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Abstract—We demonstrate the simultaneous conversion of
wavelength and nonreturn-to-zero to return-to-zero (RZ) format
at 10 Gb/s, using four-wave mixing in a passive GaAs bulk-wave-
guide. A conversion efficiency of —28 dB (idler output relative
to signal output) and a conversion bandwidth of 48 nm could be
achieved in this waveguide, which was fabricated in a single pho-
tolithographic step. The conversion efficiency is also characterized
and compared with simulated results. The converted RZ on-off
keying (RZ-OOK) signal demonstrated a 10~° bit-error-rate
receiver sensitivity penalty of 1 dB relative to baseline RZ-OOK.

Index Terms—Integrated optics, nonlinear optics, optical fre-
quency conversion, optical mixers.

1. INTRODUCTION

ONLINEAR optical processing is being actively investi-
N gated for such functionalities as wavelength conversion,
pulse-format conversion, demultiplexing, and optical sampling.
Several nonlinear optical techniques have been proposed and
demonstrated for wavelength and format conversion including
four-wave mixing (FWM) or cross-phase modulation (XPM)
in nonlinear fiber [1], semiconductor optical amplifiers (SOAs)
[2], and silicon nanowires [3], [4].

GaAs—AlGaAs waveguides are a promising platform for per-
forming wavelength and format conversion, with advantages in-
cluding broadband transparency throughout the telecommuni-
cation band, the flexibility to engineer the bandgap and incor-
porate heterostructure multilayers, and the potential for integra-
tion with high-speed electronics. In the 1550-nm wavelength
regime, the optical Kerr coefficient of GaAs is approximately
1000 times stronger than that of silica and 4 times larger than
that of crystalline silicon [5]. This enables reasonable nonlinear
efficiency in GaAs waveguides, even without using submicrom-
eter mode sizes. Third-order nonlinear effects have been ob-
served in several GaAs—AlGaAs devices including waveguides
[6], directional couplers [7], microring resonators [8], photonic
crystal cavities [9], and nanowires [10].
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GaAs Substrate
Fig. 1. Cross-section of the GaAs—AlGaAs bulk-waveguide, showing the layer
compositions, refractive indices, and calculated optical mode.

Although nonlinear effects including self-phase modulation
and FWM have been observed in GaAs—AlGaAs waveguides,
to date there have been no clear demonstrations of communica-
tion applications, and no reports of data performance metrics
such as eye diagrams or bit-error-rate (BER) receiver sensi-
tivity. In this report, we investigate the efficacy of all-optical, si-
multaneous wavelength and nonreturn-to-zero to return-to-zero
(NRZ-to-RZ) format conversions at 10 Gb/s, using FWM in a
GaAs—AlGaAs bulk-waveguide. We achieved a conversion ef-
ficiency of —28 dB, and receiver 10~? BER power penalty of
1 dB relative to baseline RZ.

II. EXPERIMENT

Fig. 1 depicts the GaAs ridge waveguide used in this exper-
iment, which was patterned using photolithography and an in-
ductively coupled plasma etching. The waveguide was cleaved
to alength of 4.5 mm, and silicon—nitride antireflection coatings
were deposited on both facets. The calculated mode contours are
superposed on the cross-section in Fig. 1, yielding an effective
area of 1.8 um?2.

The nonlinear optical interaction between the pump, signal,
and idler is described by the following propagation equations
[11]:
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Fig. 2. Measured and simulated conversion efficiencies as wavelength de-
tuning. The inset shows the output FWM spectrum after the GaAs waveguide
with the wavelength detuning of 5 nm.
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where P, and k,,,, m = {p, s, 1} represent the powers and prop-
agation constants of the pump, signal, and idler waves, ns is
the optical Kerr coefficient, Fopa is the two-photon absorption
(2PA) coefficient, w is the optical center frequency, and 6(z)
represents the local phase mismatch between the three inter-
acting waves. Jopy Was measured separately to be 15 cm/GW,
using the inverse transmission method, and the linear propaga-
tion loss () was measured to be 6 dB/cm. The wavevector mis-
match is given by ks + k; — 2k, = —(2wc/A?) DAN?, where D
is the group-velocity dispersion and A\ is the wavelength de-
tuning between the signal and pump.

Fig. 2 shows the measured and calculated conversion effi-
ciencies as functions of wavelength detuning A\. In this mea-
surement, the pump and signal were generated from two tun-
able continuous-wave (CW) lasers. Both pump and signal were
combined and coupled to the waveguide using a lensed fiber.
The coupled input powers were estimated to be 22 and 19 dBm,
respectively, and the total insertion loss was measured to be
8.7 dB, including 3 dB of coupling loss per facet. We define
the FWM conversion efficiency to be the ratio between the idler
and the signal power at the output of the waveguide. The 3-dB
conversion bandwidth has a half-width of 24 nm. The inset of
Fig. 2 shows the output spectrum from the waveguide for the
pump-signal detuning of 5 nm, showing an FWM conversion
efficiency of —28 dB. This figure falls to —31 dB if one ac-
counts for the linear propagation loss (47%) and 2PA loss (6%)
in the waveguide. The nonlinear efficiency in our devices is
presently limited by propagation loss. Recently, submicrometer
GaAs—AlGaAs waveguides have been fabricated with a prop-
agation loss as low as 0.9 dB/cm at 1550 nm [12]. If one as-
sumes the same optical Kerr coefficient for GaAs, the waveg-
uides reported in [12] could potentially improve the conversion
efficiency by 420 dB over what is reported here.
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Fig. 3. Setup used for 10-Gb/s wavelength and format conversion. (P,: re-
ceiver power; VOA: variable optical attenuator; pin-TIA: p-i-n photodiode and
transimpedance amplifier; PRBS: pseudorandom bit sequence.).

