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We present and experimentally demonstrate a technique for achieving and maintaining a global
state of identical synchrony of an arbitrary network of chaotic oscillators even when the coupling
strengths are unknown and time-varying. At each node an adaptive synchronization algorithm
dynamically estimates the current strength of the net coupling signal to that node. We experimen-
tally demonstrate this scheme in a network of three bidirectionally coupled chaotic optoelectronic
feedback loops and we present numerical simulations showing its application in larger networks.
The stability of the synchronous state for arbitrary coupling topologies is analyzed via a master
stability function approach. © 2010 American Institute of Physics. �doi:10.1063/1.3530425�

In spite of the extreme sensitivity of chaotic orbits to
small perturbations, it is known that when properly
coupled together, identical chaotic systems can
synchronize.1 In the synchronized state, each of the com-
ponent systems follows the same chaotic orbit in lockstep.
This somewhat surprising phenomenon is a basis for sev-
eral proposed applications, including the use of chaotic
signals in communication and sensing.2 Thus, establish-
ing and maintaining synchrony on a network of nonlinear
oscillators is an important goal. In many of the proposed
applications, it is assumed that the network couplings are
a priori known, and this assumed knowledge is used in
designing the synchronization strategy. However, in prac-
tice such knowledge may be unavailable or imperfect, or
the couplings may depend on unobservable external time-
dependent parameters. In this paper, we address such
situations via an adaptive strategy that uses the chaos
synchronization phenomenon to learn and track such
a priori unknown couplings even as a particular chaos
synchronization application is simultaneously being car-
ried out.

I. INTRODUCTION

While there has been substantial theoretical and numeri-
cal simulation work on adaptive techniques for chaos syn-
chronization, there has been little work on the experimental
realization3 or quantitative consideration of their stability.4 In
Ref. 5, an adaptive technique was devised to achieve syn-
chronization of chaos through a gradient descent strategy. In
Refs. 3, 6, and 7, techniques based on appropriately defined
Lyapunov functions have been proposed. In Refs. 8 and 9,
adaptive strategies have been investigated to synchronize dy-

namical complex networks. In Refs. 10 and 11, we intro-
duced an adaptive strategy that maintains synchronization on
a time-evolving network of chaotic oscillators and reported
numerical simulations of this strategy on a network of low-
dimensional systems. In Ref. 12, we studied the stability of
this adaptive strategy using a master stability function
approach.13,14 In Ref. 15, we presented an experimental dem-
onstration of the maintenance of synchrony on a pair of uni-
directionally coupled optoelectronic chaotic feedback loops.
Here, we report an experimental study of adaptive synchro-
nization on a network of high-dimensional chaotic units. In
particular, we consider time-delayed chaotic optoelectronic
oscillators, and we illustrate the applicability of an adaptive
algorithm for sensing and simultaneously tracking changes in
the coupling strengths of the network while maintaining syn-
chrony. We present experimental measurements from a three-
node network and show numerical simulations from larger
networks.

In attempting to understand the emergence of synchrony
in ensembles of nonlinear oscillators, many models have
been introduced to describe the interaction of individual en-
semble members �network “nodes”� with other members of
the ensemble. In our formulation below, our model can po-
tentially include such effects as propagation time-delays of
couplings, temporal variations in coupling strength, changes
in network topology, and high-dimensional chaotic dynam-
ics. Thus, the method described here applies to a wide range
of networks.16–19

II. ADAPTIVE SYNCHRONIZATION TECHNIQUE

In order to establish a theoretical framework for the
adaptive synchronization method, we first consider a net-
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work of N coupled identical discrete time systems that
evolve according to

xi�n + 1� = F�xi�n�� + v
�0

ki
ri�n� , �1�

where xi�n� represents the state-vector of node i at time n.
The quantity ri�n� is a scalar signal representing a cumulative
coupling received from other nodes in the network and is
assumed to be of the form ri�n�=� j=1

N AijH�x j�n��. The vector
function F�x� and scalar function H�x� describe the internal
and coupling dynamics, respectively. A= �Aij� is an N�N
weighted adjacency matrix, �0 is an overall coupling
strength, v is a vector that describes how the received cou-
pling signal ri�n� is incorporated, and ki=� j=1

N Aij describes
the net coupling into the ith node. �Note that in our scheme,
ki is always greater than zero so that division by ki in Eq. �1�
is well-defined.� The adjacency matrix A specifies the topol-
ogy of the network along with the associated coupling
strengths of the network links and will play a key role in
determining whether synchronization occurs. Equation �1�
admits a globally synchronized solution, x1�n�=x2�n�= ¯

=xN�n�	xs�n�, satisfying xs�n+1�=F�xs�n��+v�0H�xs�n��.
Note that in the design of this system it has been assumed
that each node i processes its received signal ri with knowl-
edge of the net coupling ki �see Eq. �1��. But what can be
done in applications in which the ki are a priori unknown?

