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Abstract—We present a theoretical, numerical, and experimen-
tal investigation of the polarization dependence of cross-phase
modulation in nonlinear birefringent fibers. Two new methods are
described for producing a polarization-independent spectral shift
through cross-phase modulation of a weak probe signal by a co-
propagating strong optical pulse. The birefringence of the fiber and
spectral separation between the pump and probe signals are shown
to play a critical role in determining the polarization dependence of
the cross-phase modulation process. The methods are experimen-
tally verified in two different highly nonlinear fibers, and are used
to achieve polarization-independent optical switching at speeds of
up to 160 Gb/s.

Index Terms—Birefringence, demultiplexing, nonlinear optics,
optical fiber polarization, optical propagation in nonlinear media,
optical signal processing, polarization, ultrafast processes in fibers.

I. INTRODUCTION

CROSS-PHASE modulation is a third-order nonlinear
process in which a strong optical pump signal imparts a

phase or frequency modulation on a weaker probe signal. This
phase modulation can be sensed either through an interferomet-
ric measurement or by observing the spectral shift induced by a
time-varying optical pump signal. In fiber-optic communication
systems, cross-phase modulation has applications that include
all-optical switching [1]–[5], wavelength conversion [6], [7],
signal regeneration [8], [9], and optical sampling [10]. Because
it is an ultrafast nonlinear effect, cross-phase modulation could
perform these functions at speeds beyond what can be attained
with electrical photodetection and circuitry. One obstacle that
has historically prevented optical signal processing techniques
from replacing electronic signal processing is the polarization
dependence of nonlinear optical processes like cross-phase
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Fig. 1. Diagram showing how cross-phase modulation and spectral filtering
can be used to construct an optical switch.

modulation. Since the polarization state cannot be accurately
controlled or predicted in most fiber optic transmission systems,
it is important to develop polarization-independent ways to
exploit this nonlinear optical process.

Fig. 1 depicts one way in which cross-phase modulation can
be used to build an optical switch. In this example, the trailing
edge of a strong pump signal coincides with a weaker probe
pulse traveling in a nonlinear fiber. The pump pulse imposes a
time-varying phase shift on the weaker probe, which causes a
blueshift of the probe pulse [11]. (Conversely, the leading edge
of the pump pulse would instead produce a redshift.) A spectral
filter is then used to isolate the frequency-shifted portion of the
signal. In this way, the pump pulse can act as an optical gat-
ing signal that controls whether the probe pulse is transmitted
through the bandpass filter. The efficiency of this spectral shift-
ing process depends on the polarization states of both optical
signals, as well as the birefringence of the nonlinear fiber.

In most cases, the pump signal is locally generated and can
have a prescribed polarization state. One question to be ad-
dressed in this paper is how the pump polarization, power, and
wavelength should be chosen in order to minimize or eliminate
the dependence on the (unknown) signal polarization state.

In theory, polarization-independent nonlinear interactions can
be achieved if the pump signal is circularly polarized, but in
practice, the residual birefringence of the fiber makes it diffi-
cult to maintain a circular polarization state over the length of
the fiber. One method that has been successfully employed to
maintain circular polarization in longer fibers is to twist the fiber
either during or after fabrication [12]–[15]. Another method to
overcome the polarization dependence is polarization diversity,
in which the pump is split into two orthogonal states that inde-
pendently interact with the data [16]–[20]. A related approach is
to depolarize the pump pulse train, which requires a fiber delay
that is longer than the coherence length of the pump laser [21].
In fibers that are significantly longer than the birefringence
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TABLE I
LIST OF THE PARAMETERS FOR THE TWO HIGHLY NONLINEAR FIBERS

(HNLF 1 AND HNLF 2) CONSIDERED IN THIS PAPER IN COMPARISON

TO STANDARD SINGLE MODE FIBER (SMF-28)

correlation length, the random polarization mode dispersion can
cause the polarization dependence to average out, leading to
polarization-independent operation [22].

