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Abstract—We describe a new full-vector finite difference dis-
cretization, based upon the transverse magnetic field components,
for calculating the electromagnetic modes of optical waveguides
with transverse, nondiagonal anisotropy. Unlike earlier finite
difference approaches, our method allows for the material axes
to be arbitrarily oriented, as long as one of the principal axes
coincides with the direction of propagation. We demonstrate the
capabilities of the method by computing the circularly-polarized
modes of a magnetooptical waveguide and the modes of an off-axis
poled anisotropic polymer waveguide.

Index Terms—Anisotropic media, birefringence, dielectric
waveguides, Faraday effect, finite difference methods, optical
propagation in anisotropic media.

I. INTRODUCTION

AN OPTICAL waveguide modesolver is one of the most
important tools used in designing integrated optical cir-

cuits. Several techniques are commonly used to compute the
electromagnetic modes of waveguides, including finite element
methods, mode-matching techniques, method of lines, and fi-
nite difference methods [1]. Many methods completely neglect
the anisotropy of the constituent materials. Of those that do ac-
count for material anisotropy, most require that the permittivity
tensor be diagonal when expressed in the coordinate system of
the waveguide. Others allow for nondiagonal tensors, but re-
quire that the off-diagonal elements be small in comparison to
the diagonal terms [2]–[4], or that the waveguide be weakly-
guiding [5]. Although these techniques are adequate for many
optical waveguides, they cannot be easily applied to waveguides
in which the anisotropy is oriented along an oblique axis, or
magnetooptic materials for which the eigenstates are circularly
polarized.

A few finite element approaches have been developed to accu-
rately model waveguides comprised of nondiagonal anisotropic
materials [6]–[13]. Most of these use the transverse magnetic
field formulation, which eliminates spurious modes and simpli-
fies the boundary conditions at interfaces.
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The transverse magnetic field formulation is also widely used
in finite difference methods [14]–[17], some of which have been
extended to include anisotropic materials with diagonal permit-
tivities [18], [19].

Any finite element discretization, when applied to a rectan-
gular mesh could yield equations similar to those obtained by fi-
nite difference analysis. Nonetheless, finite difference methods
have broad appeal because they offer an explicit, closed-form
expression for the differential operator, and the solutions ob-
tained by finite difference methods can be easily visualized, ma-
nipulated, or post-processed without the need for mesh interpo-
lation. Despite the simplicity and appeal of the finite difference
methods, there have been comparatively few reports of finite
difference modesolvers or beam propagation methods that can
accommodate anisotropic materials for which the permittivity
tensor is nondiagonal [20].

We describe here a full-vector finite-difference discretization
that allows for more general, nondiagonal, and possibly spa-
tially-varying anisotropy. The only constraint of the method is
that one of the material principal axes must coincide with the
direction of propagation, that is, the waveguide (and material
anisotropy) must be symmetric under the reflection .
The method computes the transverse magnetic field components

and , while enforcing the zero-divergence condition of
to ensure against spurious modes. We present examples in-

cluding a magnetooptical waveguide with circularly-polarized
modes and a tilted-axis poled polymer waveguide.

II. ANISOTROPIC EIGENMODE EQUATIONS

We consider here transverse anisotropic materials, con-
strained so that one of the material principal axes points in
the direction of the waveguide. Under this assumption, the
permittivity tensor takes the form

(1)

While it is generally possible to find a rotated coordinate system
in which this permittivity tensor is diagonal, it is often inconve-
nient to apply finite difference methods in such a rotated ref-
erence frame because the waveguide boundaries would be ori-
ented at oblique angles to the finite difference grid. Furthermore,
in waveguides containing two or more anisotropic regions with
different orientations, it would be impossible to diagonalize
for all materials under the same rotation. Lastly, in a magne-
tooptic material, the permittivity tensor is modified by adding
imaginary off-diagonal elements, in which case cannot be di-
agonalized by a simple rotation.
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When the dielectric permittivity tensor is of the form given
in (1), the vector eigenmode of the optical waveguide can be
completely described by the two transverse magnetic field com-
ponents and , from which all other electromagnetic field
components can be derived [8].