The solid line in Fig. 2 shows the results obtained by nu-
merically integrating (1a)—(1d). no can be obtained from the
maximum conversion efficiency and was estimated to be 2.9 x
10~ cm? /W, comparable to the value of 1.59 x 10713 cm? /W
reported in [5]. We attribute the discrepancy to a pump-signal
polarization mismatch and to an uncertainty in the coupling effi-
ciencies at the input and output facets. The limited bandwidth of
the EDFAs precluded the measurement of the FWM conversion
efficiency beyond 30 nm. The dispersion D was estimated to be
—1340 ps/(nm - km) based on the observed conversion band-
width together with a numerical calculation of modal and ma-
terial dispersion of the waveguide. Increasing the device length
or decreasing the mode area would improve the device perfor-
mance, but may require optimization of the waveguide disper-
sion to maintain a wide bandwidth [13], [14].

The experimental setup for the NRZ-to-RZ conversion using
FWM is shown in Fig. 3. The NRZ on—off keying (NRZ-OOK)
data signal at the wavelength of 1545 nm was generated by mod-
ulating the output from a CW laser with a 23* — 1 pseudo-
random bit sequence. The 10-GHz clock pulse train was gen-
erated from an actively mode-locked laser diode centered at
1553.5 nm with the pulsewidth of 3 ps. The NRZ signal and
the clock pulse train were combined and coupled into the wave-
guide using a lensed fiber. The average coupled input powers for
the NRZ-OOK signal and the clock pulse train were estimated to
be 23 and 13.6 dBm, respectively. The signal emerging from the
waveguide was collected using a second lensed fiber and band-
pass-filtered by a 2-nm tunable grating filter to spectrally isolate
the generated RZ-OOK idler. The preamplified receiver is com-
posed of a low-noise EDFA, a 1-nm bandpass filter, a power
EDFA, and a 2-nm bandpass filter. The detected signal was am-
plified in a transimpedance amplifier prior to BER evaluation.

Fig. 4 shows the optical spectrum at the output of the
waveguide. The converted RZ-OOK signal was generated at
1536.5 nm for a pump-signal detuning of 8.5 nm, which was
within the range where the FWM conversion efficiency was
flat. The dashed trace in Fig. 4 represents the spectral profile
of the composite filter, which includes the grating filter and the
two filters in the receiver.

Fig. 5(a) and (b) show the eye diagrams of the baseline
and converted RZ-OOK signals, respectively. The RZ-OOK
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Fig. 4. Optical spectrum of the output signal from the waveguide (solid line)

and the spectral profile of the bandpass filter (dashed line).

Fig. 5. Infinite-persistence sampling oscilloscope traces of (a) the baseline
RZ-OOK signal, and (b) the converted RZ-OOK signal. Each trace was

captured at —25-dBm receiver power, using a 10-Gb/s sampling module.
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Fig. 6. BER versus receiver power for the 10-Gb/s wavelength converted
signal, compared to the baseline RZ-OOK measurement, and the baseline

NRZ-OOK measurement.

baseline was generated by modulating the 10-GHz clock. The
converted signal quality shows only a modest degradation in
comparison to the baseline performance. Fig. 6 depicts the
receiver sensitivity measurement of the format conversion
from NRZ-OOK to RZ-OOK. The converted RZ-OOK signal
shows a receiver sensitivity penalty of 1 dB relative to the base-
line RZ-OOK signal and a 3-dB improvement over baseline
NRZ-OOK. The latter reflects the inherent performance gain

of RZ compared to NRZ.
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III. CONCLUSION

We have demonstrated, for the first time, 10-Gb/s wavelength
and format conversion based on FWM in a GaAs bulk-wave-
guide. A conversion efficiency of —28 dB over a 48-nm band-
width was achieved in a GaAs ridge waveguide with a relatively
large effective area. The converted RZ-OOK signal exhibited a
penalty of 1 dB relative to a baseline RZ-OOK signal and a gain
of 3 dB relative to baseline NRZ-OOK at 10~? BER. The FWM
conversion efficiency could be further improved by reducing the
propagation losses and optimizing the bandgap to suppress 2PA.
Nonetheless, this report demonstrates the viability of GaAs—Al-
GaAs waveguides for nonlinear optical signal processing.
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