II. HIGHLY NONLINEAR FIBERS

Many of the earlier experiments on polarization dependence
in optical fibers have been hindered by the relatively long fiber
lengths required to obtain a significant nonlinear interaction.
Effects like strain and microbending make it impossible to ac-
curately control how the polarization state evolves in kilometer-
length nonlinear fibers. Recently, there has been much progress
in producing optical fibers with high nonlinearity, through the
use of new materials and smaller mode sizes [23]–[25]. These
newer nonlinear fibers enable one to achieve a significant non-
linear interaction in only a few meters of fiber, which greatly
simplifies the issue of polarization control.

Although the methods described here are general and can
be applied to a variety of highly nonlinear fibers, in our ex-
periments, we have employed two representative fibers, with
parameters summarized in Table I. The first is a 30-m-long,
low-dispersion photonic crystal fiber manufactured by Crys-
tal Fibre that has a nonlinearity coefficient 11× higher than
that of conventional fiber [26]. The second fiber is a 2-m-long
bismuth-oxide-based fiber fabricated by Asahi Glass that has
a nonlinearity coefficient more than 1000× higher than that of
conventional fiber [27].

Although these nonlinear fibers were designed to be sym-
metric, they both exhibit significant linear birefringence, which
is believed to be caused by unintended structural anisotropy
or core ellipticity introduced during fabrication [28]. We ex-
perimentally determined the birefringence given for the two
nonlinear fibers in Table I by placing each between crossed po-
larizers and measuring the transmitted power as a function of
wavelength [29]. Fig. 2 depicts the resulting spectra for each
of the fibers considered. For the 30 m photonic crystal fiber,
we observe a periodic sequence of evenly spaced fringes, which
indicates that the birefringent axes of the fiber do not change sig-
nificantly over its length, a condition that is difficult to maintain
in kilometer-length fibers. The results for the bismuth-oxide-
based fiber include only two fringes making it difficult to draw
a similar conclusion about the birefringence axes. However, the
fiber length is short, and we observed that unspooling the fiber
does not affect the fringe period. We, therefore, believe that

Fig. 2. Optical transmission spectrum of the two highly nonlinear fibers con-
sidered when placed between two crossed polarizers. The dashed line indicates
the mean transmitted power, averaged over wavelength. (a) Transmission spec-
trum of HNLF-1 (a dispersion-balanced photonic crystal fiber) exhibits a peri-
odic sequence of evenly spaced fringes suggesting that the birefringence axis is
uniformly oriented throughout the 30 m length. (b) Transmission spectrum of
HNLF-2, a 2 m bismuth-oxide-based small-core fiber, shows only two fringes,
indicating a lower cumulative birefringence. Because of its short length, we
assume that the birefringence is uniform in this fiber as well.

this fiber can also be treated as one birefringent medium with
uniform axes.

III. THEORY OF CROSS-PHASE MODULATION

Our analysis is based on the slowly varying amplitude ap-
proximation for the electric field. We consider the evolution of
the probe signal at frequency ω2 , affected through cross-phase
modulation with a strong pump signal, at frequency ω1 . We be-
gin with an electric field comprising the two optical frequencies
(pump and probe):

E(x, y, z, t)n = [x̂A1x(z, t)φ1x(x, y)eiβ1 x z

+ ŷ A1y (z, t)φ1y (x, y)eiβ1 y z ]e−iω1 t

+ [x̂A2x(z, t)φ2x(x, y)eiβ2 x z

+ ŷ A2y (z, t)φ2y (x, y)eiβ2 y z ]e−iω2 t (1)

where φnm (x, y) and βnm (n = 1, 2 and m = x, y) represent
the transverse electromagnetic mode and the propagation con-
stants for each frequency and for x- and y-polarizations, re-
spectively. Anm (z, t) is the slowly varying amplitude of the
corresponding electric field component. For the nonlinear fibers
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considered here, we assume that the magnitude and orientation
of the birefringence is uniform throughout the length of the fiber,
and we have chosen to orient the x- and y-axes to point along
the birefringence directions.