The eigenvalue equation for the transverse magnetic fields
can be obtained by combining both of Maxwell’s curl equations
[10]

(2)

where we have assumed the material is nonmagnetic
and all field quantities have a time dependence of .

Assuming a dependence of for all fields, the longitu-
dinal component can be computed from the transverse com-
ponents by applying the divergence relation

(3)

Making use of (3), it is possible to express (2) entirely in terms
of the two transverse magnetic field components. From the two
transverse components of (2), one obtains, after some algebraic
simplification, the following coupled eigenvalue equations for

and

(4a)

(4b)

where .
Once all three components of are known, can be found

by applying , which gives

(5)

and the electric field can be computed from by using

(6)

(7)

The coupled eigenmode (4a), (4b) can be collected into a
single vector equation of the form

(8)

Fig. 1. Diagram illustrating mesh points used in the finite difference equations
[14]. The superscripts P, N, S, E, W, NW, NE, SW, SE are used to label the point
under consideration and its nearest neighbors to the north, south, east, west,
northwest, northeast, southwest and southeast, respectively. The quantities �,
�, �, and � denote the distance between � and the nearest mesh points in the
north, south, west and east directions. The symbols ��� � � � ��� indicate the
dielectric permittivity tensors, which are assumed to be homogeneous within
each rectangular region between mesh points.

where are differential operators to be approximated using
finite difference methods. When deriving the finite difference
equations, we assume that the dielectric tensor is piecewise
uniform, with boundaries constrained to coincide with the finite
difference grid points, as depicted in Fig. 1. The spacing be-
tween mesh points need not be uniform, and can even be com-
plex should one wish to incorporate perfectly-matched layers
using the complex coordinate stretching method [21]. The finite
difference operators representing and can be expressed
in terms of the transverse magnetic fields at the point under con-
sideration and at the eight neighboring grid points

(9)

and similarly for and

(10)

The expressions for the finite difference coefficients are
summarized in the Appendix. Using these equations, each of
the operators , , , can be replaced by a
sparse matrix, where . When these four
sparse matrices are assembled as in (8), the eigenvectors and
eigenvalues of the resulting matrix give the modes and propa-
gation constants of the waveguide.

Fig. 2 illustrates the form of the sparse matrix for a small
computational window with and filled with a
homogeneous dielectric material. In this example, each of the
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Fig. 2. (a) Small computational window with � � � � � and � � � � �

filled with a homogeneous optical material. (b) Sparsity structure of the cor-
responding matrix � when the entire computational window is filled with an
isotropic material. Each row has only 5 nonzero matrix elements. (Note that in
the absence of edges or inhomogeneities,� and� are decoupled.) (c) When
the dielectric permittivity is anisotropic, but diagonal, the number of nonzero
elements per row grows to 9. (d) When the dielectric permittivity is anisotropic
and nondiagonal, as in (1), there are 16 nonzero elements per row.

four sub-matrices is a 15 15 matrix. When the dielectric
material is isotropic and homogeneous, and reduce to
the standard 5-point finite difference operators, as depicted in
Fig. 2(b). If the dielectric permittivity is anisotropic, but still
diagonal, the number of nonzero matrix elements per row in-
creases from 5 to 9, as shown in Fig. 2(c). For an anisotropic ma-
terial with nondiagonal permittivity, there are 16 nonzero matrix
elements in each interior row of , as shown in Fig. 2(d). In a
typical waveguide problem, only a portion of the computational
window would be filled with anisotropic or nondiagonal mate-
rials, in which case the memory requirements could be estimated
by performing a suitable weighted summation.

The calculations described in the following section were per-
formed on a personal computer with an Intel Core 2 Duo CPU,
with 2 GB of physical RAM (approximately 1.2 GB available
after startup). Under these conditions, the maximum problem
size was limited to sparse matrices with fewer than approxi-
mately 2.8 million nonzero elements for real matrices and 1.4
million nonzero elements for matrices that contain complex el-
ements. All simulations could be completed in less than 60 s.