Our synchronization algorithm is designed to achieve
and maintain synchrony in situations in which the value of
ki=� jAij is unknown and time-varying, e.g., due to unknown
temporally varying environmental conditions affecting the
Aij =Aij�n�. Thus, we now write ki=ki�n�. Our goal will be
realized by adopting a local real-time adaptive strategy at
each node that weights the received signal based on an esti-
mate of ki determined only from the known received signal
ri�n�. Thus, we reexpress Eq. �1� as

xi�n + 1� = F�xi�n�� + v�i�n�ri�n� , �2�

with the goal of setting �i�n�=�0 /ki�n�. We follow Refs. 10
and 11 and seek to minimize a time-averaged measure of the
synchronization error at each node, where the measure is
given by

�i = 
��iri − �0H�xi��2�z0
, �3�

where 
G�z0
= �1−z0��m=0

� z0
mG�n−m� and z0 is a smoothing

factor that determines the temporal extent over which the

averaging is performed. The time-window over which this
exponentially weighted moving averaging is performed is
�1−z0�−1 samples. The minimum value for �i is 0, and this is
attained only when �iri=�0H�xi�. By minimizing �i with
respect to �i �i.e., ��i /��i=0�, we obtain a real-time estimate
of the weight factor,

�i�n� = �0


riH�xi��z0


ri
2�z0

= �0
pi�n�
qi�n�

, �4�

where we assume the channel variations Aij�n� are slowly
varying relative to the smoothing window.10 From our defi-
nition of the above time average, we have that the numerator
and denominator satisfy the following iterative equations:

pi�n� = z0pi�n − 1� + �1 − z0�ri�n�H�xi�n�� ,

�5�
qi�n� = z0qi�n − 1� + �1 − z0�ri

2�n� .

Upon synchrony, pi�n�→ki
H�xi�2�z0
and qi�n�→ki

2

�
H�xi�2�z0
, for which the ratio in Eq. �4� attains the desired

value.
While the results are described here for the case of a

discrete time dynamical system, we note that this formalism
can also be applied to continuous time systems.10

III. EXPERIMENTAL SETUP

In this paper, we consider an experimental network of
three coupled optoelectronic oscillators,15,20–23 as depicted in
Fig. 1�a�. The nodes are connected to one another over bidi-
rectional fiber optic channels. The coupling strengths Aij are
controlled by applying a voltage to an electronically variable
optical attenuator, and in this work the couplings were de-
signed to be symmetric �Aij =Aji�. Although these systems
are traditionally described using delay differential equations,
they can be cast into the framework of Eq. �1� by discretizing
the time axis and constructing a state-vector xi comprising
one time-delay worth of sample points.24 Appendix A ex-
plains how the continuous time-delay differential equation
describing the optoelectronic feedback loop can be converted
into discrete time equations that can be readily implemented
using digital signal processing hardware. Appendix B ex-
plains how the resulting discrete time equations and adaptive
synchronization method can be cast in the general form of
Eqs. �2�–�5�. At each node �Fig. 1�b��, a laser diode provides
a constant input optical power to a Mach–Zehnder electro-
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FIG. 1. �a� Topology of bidirectionally coupled three-node network where symmetric coupling strengths Aij are controlled by three independent variable
optical attenuators. �b� Experimental schematic of a single optoelectronic node. �c� A representative time series of an isolated feedback loop.
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optic intensity modulator. The optical power transmitted by
the modulator is proportional to cos2�ui−� /4�, where ui�n�
is the normalized voltage applied to the modulator. The
modulated signal is split to act as an internal feedback signal
and broadcast as a coupling signal to the neighboring nodes.
An optical circulator is used to both transmit the outgoing
signal and receive a summed input signal from the neighbor-
ing nodes. Each node receives an aggregate signal ri�n� from
its neighbors and does not have independent access to each
of its neighbor’s transmitted signals. A real-time digital sig-
nal processor in each node is used to dynamically rescale the
received signal according to the algorithm described in
Sec. II. A typical time-trace of an isolated node is plotted in
Fig. 1�c�, which exhibits robust high-dimensional chaos.21,22