If we assume that the pump (n = 1) is much stronger than
the probe signal (n = 2), the probe’s slowly-varying amplitudes
A2x and A2y are governed by the coupled nonlinear equations
[30], given by
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where β′
nm and β′′

nm are the first and second derivatives of the
propagation constant evaluated at the nth carrier frequency. For
example, β′′

1x is defined as
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If the pump is linearly polarized along one of the fiber axes, then
(2a) and (2b) predict that the cross-phase modulation will be
3× stronger for the copolarized component of the probe signal
than for the cross-polarized component, leading to unacceptable
polarization dependence.

In the special case that the fiber birefringence is zero, i.e.,
βx(ω) = βy (ω), the coupled equations can be simplified to
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If the pump remains circularly polarized, i.e., A2y = ±iA2x ,
then the last terms on the right-hand sides of (4a) and (4b)
vanish, yielding identical decoupled equations describing the
evolution of A2x and A2y . In this case, the process of cross-
phase modulation will not depend on the polarization state of
the probe signal. Unfortunately, when the fiber exhibits linear
birefringence, it is impossible for the polarization state to remain
circular as the signal propagates.

In the following two sections, we describe two techniques that
can be used to achieve polarization-independent cross-phase
modulation, even in cases when the nonlinear fiber has linear
birefringence.

IV. METHOD I: HIGH DIFFERENTIAL GROUP DELAY

In a linearly birefringent fiber, there is no way to maintain
the circular polarization state for the pump signal. As a result
of the linear birefringence, any input polarization state that is
not aligned with one of the birefringence axes will periodically
change with distance as it propagates along the fiber. The period
of this evolution is known as the beat length, described by

Lb =
2π

|βx − βy |
(5)

where βx and βy describe the propagation constants of the x-
and y-polarized modes. In general, because the pump and probe
signals have different wavelengths, they will also have different
beat lengths. We show here that, if the difference between the
beat lengths is large enough, polarization-independent cross-
phase modulation can be achieved.

A. Theory

Consider the last two terms appearing on the right-hand side
of (2a). Most birefringent fibers are significantly longer than
the beat length, which implies that the first of these oscillating
terms can be neglected since the exponential term completes
many cycles within the length of the fiber. The argument of the
last exponential term on the right-hand side of (2a) contains
the difference [(β1y − β1x) − (β2y − β2x)]. This term can also
average to zero, provided the following condition holds:

|(β1y − β1x) − (β2y − β2x)|L � 2π. (6)

The difference between the propagation constants can be ap-
proximated as β1x − β2x � β′

1x∆ω, where β′
1x is the inverse

group velocity for signals polarized along the x-direction. Us-
ing this relation, the condition described in (6) can be expressed
in terms of the total fiber differential group delay (DGD),
∆τ ≡ (β′

1x − β′
1y )L, and the frequency separation between

pump and probe ∆ω:

∆ω∆τ � 2π. (7)

Note that, in our analysis, we consider the case where the net
DGD of the fiber is small compared with the optical pulsewidths.
We can, therefore, eliminate those terms that include the first
derivative with respect to time in (2a) and (2b) by changing to a
reference frame moving with the mean group velocity. We also
assume that β′′

2x ≈ β′′
2y ≡ β′′. After simplifying the equations
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using these assumptions, we obtain
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where τ ≡ t − β̄′z is the retarded time measured in the moving
reference frame and β̄′ is the mean of β′

2x and β′
2y . It can be seen

that, if |A1x |2 = |A1y |2 , that is, if the pump signal is polarized so
that it equally excites both principal axes, (8a) and (8b) become
identical. The cross-phase modulation process will, therefore,
be polarization independent under these conditions. A similar
argument can be used to predict polarization independence in
optical parametric amplifiers [31].