III. EXAMPLES

A. Magnetooptical Channel Waveguide

To demonstrate the capabilities of the anisotropic mode-
solver, we computed the eigenmodes of the magnetooptical
channel waveguide depicted in Fig. 3 [22]. The gadolinium
gallium garnet (GGG) lower cladding layer was assumed to
be isotropic, with a refractive index of , and the top

Fig. 3. Diagram of magneto-optical channel waveguide comprised of a yttrium
iron garnet (YIG) core over a gadolinium gallium garnet (GGG) substrate [22].
The substrate is assumed to be isotropic, while the YIG layer is taken to be
magneto-optical.

cladding layer was taken to be air . The yttrium iron
garnet (YIG) core layer was described by a relative permittivity
tensor of

(11)

where and , which would produce
Faraday rotation at a rate of 3000 in a bulk material. All
calculations were performed assuming a vacuum wavelength
of 1300 nm, and the waveguide dimensions depicted in Fig. 3.
The core thickness was carefully adjusted in order to make the
quasi-TE and quasi-TM modes nearly degenerate when .

The mode calculations were performed over a
window, divided into 320 348 regions. The

grid spacing was 6.25 nm in the horizontal direction and 4.9 nm
in the vertical direction, but the grid spacing was parabolically
stretched in the cladding regions in order to reach the edges of
the computation window.

The eigenmodes of the waveguide were calculated using an
iterative shift-invert sparse matrix eigenvector solver (ARPACK
[23]) provided through a built-in MATLAB function (eigs.) This
routine uses an iterative Lanczos method to compute the largest
eigenvalues and corresponding eigenvectors of the shifted ma-
trix , and a sparse matrix solver (UMFPACK [24])
to perform the matrix multiplication at each
step.

Both of calculated modes exhibit complex transverse mag-
netic field components and that are nearly equal in mag-
nitude, but out of phase by , indicating that the modes are
circularly polarized. To illustrate this, Fig. 4 plots the field com-
ponents for the first two modes. For the
first mode, the component is suppressed by at least 17 dB
relative to the peak value of , indicating that we may approx-
imate , i.e., the first mode is left-hand circularly
polarized. By a similar argument, the second-mode exhibits a
right-hand circular polarization state.

It is notable that although the finite difference matrix is
both complex and non-Hermitian for this problem, both of
the computed eigenvalues were real, as expected for a lossless
waveguide.

The calculated effective indices for the two circularly-polar-
ized modes shown in Fig. 4 are and
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Fig. 4. Transverse magnetic fields of the first two eigenmodes modes of a magneto-optic waveguide, calculated at a free-space wavelength of 1300 nm. To better
illustrate the circular polarization states the modes, the combinations� � �� ��� ��

�
� are plotted for each mode. The contour labels indicate the magnitude

of the field in dB, relative to the peak transverse magnetic field of each mode. (a),(b) In the fundamental mode, the combination �� � �� ��
�
� is suppressed

relative to the peak field, indicating that the mode is primarily left-hand circular polarized. (c),(d) In the second-order mode, the combination �� � �� ��
�
� is

suppressed, indicating a right-hand circular polarization.

. The corresponding effective modal Faraday rotation
rate is then found to be

(12)

This result is smaller than that of the constituent YIG core layer
because a portion of the mode intensity resides in the nonmag-
netooptic cladding.

In this example, the off-diagonal elements of the permittivity
tensor are small compared to the index difference between
the core and cladding layers of the waveguide. It is therefore

also reasonable to model the anisotropy using coupled mode
theory (CMT) [25], in which the imaginary off-diagonal terms
are treated as a small perturbation of an otherwise isotropic
waveguide. In this case, vector coupled mode theory yields the
following expression for the approximate propagation constants
[26]:

(13)

where and are the propagation constants of the
quasi-TE and quasi-TM modes of the unperturbed (isotropic)
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TABLE I
COUPLED MODE THEORY VERSUS EXACT EIGENMODES

The unperturbed modes were calculated using the full-vector modesolver
with isotropic materials. The unperturbed refractive indices are found to be
� � �������� and � � ��������. Calculations were performed over
a ���� ��� �	 computational window with 320 � 348 gridpoints and a
minimum grid size of 6.25 � 4.9 nm.

