a in Eq. (12), which

could be adjusted to a precision of 40 bits by programming

the FPGA. The output voltage from the DAC was offset in

order to keep the system within the linear tuning range of the

VCO.

Equation (10) admits a fixed point solution at x¼ 0 that

is stable whenever R < p=2. At R ¼ p=2, the stable fixed

point undergoes a Hopf bifurcation into a periodic state

with a period of 4s (6.25 KHz), as shown in Figs. 3(a), 3(d),

and 3(g). The amplitude of x(t) also increases with the feed-

back gain. At R¼ 3.9, the system makes a transition to a new

periodic state, as shown in Figs. 3(b), 3(e), and 3(h), which

exhibits a distinctly different point symmetry with respect

to the origin. Above R¼ 4.17, system undergoes a period-

doubling transition to chaos, resulting in the chaotic phase

portraits shown in Figs. 3(c), 3(f), and 3(i). For the case

of R¼ 4.1758, the Lyapunov spectrum was calculated

numerically,24,25 which reveals a positive maximum Lyapu-

nov exponent of þ5:316=s and a Kaplan-Yorke dimension

of 2.15.

Fig. 4 presents both simulated and experimental bifurca-

tion diagrams obtained by constructing a color histogram of

characteristic time traces as the feedback gain R was smoothly

increased from 1.5 to 4.2. For the experimental measurements,

the proportionality between the integration factor a and the

feedback gain R was inferred by empirically locating the value

of a at which the first Hopf bifurcation occurs and associating

this value with R ¼ p=2. Apart from this scaling, there were

no other adjustable parameters, and the theory exhibits good

agreement with the experiment.

Fig. 5 plots the baseband spectrum of the tuning voltage

v(t) and the corresponding microwave spectrum produced

by the VCO, for the case of R¼ 4.176, where the system is

chaotic. Because of the large tuning sensitivity of the VCO

(c in Table I), the microwave signal occupies a much larger

spectral bandwidth than the corresponding baseband signal.

While in this demonstration, the bandwidth of v(t) was

approximately 10 kHz and could be scaled to approximately

10 MHz, at which point the dynamics would be constrained

by the modulation bandwidth of the VCO.

V. BOOLEAN NONLINEARITY

An interesting and easily realized variation of this sys-

tem is to replace the sinusoidal nonlinear function that

relates v and w (cf. Fig. 2) with a Boolean relationship. In

practice, this could be achieved by simply inserting a digital

threshold device (comparator) following the mixer, thereby

producing either a positive or negative output voltage of

w ¼ 6A, depending on the sign of v. Experimentally, we

achieve this by simply discarding all but the most significant

(sign) bit during the analog-to-digital conversion of w.

FIG. 3. Phase portraits of the system recorded experimentally (top) and

simulated numerically (bottom) as the normalized feedback gain R is varied.

FIG. 4. Bifurcation diagrams for the system with 1:5 � R � 4:2 were con-

structed using the Poincare section dx/dt¼ 0. The experimental data were

recorded using an 8-bit oscilloscope while the simulation results were

obtained using MATLAB.

FIG. 5. (a) Measured baseband power spectrum of the signal entering the

VCO, v(t), and (b) corresponding microwave spectrum of the resulting

frequency-modulated signal. Both measurements were taken with R¼ 4.176,

which produces chaotic dynamics. The resolution bandwidth (RBW) was

30 Hz and 2 MHz for the baseband and microwave spectra, respectively, and

both spectra were normalized relative to their maximum values.
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Mathematically, this nonlinearity may be modeled by replac-

ing Eq. (5) by the Boolean relationship

wðtÞ ¼ A sgnðcos ½2pcsdvðtÞ � x0sd�Þ; (14)

where sgn represents the algebraic sign function. In normal-

ized time and amplitude units, the time-delayed dynamical

equation becomes

_xðtÞ ¼ �R sgnðsin½xðt� 1Þ�Þ (15)

¼
þR; sin½xðt� 1Þ� < 0

�R; sin½xðt� 1Þ� � 0
;

�
(16)

where the single dimensionless constant R is defined as in

Eq. (11).