IV. MAINTENANCE OF SYNCHRONY

To demonstrate the effectiveness of the adaptive syn-
chronization method, we experimentally investigated the
case when one of the coupling coefficients in the network
�A12� changes abruptly. For the data plotted in Fig. 2�a�,
the adaptive method was not employed. In this case, the
network was initially adjusted to achieve synchronization
with A13=0, A23=1.5, and A12=2.8. At t=0, A12 is abruptly
changed to 1.3, and synchrony is broken, as evidenced by a
large synchronization error, measured as the average of the
absolute pairwise differences ��u1−u2�+ �u2−u3�+ �u3−u1�� /3.
This is expected, since the coupled equations that describe

the dynamics of the network without adaptation no longer
admit a synchronous solution. In Fig. 2�b�, we explore the
same situation, with the adaptive algorithm enabled such that

the scale factors 1 / k̄i are estimated in real-time. After a short
adjustment time following sudden change of A12 at t=0, we
see that the synchronous state is rapidly restored.

Moreover, by monitoring the three tracking signals k̄1,

k̄2, and k̄3, we are able to determine �“learn”� the estimates of
the individual elements of the symmetric adjacency matrix A
by solving the three linear equations k̄i=� jĀij to obtain esti-

mates Ā12, Ā23, and Ā31 of the three unknowns A12, A23, and

A31. In the top trace of Fig. 2�b�, we display Ā12 which is in
good agreement with the actual coupling strength A12 used in
the experiment �top trace of Fig. 2�a��. In Fig. 3, we consider
a case where A12, A23, and A31 are all nonzero and both A12

and A31 are simultaneously time-varying. Again, we see that
the algorithm maintains synchrony throughout this process
and independently tracks disturbances in each channel. The
dashed lines show the actual channel variations, and the solid
curves represent the network’s response. �Note that to make
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FIG. 2. �a� The uncontrolled network is initially tuned to synchrony. At
t=0, the coupling strength A12 is suddenly decreased. Synchrony is broken
between all three nodes, shown by a large synchronization error for t�0. �b�
The same situation is explored as in �a�, but the adaptive synchronization
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the dashed lines visible, the solid lines have been artificially
shifted upward by 0.05.�

The ability to obtain estimates of the coupling matrix Āij

may be interesting in that variations of the Āij may be in-
duced by environmental changes, and estimating temporal

changes in the Āij may thus be used as a means of sensing
these environmental changes. We note, however, that in
larger networks, the number of edges could exceed the num-
ber of network nodes. In this case, although our adaptive
strategy still maintains synchrony through adjustment and

tracking of the values of k̄i, knowledge of only the k̄i is no
longer sufficient to allow one to deduce estimates of the cou-

pling matrix Āij. However, the adaptive strategy could still
prove useful for sensing localize perturbations, especially in
sparsely connected networks or when perturbations are not
occurring simultaneously. We also note that a closely related

scheme �Ref. 11� potentially allows estimates of all the Āij in
large networks. The work we have presented here provides
the first experiments highlighting the ability to track and
temporally localize specific disturbances in a network of syn-
chronized chaotic oscillators. The experiment can be consid-
ered a proof-of-principle test for the application of coupled
dynamical systems as a sensor network. In this prototype
system, the nodes act collectively to learn about specific

changes in their environment. The control signals k̄i, which
maintain synchrony in the network, also contain practical
information used to sense what occurs between the nodes.
Depending on the setting, the couplings could be arranged in
free-space rather than with fiber optic cables or could use
transmitter and receiver antennas.

V. STABILITY RANGE OF SYNCHRONOUS SOLUTION

In the literature on synchronization of chaotic systems,
the stability of a synchronous solution for a network of os-
cillators can be evaluated using a low-dimensional equation
that depends on the eigenvalues of the Laplacian matrix as-
sociated with the network topology.13,14 We show here that
this approach can be extended to the present case. However,
in this case the adaptive rule becomes part of the dynamical
equations of the system and must therefore be included when
calculating the master stability function.

