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We describe a technique for accurately measuring the ratio between the imaginary and real parts of the third-order
nonlinearity in optical waveguides. Unlikemost other methods, it does not depend on precise knowledge of the cou-
pling efficiencies, optical propagation loss, or optical pulse shape. We apply the method to characterize a silicon
waveguide, aGaAswaveguide, andAlGaAswaveguideswith different alloy concentrations. © 2012Optical Society
of America
OCIS codes: 190.0190, 190.3270, 190.4180, 190.4390, 190.4400, 190.5970.

Low-loss submicrometer waveguides are promising can-
didates for nonlinear optical signal processing, and could
enable chip-scale devices for wavelength conversion,
optical switching, and other processes [1]. Nonlinear ab-
sorption, which is described by the imaginary part of the
nonlinear susceptibility, is recognized as a factor that lim-
its the efficiency of many nonlinear mixing processes [2].
When assessing the suitability of a material or waveguide
for nonlinear optics, an important figure of merit is the
ratio of the imaginary to the real part of the effective
third-order nonlinear susceptibility [3], which we call the
nonlinear loss-tangent of a waveguide.
A variety of methods are used to characterize the

nonlinear properties of waveguides, including power-
dependent spectral broadening [4–6], nonlinear absorp-
tion [7,8], four-wave mixing [9–11], and coherent pump-
probe measurements [12]. Most methods are hampered
by uncertainty associated with poor knowledge of the
optical pulse shape, waveguide loss, or input coupling ef-
ficiency. We present here a simple and accurate contin-
uous-wave (CW) technique to measure the nonlinear loss
tangent that is insensitive to the optical power coupled
into the waveguide and the linear loss. We apply the
method to characterize the nonlinear loss tangent of op-
tical waveguides made from Si, GaAs, and AlGaAs alloys.
Figure 1 depicts the experiment used to characterize

the nonlinear loss tangent. A sinusoidally modulated
pump is combined with a weaker CW probe signal, and
launched into the waveguide using an aspheric lens. The
sinusoidal modulation is imparted onto the probe signal
through a combination of cross-phase modulation (XPM)
and cross-amplitude modulation (XAM). Following the
waveguide, the pump is suppressed by a spectral filter
while the probe passes through a 50 km span of disper-
sive fiber, which converts intensity modulation to phase
modulation and vice versa in a frequency-dependent
manner [13]. The modulation frequency is then swept
while recording the amplitude of the received sinusoidal
signal using a network analyzer. This method was origin-
ally developed to quantify the chirp of optoelectronic
modulators [14], whereas here the modulation is applied
through a third-order nonlinear interaction.

We assume that the pump entering the waveguide is
sinusoidally modulated, according to

P1�t� � P10 �ΔP sin Ωt; (1)

where P10 is the average pump power,ΔP is the modula-
tion amplitude, and Ω is the modulation frequency. After
undergoing XPM and XAM, the probe signal that emerges
from the waveguide is described by the field [15]

A2�t� �
��������
P20

p
e−iω0t exp �i2γleffΔP sin Ωt�; (2)

where ω0 represents the optical frequency, leff ≡ �1 −
e−αl�∕α is the effective waveguide length, and the com-
plex coefficient γ ≡ γR � iγI describes the combined
effects of XPM and XAM. If the optical mode is mostly
confined to a homogeneous core region, the nonlinear
coefficient γ can be expressed as

γ � γR � iγI �
1

Aeff
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� i

α2
2

�
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Fig. 1. (Color online) System used to measure the nonlinear
loss tangent. MZM, Mach–Zehnder modulator; PC, polarization
controller; EDFA, erbium-doped fiber amplifier; BS, beam split-
ter; G-T POL, Glan–Thompson polarizer; OBPF, optical band-
pass filter; PD, photodiode.
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where n2 and α2 are, respectively, the nonlinear refrac-
tive index and two-photon absorption coefficient of the
core region, and Aeff is the effective area of the optical
mode. Equation (3) can be modified to account for the
tensor characteristic of the nonlinear susceptibility, po-
larization states, and overlap between the material and
mode [16].
Equation (2) can be Fourier-expanded into a superpo-

sition of discrete spectral components,

A2�t� �
��������
P20

p
e−iω0t

X∞
m�−∞

Jm�z�eimΩt; �4�

where we have introduced the complex factor z,

z≡ 2�γR � iγI�leffΔP: (5)

In the fiber of length L, each spectral component ω of
the signal acquires a phase shift of β�ω�L, where the dis-
persion relation of the fiber is modeled by

β�ω� � β0 � β1�ω − ω0� �
β2
2
�ω − ω0�2: (6)