Typical time traces along with time delay-embedding

plots of v(t) (or x(t)) are shown in Fig. 6. Unlike the earlier

case, this system does not admit a fixed point solution for

any value of R. Rather, the trajectories exhibit an alternating

up-down sawtooth pattern that can be completely described

by a sequence of switching times, i.e., the times at which the

slope of x(t) changes sign. These switching times can be cal-

culated iteratively by locating the times at which x(t � 1)

crosses a mp threshold.

For values of R < p, the trajectories are symmetric tri-

angular waves with a period of 4s and a peak-to-peak ampli-

tude of 2 R centered about x¼ 0, as shown in Figs. 6(a), 6(d),

and 6(g). For p < R < 4p=3, the peak amplitude continues

to grow in proportion to R, but the trajectories acquire second-

ary peaks on the rising and falling edge of the triangular wave,

as shown in Figs. 6(b), 6(e), and 6(h). Above R ¼ 4p=3, the

behavior becomes more complicated, showing increasingly

longer-period trajectories that depend very sensitively on the

feedback gain R, as in Figs. 6(c), 6(f), and 6(i). For all cases

considered, the calculated dynamical behavior was observed to

be periodic with an amplitude confined to the range

�R < xðtÞ < þR, although the periodic orbits could contain

as many as 54 segments, with periods approaching 60s.

For R > 3p=2, the solutions no longer remain bounded,

and x(t) can instead exhibit a random-walk type behavior

similar to what was observed for the sinusoidal case consid-

ered earlier. Even within this range, however, there exist iso-

lated windows of R for which finite-amplitude solutions

occur.

Fig. 7 presents a bifurcation diagram (experiment and

simulation), showing the color-histogram of x(t) as a func-

tion of the feedback gain R. Although the system is periodic

for all points, the bifurcation diagram has a fractal character-

istic in which any enlarged regions of the bifurcation appears

self-similar to the original. This property is illustrated in

Figs. 7(c) and 7(d), which show successive enlargements of

the calculated bifurcation diagram.

While such a system can be classified as a continuous-

time Boolean delay system, it does not fit the classic descrip-

tion of Ghil, for which the Boolean state depends only upon

its prior value(s).26 Rather, in this case, the Boolean slope

_xðtÞ depends on a prior value of x(t � 1). The system shares

some features in common with earlier systems that exhibit a

switching nonlinearity,27 but it differs in that the dynamics

are entirely characterized by the sequence of switching

times.

The sawtooth waveforms generated by this system can

have advantages for the frequency-modulated microwave

system. The linear variation of the tuning frequency of the

VCO produces a swept frequency signal with a linear chirp

(positive or negative), which can simplify the signal process-

ing for range-finding and Doppler velocity measurements.

FIG. 6. Time traces and time delay embedding plots of the system using

Boolean nonlinearity at different values of normalized feedback gain R.

FIG. 7. Bifurcation diagram of the system utilizing the Boolean non-

linearity when R is varied from 2.75 to 4.5. (a) Experiment, (b)–(d)

Simulation.
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VI. CONCLUSION

We present the design and implementation of a micro-

wave chaotic signal generator in the 2–4 GHz range that can

generate deterministic, aperiodic frequency-modulated

microwave signals. The system uses both microwave compo-

nents and a field programmable gate array to implement the

nonlinearity, the time delay, and the filtering functions. The

system equation constitutes one of the simplest examples of

a chaotic nonlinear chaotic delay differential equation. Nu-

merical simulations of the system show good agreement with

the observed behavior. By reprogramming the sinusoidal

nonlinearity with a simple threshold-based nonlinearity, we

realize a Boolean dynamical system that shows a range of

periodicities and fractal characteristics, depending on the

feedback strength or time delay. The system could find appli-

cations in chaotic radar or spread-spectrum communication

systems.
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