To experimentally investigate the range of stability, we
considered the same adaptively controlled three-node net-
work as in Fig. 2�b� �i.e., z0=0.99, A31=0, A23=1.5�, but we
varied the third coupling parameter A12 between 0 and 4. At
each point, we measured the average pairwise synchroniza-
tion error,

	 =
1

N�N − 1� �
i,j,i�j



�ui − uj�2�

ui

2� + 
uj
2�

, �6�

which is 0 for an identically synchronized network and 1 for
a network of uncorrelated nodes. In Fig. 4�a�, the points
are the experimentally obtained synchronization errors
for z0=0.99 and the corresponding solid curves are from nu-
merical simulations. As indicated particularly by the simula-
tions, there are upper and lower bounds for A12 for which
stability is achieved. The range of A12 in which we observe

synchronization can be explained by analyzing the stability
of the synchronous solution using the master stability func-
tion technique.13,14,25 We emphasize that in doing this it is
essential to include the dynamics of the adaptive strategy;12

e.g., the smoothing parameter z0 has a substantial effect in
determining stability. The stability is related to the �N−1�
“relevant” eigenvalues of the rescaled adjacency matrix
Aij� =Aij /ki. One eigenvalue of this matrix is one, since
� jAij� 	1, and we regard this eigenvalue as irrelevant, since it
does not figure in the stability analysis.26 If the �N−1� rel-
evant eigenvalues all fall within a range �
− ,
+� predicted by
the analysis, then the synchronous solution is linearly stable.
Note that the range �
− ,
+� is determined solely by the node
dynamics and is independent of the network, while the rel-
evant eigenvalues are determined solely by the network. In
Fig. 4�b�, we plot the two relevant eigenvalues 
1 and 
2 of
A� as a function of A12. The network only synchronizes
when 
1 and 
2 are both within the specific interval �
− ,
+�.
The derivation of the master stability function used to obtain

+ and 
− for our network of optoelectronic oscillators with
adaptive coupling strengths is presented in Appendix C.

The model described in Sec. II and Appendixes B and C
assumes a network of identical nodes. In any practical real-
ization, parameter mismatches are unavoidable and will af-
fect the synchronization behavior of the network. An impor-
tant and nontrivial question is how this adaptive strategy
theory applies when there are small deviations from identi-
cality. Here, we find a good agreement between our theoret-
ical calculation which assumes identical nodes and experi-
ments where there is some parameter tolerance. We conclude
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that the theory, as presented, is applicable for making realis-
tic predictions about which actual networks will synchronize.
Moreover, our stability theory, based on the master stability
function formalism, can be extended to the case of mis-
matches in a network of nearly identical systems.27,28

VI. NUMERICAL EXPERIMENTS ON A 25 NODE
NETWORK

As a further example, we numerically consider a net-
work of optoelectronic systems in which we have a relatively
large number of nodes �N=25� and in which the couplings
are directional; i.e., Aij may differ from Aji. For cases with A
not symmetric the eigenvalues of A� may be complex. The
two contours in Fig. 5�b� indicate the region of the complex
plane within which the eigenvalues of A� must fall in order
to maintain synchrony, i.e., the region for which the master
stability function M�
� is negative. The outer contour was
obtained with z0=0.99 and the inner contour corresponds to
z0=0.95. These correspond to smoothing times of 4.17 and
0.83 ms, respectively. Figure 5�a� is a cut along the real axis
and values of M are plotted in ms−1. The upper and lower
critical bounds are labeled 
+ and 
− and correspond to the
horizontal lines in Fig. 4�b�. When constructing the adja-
cency matrix, we randomly choose each of the Aij to be

either 1/7 or 0, with probability 0.25 and 0.75, respectively;
the diagonal elements Aii are 1/7. This choice of adjacency
matrix yields a distribution of row sums for which the adap-
tive algorithm must compensate. A graph of this asymmetric
network is depicted in Fig. 6. The relevant eigenvalues of A�
are plotted in the complex plane in Fig. 5�b�. The �N−1�
relevant eigenvalues fall within the region for stable syn-
chrony when z0=0.99 but not when z0=0.95. In Fig. 7�a�, we
initially run the full network of N nodes without enabling the
adaptive strategy. For t�0, the synchronization error is
large. The control is enabled at t=0. The adaptive algorithm
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pulls the network into synchrony from initially uncorrelated
states with an exponential convergence rate, related to the
eigenvalue of A� with the largest associated relevant
Lyapunov exponent. The same numerical experiment was
performed with z0=0.95 shown in Fig. 7�b�. In this case,
failure to achieve synchronization was observed as predicted
by the master stability function.