The wavelength separation between the pump and probe sig-
nals is an important parameter that determines the polarization
dependence of the cross-phase modulation process, as described
by (7). To better quantify this effect, we now consider the solu-
tion to (2a) and (2b) when the last oscillating term is retained,
i.e., when (7) does not hold. We assume that the pump signal
has an instantaneous power of P (τ) and is polarized so that it
equally excites the principal axes of the fiber. Neglecting pump
depletion and dispersion, this gives

|A1x(z, τ)| = |A1y (z, τ)| =

√
P (τ)

2
. (9)

Under these assumptions, the coupled equations for A2x and
A2y become
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where κ ≡ (β1y − β1x) − (β2y − β2x).
To simplify the analysis, we consider the case that the probe

signal is initially a continuous-wave (CW) signal with an arbi-
trary state of polarization

A2x(0, τ) = ux, A2y (0, τ) = uy (11)

where ux and uy are complex constants describing the Jones
vector of the input CW signal.

The solution for A2x(z, τ) and A2y (z, τ) can be obtained by
direct integration of (10a) and (10b). In the limit that γP (τ)L
is small, the solution may be approximated as
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γP (τ)L

3

[
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]
.
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The optical spectrum of the cross-phase-modulated tone can be
found by computing the Fourier transforms of (12a) and (12b),
and summing their intensities. The leading terms appearing in

Fig. 3. Experimental setup used to study cross-phase modulation of a
continuous-wave probe signal by an intense Gaussian pulse. Through cross-
phase modulation, the strong pulse induces a broad spectral pedestal on the
CW signal that is observed on a spectrum analyzer as a function of the input
polarization states.

(12a) and (12b) correspond to the CW tone emerging from the
fiber, while the additional time-varying terms describe a spectral
pedestal surrounding the CW tone, as depicted in Fig. 3. The
shape of this spectral pedestal will be proportional to the Fourier
transform of the pump signal P (t), but its intensity will depend
upon the polarization state of the input signal, described by ux

and uy , and the product κL ≡ ∆ω ∆τ .
When the product κL is large, the terms involving

sin(κL/2)/(κL/2) can be neglected, and the output signals
A2x and A2y are seen to be directly proportional to ux and uy ,
respectively. This condition results in an output power spec-
trum that depends only on the input signal power |ux |2 + |uy |2 ,
but not on its polarization state. Similar polarization indepen-
dent behavior is expected whenever κL = 2πm, where m is an
integer.

B. Experimental Measurements and Numerical Simulation

Fig. 3 depicts the experimental setup used to study the polar-
ization dependence of cross-phase modulation. A strong pump
pulse from a mode-locked fiber laser was combined with a CW
tone, amplified and injected into the nonlinear fiber. We then
measured the output spectrum of the cross-phase-modulated
CW tone as a function of the input polarization state and the
wavelength separation between the pump and probe.

In order to enable sufficiently high values of ∆ω ∆τ , we
used the 30 m photonic crystal fiber described in Table I, with
pump and signal wavelengths adjusted to 1542 and 1551.9 nm,
respectively, which gives ∆ω ∆τ = 10. The pump pulsewidth
was 2.5 ps, the repetition rate was 10 GHz, and the average
powers of the pump and probe entering the nonlinear fiber were
21 and 13 dBm, respectively. As depicted in the lower portion
of Fig. 3, cross-phase modulation produces a broad spectral
pedestal around the CW tone, which was observed to rise and
fall depending on the polarization states of the pump and probe.

Fig. 4(a) and (b) plots the experimentally measured spectra
of the CW tone, after propagating through the nonlinear fiber
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Fig. 4. (a) Experimentally measured minimum and maximum cross-phase-
modulation pedestals obtained by adjusting the CW signal polarization state,
showing up to 8 dB of polarization dependence. During these measurements,
the pump polarization was held constant at the setting that produced the greatest
polarization dependence. (b) Same measurements, but taken with the pump po-
larization experimentally adjusted to yield the smallest polarization dependence.
(c) Numerical simulation of the cross-phase modulation pedestal assuming that
the pump is linearly polarized along one of the fiber axes. (d) Numerical sim-
ulation of the cross-phase modulation pedestal for the case when the pump is
polarized to equally excite the fiber axes.

with the strong pump pulse (not depicted). In both cases, we
plot the measured minimum and maximum spectra obtained
by varying the probe polarization state, while holding the pump
polarization state constant. The corresponding simulated spectra
plotted in Fig. 4(c) and (d) were numerically computed using a
vector split-step method, based on the measured fiber properties
and optical signal parameters.