The “exact” eigenmodes were calculated using the full-vector anisotropic
modesolver with imaginary off-diagonal terms. The computational window
and grid spacing were identical to that used in the CMT calculations.

waveguide. is an overlap integral involving the two eigen-
modes

(14)

where denotes the total power of the TE eigenmode

(15)

and is similarly defined. For the magnetooptical wave-
guide considered here, is zero everywhere except within of
the core region where it is given by

(16)

Table I compares the propagation constants calculated using
coupled mode theory to those obtained by directly calculating
the exact eigenmodes of the anisotropic structure, for six dif-
ferent values of . For the CMT calculations, the transverse
field components and were first calculated for the eigen-
modes of unperturbed isotropic waveguide using a finite differ-
ence mesh identical to that used in the anisotropic case. The
transverse electric field components were then calculated nu-
merically using (5), and the integrals in (14) and (15) were ap-
proximated by a two-dimensional Reimann summation.

When , the coupled mode theory and exact eigen-
mode solutions are in perfect agreement (to within 6 decimal
places). As is increased to 0.005, there is a small, but numer-
ically significant discrepancy between the two results. Nonethe-
less, even for the strongest magnetooptical materials, the accu-
racy of vector-CMT is adequate for many design problems.

For the computational mesh considered in this example,
the sparse matrix representing the isotropic waveguide has
1 119 958 real nonzero elements compared to 1 342 180 com-
plex elements for the anisotropic waveguide. These numbers
average to 5 real nonzero matrix elements per row for the

Fig. 5. (a) Diagram of a poling-induced polymer electrooptic waveguide. The
central core layer becomes positive uniaxial in the direction of the applied field
when the structure is poled by the electrodes placed above and below the wave-
guide. For simplicity, we approximate the poling potential and electric field as
that of two thin wires located at 
�� �� � 
������. (b) Contour plot of elec-
tromagnetic poling potential (solid lines) and the associated electric field lines
(dashed).

isotropic case compared to 6.0 complex elements per row for
the anisotropic nondiagonal case. Because the isotropic finite
difference operator requires less memory and computational
resources than the anisotropic operator, the coupled-mode
approach would allow one to use a finer mesh discretization for
the same computational expense and memory utilization.

B. Poling-Induced Polymer Waveguide

As a second example, we consider the eigenmodes of an elec-
trooptic polymer waveguide that is poled at an oblique angle
relative to the direction, as shown in Fig. 5. Such devices find
applications in mode converters, circular polarization modula-
tors, and polarization-independent modulators [20], [27]–[29].
In this waveguide, the three dielectric layers provide confine-
ment in the vertical direction, while horizontal confinement is
provided entirely by the anisotropy produced in the middle layer
when the device is poled. The cladding layers are assumed to
be nonpolar (and hence immune to the poling field) with an
isotropic refractive index of . The middle layer
is modeled as an electrooptic polymer with a refractive index of

prior to poling.
This waveguide structure provides an interesting challenge

for mode calculations because both the orientation and strength
of the birefringence are nonuniform throughout the waveguide
core. Moreover, the induced anisotropy, although small, plays
an essential role in guaranteeing transverse mode confinement.
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Fig. 6. Calculated transverse magnetic field components � and � of the fundamental mode of a poling-induced polymer waveguide. The peak value of �
component is more than�17 dB lower than the peak value of� , indicating that the transverse magnetic field is mostly polarized along the direction perpendicular
to the axis between the poling electrodes. The contour labels indicate the magnitude of the field, relative to the peak vector amplitude. The mode is calculated at a
free-space wavelength of 1550 nm.

In contrast to the previous example, the anisotropy in this wave-
guide cannot be accurately modeled as a perturbation of an oth-
erwise isotropic or even diagonal anisotropic waveguide.