VII. CONCLUSION

In summary, we have demonstrated an adaptive strategy
for maintaining synchronization in a network of chaotic os-
cillators which we have analyzed using the master stability
function technique extended to incorporate our adaptive
strategy. This scheme is implemented in a network of three
bidirectionally coupled chaotic optoelectronic feedback
loops. Our experiments show that the adaptive strategy pro-
vides the ability to sense and track variations of the network
couplings.
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APPENDIX A: DISCRETE TIME EQUATIONS
FOR AN ISOLATED OPTOELECTRONIC OSCILLATOR

The dynamical behavior of a nonlinear optoelectronic
feedback loop like those considered here can be described
by a pair of coupled nonlinear delay differential
equations,15,20–23

�L
du�t�

dt
= − �1 −

�L

�H
�u�t� − v�t� + 
 cos2�u�t − �� + �� ,

�A1�

�H
dv�t�

dt
= u�t� ,

where u�t� is a normalized output signal representing the
voltage applied to the modulator, 
 is a dimensionless feed-
back constant, � is the net time-delay of the feedback path,
and � is the bias point of the Mach–Zehnder modulator. �L

and �H are time constants for cascaded single-pole low-pass
and high-pass filters. Equation �A1� represents a band-pass
filter with output u�t� and input given by the self-feedback
term w�t�=
 cos2�u�t−��+��. The linear filter operation can
also be expressed in the Laplace domain,

U�s� = HA�s�W�s� ,

where HA�s� is the continuous time transfer function of the
filter given by

HA�s� =
s�H

�1 + s�L��1 + s�H�
. �A2�

It is noted that in order to fully describe the state of the
isolated system at time t, one must have knowledge of u�t�
and history of w�t� over the continuous interval �t−� , t�,
making the system infinite dimensional in principle.24

In this appendix, we outline the mathematical structure
for transforming Eq. �A1� into discrete time, as implemented
in this set of experiments employing digital signal processing
�DSP� technology. Our digital filter was designed to act as a
two-pole band-pass filter �M =2� that approximates the con-
tinuous time filter described by Eq. �A2�. The discrete time
transfer function HD�z� is obtained from the continuous time
function HA�s� by applying a bilinear transform with fre-
quency prewarping.29 This process yields the equivalent dis-
crete time transfer function,

HD�z� =
1

4
�1 − zL��1 + zH�

�1 − z−2�
�1 + zLz−1��1 + zHz−1�

, �A3�

where zL and zH are the poles of the discrete time filter,
which are related to the time constants �L and �H and the
sampling periods Ts=1 / fs by

zH =
1 − tan�Ts/2�H�
1 + tan�Ts/2�H�

, zL =
1 − tan�Ts/2�L�
1 + tan�Ts/2�L�

.

The discrete time filter can be represented in the time-
domain by the linear difference equation,

u�n� = − a1u�n − 1� − a2u�n − 2� + b0w�n� + b1w�n − 1�

+ b2w�n − 2� , �A4�

where the filter parameters are given by

a1 = − �zH + zL�, a2 = zHzL,

b0 = 1
4 �1 − zH��1 − zL�, b1 = 0, b2 = − b0,

and the filter input is w�n�=g�u�n−d��	
 cos2�u�n−d�
+�� and d=� /Ts is an integer describing the time-delay,
which we take to be an integer number of time-steps. These
coefficients can be easily obtained for many choices of
filter using MATLAB’s Filter Design and Analysis Tool
�FDATool�.30

TABLE I. System parameters in continuous time representation.

Parameter Value Unit

fH= �2��H�−1 100 Hz
fL= �2��L�−1 2.5 kHz
� 1.5 ms
� −� /4 rad

 4.5 ¯

TABLE II. System parameters in discrete time representation.

Parameter Value Unit

fs=1 /Ts 24 kSamples/s
d 36 Samples
a1 �1.4962 ¯

a2 0.5095 ¯

b0=−b2 0.2452 ¯
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Tables I and II list all the parameters used in the experi-
ments and simulations for continuous time and discrete time
representations.