For the data shown in Fig. 4(a), we experimentally adjusted
the pump polarization in order to yield the maximum depen-
dence on the probe polarization (∼8 dB). Although it is diffi-
cult to accurately measure the input pump polarization state and
fiber orientation, the corresponding numerical simulation shown
in Fig. 4(c) was performed assuming that the pump was lin-
early polarized along one of the fiber axes, and shows excellent
agreement with the measurements. The simulation furthermore
confirmed that the strongest cross-phase modulation pedestal
results when the pump and probe are copolarized while the
weakest cross-phase modulation pedestal occurs when they are
cross-polarized, all other cases falling between these extremes.

Conversely, when the pump polarization was optimally ad-
justed, we observed that the polarization dependence was almost
eliminated over the entire cross-phase modulation pedestal, as
shown in Fig. 4(b). This case is well matched by the numerical
simulations shown in Fig. 4(d), in which the pump polarization
was chosen to equally excite the axes of the fiber.

In order to investigate how the polarization dependence re-
lates to the frequency separation ∆ω, we tuned the wavelength of

Fig. 5. Measured and theoretically predicted polarization dependence of cross-
phase modulation as a function of ∆ω∆τ .

Fig. 6. Diagram of optical demultiplexing experiment using cross-phase mod-
ulation. To evaluate the polarization sensitivity, the data polarization was con-
tinuously scrambled while observing the bit-error-rate and eye diagram at the
receiver.

the probe signal while leaving the pump polarization adjusted
to the optimal state. Fig. 5 plots the experimentally observed
polarization dependence (in decibels) as a function of the di-
mensionless quantity ∆ω ∆τ . The solid line plots the polariza-
tion dependence calculated analytically from (12a) and (12b),
showing agreement with the experimental data. For these mea-
surements, the wavelength separation between pump and probe
was varied from 4 to 26 nm, corresponding to a ∆ω of 3 × 1012

to 2 × 1013 rad/s, and the ∆τ used for the PCF was 1.26 ps,
as given in Table I. It is seen that to reduce the polarization
dependence to <1 dB, it is only required to have ∆ω∆τ > 2π.

Finally, we utilized this technique to demonstrate
polarization-independent all-optical demultiplexing of an 80
Gb/s data channel [32]. For this measurement, the CW probe was
replaced with an 80 Gb/s data signal, which was produced from
a second 10 GHz mode-locked fiber laser, as shown in Fig. 6.
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Fig. 7. Optical spectra for the 80 Gb/s demultiplexing experiment measured
before the highly nonlinear photonic crystal fiber (dashed), after the nonlinear
fiber (solid), and after spectral filtering (dotted) [32].

The signal was modulated with a 10 Gb/s, 27 − 1 pseudorandom
bit sequence (PRBS), and passively multiplexed to 80 Gb/s. The
relative delay between the clock and data pulses was electron-
ically adjusted in order to selectively red-shift one of the eight
tributary channels. The data polarization state was randomly
scrambled at a rate of 1 MHz, in order to obtain the worst
case impairment from polarization dependence. Meanwhile, the
clock polarization was controlled via computer and measured
by a polarimeter in order to ascertain which clock polarizations
gave the best performance.

Fig. 7 plots the optical spectrum of the clock and data mea-
sured before the nonlinear fiber, after the nonlinear fiber, and
after the bandpass filter. The data signal was detuned by 9 nm
relative to the pump wavelength in order to satisfy (7), and the
bandpass filter was detuned by 2 nm relative to the data wave-
length in order to isolate the red-shifted tributary. In practice,
the wavelength separation cannot be made arbitrarily large be-
cause eventually chromatic dispersion would cause the pump
and probe signals to walk off, limiting the effective length of
the interaction. For the low-dispersion PCF considered here,
even when the wavelengths were separated by almost 10 nm,
the temporal walk off caused by chromatic dispersion between
the pump and probe wavelengths was only 135 fs, which was
significantly smaller than both the pulse widths and polarization
DGD.