The signal emerging from the fiber is calculated to be

A0
2�t� �

��������
P20

p
e−i�ω0t−β0L�

X∞
m�−∞

Jm�z�eimΩτeim
2β2Ω2L∕2; (7)

where τ ≡ t − β1L denotes the retarded time.
At the receiver, the square-law photodetector with re-

sponsivity R produces a photocurrent of

i�t� � RjA0
2�t�j2
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(8)

By expanding Eq. (8) to first order in z, and ignoring
the DC term, the photocurrent simplifies to

i�t� � −2RP20jzj sin�β2Ω2L∕2� ϕ� sin Ωτ; �9�

or equivalently, in terms of the fiber dispersion D and the
cyclic frequency f ,

i�t� � 2RP20jzj sin
�
πλ2DLf 2

c
− ϕ

�
sin�2πf τ�; (10)

where jzj and ϕ represent the magnitude and phase of the
complex coefficient z. The phase ϕ is directly related to
the nonlinear loss tangent of the waveguide through

tan ϕ � γI
γR

� λα2
4πn2

: (11)

Figure 2 shows the measured photocurrent amplitude
as a function of frequency for the four different

waveguides considered here. The waveguide dimensions,
compositions, and calculated mode shapes for the four
waveguides are also indicated, to scale, in the upper
portion of Fig. 2.

At certain modulation frequencies, the amplitude of
the received signal will vanish, leading to a null in the
measured S21�f � trace, indicated by the symbols in Fig. 2.
From Eq. (10), the null frequencies are given by

f 2u � c

2DLλ2

�
2u� 2

π
ϕ

�
; u � 0; 1; 2… (12)

Thus, by plotting f 2u versus 2u, we obtain a line whose
intercept is related to the phase ϕ. Figure 3 plots f 2u ver-
sus 2u for the silicon waveguide (II), clearly showing this
linear behavior. The inset to Fig. 3 plots an enlarged re-
gion near the origin, in which we have added the best-fit
lines for all four of the waveguides considered. The key in
Fig. 3 tabulates the value of the nonlinear loss tangent,
tan ϕ � γI∕γR, determined for each of the waveguides.

Among the waveguides considered, the GaAs wave-
guide exhibits the highest nonlinear loss tangent of
γI∕γR � 1.12� 0.02, followed by the silicon waveguide,
which gives 0.27� 0.02. The remaining two waveguides
were composed of AlxGa1−xAs alloys, where the bandgap
increases with mole fraction x. For x � 0.14, we obtained
a lower nonlinear loss tangent of 0.188� 0.007. x × �
0.18 when the aluminum fraction is increased to X �
0.18 we measure γI∕γR � 0.006� 0.002, indicating that
the nonlinearity becomes almost entirely refractive, as

Fig. 2. (Color online) (a) Cross sections and mode properties
of the four waveguides studied for this Letter. The contours
indicate the −5 and −15 dB levels of the electric field for the
TE eigenstate. (b) Representative S21�f � measurement for each
waveguide (each offset for clarity).
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expected when the bandgap exceeds twice the photon
energy [17].
For the silicon waveguide (II), the optical mode is al-

most entirely contained within the silicon ridge, and we
therefore expect our results to closelymatch those of bulk
silicon.We conducted independentZ-scanmeasurements
of n2 and α2 for crystalline silicon with light polarized
along the h110i direction, and found tan ϕ � λ
α2∕4πn2 � 0.27� 0.03, in perfect agreement with the wa-
veguidemeasurements reported here, and consistentwith
widely accepted values from the literature [18].

One advantage of this measurement is that it does not
require knowledge of the coupling efficiency into the
waveguide, a key source of uncertainty in most nonlinear
measurements. To illustrate this, Fig. 4 plots four inde-
pendently measured S21�f � traces obtained by succes-
sively increasing the pump power in 3 dB increments.
As predicted, the measured result scales, but the posi-
tions of the nulls remain unchanged.

In conclusion, we report a new method for measuring
the nonlinear loss tangent of optical waveguides. The
technique uses a swept-frequency XPM and XAM mea-
surement to circumvent the uncertainties associated
with incomplete or inaccurate knowledge of the pulse
shape, waveguide loss, and coupling efficiency. When
coupled with existing techniques, the method could al-
low for greater accuracy in completely determining the
complex nonlinear coefficients of waveguides.
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Fig. 3. (Color online) f 2u versus 2u for the silicon waveguide
(II) obtained from 30 consecutive S21�f � measurements. Inset:
similar linear fits for all four waveguides considered, enlarged
to show difference in intercept.

Fig. 4. (Color online) S21�f � measurements from the
Al0.14Ga0.86As waveguide, obtained by increasing the pump
power in 3 dB steps.

November 15, 2012 / Vol. 37, No. 22 / OPTICS LETTERS 4695