APPENDIX B: ADAPTIVE SYNCHRONIZATION
STRATEGY FOR A NETWORK OF OPTOELECTRONIC
OSCILLATORS

In this appendix, we describe a coupled network of N
identical optoelectronic nodes which implement the adaptive
synchronization control rule. Next, we cast our system into
the general form for discrete time coupled oscillators as
given in Sec. II.

In our experiments, each of the three coupled nodes re-
ceives a superposition of optical signals from the two other
nodes: � j�iAij�n�cos2�uj�n−d�+��. In our implementation, a
DSP is employed at each node to process this received signal
and incorporate it into the local dynamics. The two input
channels of the analog-to-digital converter are ac coupled, so
we do not have direct access to this received optical signal or
the locally generated optical signal, cos2�ui�n�+��. Our DSP
boards are programmed to perform a band-pass filtering rou-
tine on each signal and sum the outputs. For slowly varying
Aij�n�, the linear filtering and weighted summation opera-
tions can be commuted. The cumulative input signal is well
approximated as ri�n�=� j=1

N Aijuj�n�. We note that all the ana-
lytic and numerical results presented here apply under the
assumption of slowly varying or static coupling strengths.
Under this assumption, the equations for N coupled optoelec-
tronic nodes are the following:

• Internal feedback,

ui�n� = − a1ui�n − 1� − a2ui�n − 2� + b0g�yi�n − d��

− b0g�yi�n − d − 2�� . �B1a�

• Coupling term,

ri�n� = �
j=1

N

Aijuj�n� . �B1b�

• Adaptive strategy,

pi�n� = z0pi�n − 1� + �1 − z0�ri�n�ui�n� , �B1c�

qi�n� = z0qi�n − 1� + �1 − z0�ri
2�n� . �B1d�

• Weighted coupling term,

yi�n� =
pi�n�
qi�n�

ri�n� . �B1e�

We can convert these delay difference equations �Eq. �B1��
into a nonlinear map by constructing a state-vector xi�n� that
is comprised of the band-pass filter output terms ui�n−1� and
ui�n−2� and a history of the �d+M� most recent elements of
the filter input yi,

xi�n� = �
ui�n − 1�
ui�n − 2�
yi�n − 1�
yi�n − 2�

]

yi�n − d − M�
� �B2�

�where M =2 is the order of the filter�. With this definition,
the map equations for the coupled xi’s are expressed as

xi�n + 1� = �
H�xi�n��
ui�n − 1�

0

yi�n − 1�
yi�n − 2�

]

yi�n − d − 1�

� + �
0

0

1

0

0

]

0

� pi�n�
qi�n��j=1

N

AijH�x j�n�� ,

�B3�

where the function H�xi�n�� represents a scalar “observable”
component of the signal,

H�xi�n�� = − a1ui�n − 1� − a2ui�n − 2�

+ b0�g�yi�n − d�� − g�yi�n − d − 2��� . �B4�

For an isolated node, H�x�n�� is simply u�n�, the output of
the discrete time filter. This map equation �B3� is of the form
of Eq. �2� by setting �0=1.

APPENDIX C: STABILITY ANALYSIS
OF SYNCHRONOUS SOLUTION

In this appendix, we derive the master stability function
for N coupled systems described by Eq. �2� under the control
of the adaptive rule given by Eq. �5�. We follow the approach
of Ref. 12, but here described in discrete time.

Equation �2� admits the synchronous solution
xi�n�=xs�n�, for all i and n, given by

xs�n + 1� = F�xs�n�� + v�0H�xs�n�� ,

pi�n� = ki
H�xs�n��2�z0
, �C1�

qi�n� = ki
2
H�xs�n��2�z0

,

where ki=� j=1
N Aij. Note that in the synchronous state,

qi / pi= k̄i=ki. By linearizing Eq. �2� about the synchronous
solution �C1�, we obtain

�xi�n + 1� = DF�xs�n���xi�n�

+ v�0� H�xs�n��
ki

2
�H�xs�n��2��z0

�i�n�

+
DH�xs�n��

ki
�
j=1

N

Aij�x j�n�� ,

�C2�
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�i�n + 1� = z0�i�n� + �1 − z0�ki�ki�xi�n� − �
j=1