Although an accurate analysis would require one to numeri-
cally compute the electrostatic poling potential, here we make
the simple assumption that the poling potential can be approxi-
mated as that of two thin wires located symmetrically at

in a homogeneous dielectric. Under this assumption,
the poling potential is

(17)

where describes the magnitude of the electric field at
and and are the geometrical distances from the point
to the two poling electrodes, as depicted in Fig. 5(a).

The poling induces a uniaxial positive inhomogeneous bire-
fringence within the core layer that is proportional to the
electrostatic field intensity , with the axis of anisotropy ori-
ented in the direction of the poling field. Fig. 5(b) illustrates the
electrostatic potential and associated field lines for the twin-wire
electrode configuration considered here. For the electric poten-
tial described by (17), the induced birefringence in the middle
layer is calculated to be

(18)

where denotes the birefringence at , which is
proportional to . The axis of anisotropy is oriented at an angle

, given by

(19)

The net birefringence is assumed to be split between the ordi-
nary and extraordinary indices in the following way [20], [30]:

(20)

with given by (18). The local permittivity tensor in the
middle layer is then described by

with given by (19).
Because the induced ordinary refractive index is smaller than

the unpoled index, the waveguide supports only one polarization
state.

The fundamental eigenmode was calculated using 600 300
grid points distributed over a computational window
with a minimum grid size of 50 33.3 nm. The horizontal grid
size was parabolically stretched near the east and west edges of
the computational window. When calculating the anisotropy, we
used and .

The effective index of the fundamental eigenmode was cal-
culated to be 1.637686, and the corresponding transverse mag-
netic field components are plotted in Fig. 6. In order to better
convey the polarization state of this mode, instead of plotting

and we have instead constructed the field components
and , where indicates the direction measured along the

axis connecting the two electrodes and indicates the orthog-
onal direction, as labeled in Fig. 5(a).

Although the direction of the transverse magnetic field is not
homogeneous for this mode, the component remains signif-
icantly larger than , especially near the center of the mode,
indicating that the prevailing direction of the magnetic field is
perpendicular to the axis between the electrodes. The corre-
sponding electric field would therefore be primarily polarized
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along the axis between the poling electrodes, as expected for a
positive uniaxial poled material.

IV. CONCLUSION

We describe a versatile finite difference operator for com-
puting the eigenmodes of anisotropic dielectric waveguides. The
method computes the two transverse magnetic field components

and for dielectric waveguides comprised of materials
with arbitrary transverse anisotropy, i.e., materials that are sym-
metric under the reflection . Even though the calcu-
lated finite difference matrix is non-Hermitian and in some cases
complex, in all of the cases considered it yields real propaga-
tion constants (eigenvalues) as long as the constituent materials
are lossless. The technique is used to analyze the eigenmodes
of an off-axis poled polymer waveguide and the left and right
circularly-polarized modes of a waveguide Faraday rotator. The
reported approach could enable more accurate modeling of a va-
riety of integrated optical components including polarizers, po-
larization rotators, isolators, mode converters, polarization split-
ters, and electrooptic modulators.

APPENDIX

FINITE DIFFERENCE COEFFICIENTS

The finite difference equations representing (4a) and (4b) are
derived using a method analogous to that described in [16], [18].
The partial derivatives that appear in (4a) and (4b) are approxi-
mated by a two-dimensional second-order Taylor series expan-
sion of and about the point , in each of the four quad-
rants. The solutions in the four quadrants are then connected by
enforcing the continuity of and at the boundaries.

When discretizing (4a), the continuity of is applied first at
the boundary between regions 1 and 2, and again at the interface
between regions 3 and 4. The resulting two equations are com-
bined to eliminate terms involving , while using a stan-
dard central difference equation to approximate . After
algebraic simplification, this procedure yields the following fi-
nite difference coefficients representing and

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)

(33)

(34)

(35)
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The remaining 18 finite difference coefficients describing
and can be obtained by applying the following trans-

formations to (21)–(34):

(36)

For example, applying the above transformation to (28) gives

(37)

In the limit that and ,
these finite difference equations reduce to those presented in
[16] and [17] for isotropic waveguides.

Complete source code for implementing this method, to-
gether with the additional finite difference equations needed to
compute the remaining four field components, is available on
the authors’ website [31].
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