N

Aij�x j�n��
�H�xs�n��DH�xs�n�� ,

i=1, . . . ,N, where we have introduced the variable
�i	ki�pi−�qi and DF	�F /�x, DH	�H /�x. Equation �C2�
constitutes a system of mN coupled equations where xi is a
state-vector of length m. In order to simplify the analysis, we
seek to decouple this system into N independent systems,
each of dimension m. For this purpose, we seek a solution
where �xi�n� is in the form �xi�n�=ci�x̄�n�, where ci is a
time independent scalar that depends on i and �x̄�n� depends
on time but not on i. Substituting this ansatz into Eq. �C2�,
we obtain

�x̄�n + 1� = DF�xs�n���x̄�n�

+ v
�0

ci
� H�xs�n��

ki
2
�H�xs�n��2��z0

�i�n�

+
DH�xs�n��

ki
�x̄�n��

j=1

N

Aijcj� ,

�C3�

�i�n + 1� = z0�i�n� + �1 − z0�ki�kici − �
j=1

N

Aijcj�
�H�xs�n��DH�xs�n���x̄�n� .

To make Eq. �C3� independent of i, we consider �̄�n�
=�i�n� / ��1−
�ki

2ci� and � jAijcj =
kici, where 
 is a quantity
independent of i. Namely, the possible values of 
 are the
eigenvalues A�c=
c, corresponding to linearly independent
eigenvectors c= �c1 c2 ¯ cN�, where A�= �Aij� �= �ki

−1Aij�.
This gives

�x̄�n + 1� = DF�xs�n���x̄�n� + v�0

���1 − 
�
H�xs�n��


�H�xs�n��2��z0

�̄�n�

+ 
DH�xs�n���x̄�n�� ,

�C4�
�̄�n + 1� = z0�̄�n� + �1 − z0�H�xs�n��DH�xs�n���x̄�n� ,

which is independent of i but depends on the eigenvalues 
.
Considering the typical case where there are N distinct ei-
genvalues of the N�N matrix A�, we see that Eq. �C4� con-
stitutes N decoupled linear difference equations for the syn-
chronization perturbation variables �x̄ and �̄. All the rows of
A� sum to 1, therefore A� has at least one eigenvalue 
=1,
corresponding to the eigenvector c1=c2= ¯ =cN=1. For

=1, Eq. �C4� becomes

�x̄�n + 1� = �DF�xs�n�� + v�0DH�xs�n����x̄�n� . �C5�

This equation reflects the chaos of the reference synchro-
nized state �C1� and �because all the ci are equal� is associ-
ated with perturbations which are tangent to the synchroni-
zation manifold and are therefore irrelevant in determining

synchronization stability. Stability of the synchronized state
thus requires Eq. �C4� to yield exponential decay of �x̄ and �̄
for all the eigenvalues 
, excluding the “irrelevant” 
=1
eigenvalue.

The problem of stability of the synchronized solutions
�C1� for an arbitrary network of coupled systems evolving
according to Eq. �2� can be evaluated using a master stability
function M�
 ,z0� that associates the pair �
 ,z0� with the
maximum Lyapunov exponent of Eq. �C4�. For a network of
optoelectronic feedback loops described by Eqs. �B3� and
�B4�, we define the variational vector as

�x̄�n� = �
�ū�n − 1�
�ū�n − 2�
�ȳ�n − 1�
�ȳ�n − 2�

]

�ȳ�n − d − M�
� . �C6�

The variational equations describing perturbations from the
synchronous solution �Eq. �C4� with the specific F, H, v, and
�0 for our experimental system� are

�̄�n� = z0�̄�n − 1� + �1 − z0�us�n − 1��ū�n − 1� ,

�ū�n� = − a1�ū�n − 1� − a2�ū�n − 2� + b0��g�us�n − d��

��ȳ�n − d� − �g�us�n − d − 2���ȳ�n − d − 2�� ,

�C7�

�ȳ�n� = �1 − 
�
us�n�


us�n�2�z0

�̄�n� + 
�ū�n� ,

�g�u� 	
�g

�u
= − 2
 sin�u + ��cos�u + �� .

These are conditional upon the synchronous solution,

us�n� = − a1us�n − 1� − a2us�n − 2� + b0g�us�n − d��

− b0g�us�n − d − 2�� . �C8�

The master stability function M�
 ,z0� for z0=0.95 and
z0=0.99, obtained by numerically iterating Eqs. �C7� and
�C8�, is presented in Fig. 5.
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