Fig. 8 plots the eye diagrams of the demultiplexed data mea-
sured after the bandpass filter. In Fig. 8(a), the clock was polar-
ized along one of the fiber axes, in which case the cross-phase
modulation efficiency can vary by up to 8 dB depending on the
data polarization state [cf., Fig. 4(a)]. Because the data polar-
ization is scrambled, the resulting eye diagram is completely
closed, leading to a bit error rate (BER) exceeding 10−2 . By
contrast, in Fig. 8(b), the clock was polarized in a way that
equally excites both fiber axes. In this case, we achieve an open

Fig. 8. Observed eye diagram of demultiplexed data (a) When the pump
polarization is chosen incorrectly. (b) For the optimal pump polarization state.

Fig. 9. Measured BER versus the received optical power for the eight tribu-
taries that were temporally demultiplexed from an aggregate 80 Gb/s stream.
In all cases, the data signal was polarization-scrambled prior to cross-phase
modulation, in order to simulate the worst case polarization impairment [32].

eye diagram, and error-free performance, even while the data
polarization is randomly scrambled [32].

Fig. 9 plots the measured BER performance for the eight de-
multiplexed channels, in comparison to a back-to-back baseline
measurement at 10 Gb/s. During the demultiplexing measure-
ments, the polarization state of the data signal was continuously
scrambled while recording the BER. Despite the polarization
scrambling, all channels achieve error-free performance, with
no sign of an error floor, indicating that polarization dependence
has been effectively suppressed.

The theory described in Section IV-A predicts that
polarization-independent demultiplexing will occur for any
clock polarization that equally excites both fiber axes (provided
∆ω ∆τ � 2π). The range of optimal clock polarization states
should, therefore, describe a great circle on the Poincaré sphere.
To test this theory, the clock polarization was systematically set
to 1000 different states distributed uniformly over the Poincaré
sphere, while at each point, the BER of the demultiplexed sig-
nal was measured. In all measurements, the data polarization
was randomly scrambled in order to produce the worst-case
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Fig. 10. Measured BER as a function of pump polarization state on the
Poincaré sphere. This picture shows that the optimal pump polarization states
(i.e., those that produce a low BER) all lie on a great circle on the Poincaré
sphere. This observation supports the theory that polarization-independent be-
havior results when the the fiber eigenstates are equally excited.

polarization penalty. The filled circles plotted in Fig. 10 indi-
cate the clock polarization states for which the demultiplexed
data achieved a BER better than 10−9 , whereas the open cir-
cles indicate the clock polarizations for which the BER rose
above 3 × 10−2 . Because we do not know the Jones matrix of
the intervening fiber between the polarimeter and the nonlin-
ear fiber, it is impossible to map the measurements shown in
Fig. 10 into the exact polarization state entering the nonlinear
fiber. Nonetheless, these results clearly show that the maximum
polarization dependence (high BER) is obtained for two orthog-
onal polarization states, which we infer must correspond to the
eigenstates of the fiber. Minimal polarization dependence (low
BER) is obtained for a circle of polarization states lying between
these two orthogonal axes, in agreement with theory.

This technique should not be limited to the PCF class of
fibers, but for the method to work, several key parameters must
be controlled. While a higher DGD relaxes the requirement on
the wavelength separation between pump and probe, it may be
incompatible with the desired data rate. Lowering the DGD
increases the required separation, in which case the pulse walk-
off due to chromatic dispersion must be considered, as with any
fiber-based nonlinear device. Furthermore, while here we have
focused on utilizing the spectral shift resulting from X pixmal
(XPM), as was used in the first published experiments [32], we
note that this technique has since been applied to demonstrations
of polarization-independent four-wave mixing [33], [34]. We
also expect, based on the theoretical results, that this method
should be applicable to interferometric devices based directly
on the XPM-induced phase shift, although further research is
needed in this area.

V. METHOD II: SPECTRAL CROSSING

In the previous section, we demonstrated that the spectral
density generated by the cross-phase modulation can be made
polarization independent, provided the fiber birefringence and
wavelength separation satisfy (7). In some nonlinear fibers, it
is difficult to achieve this condition, either because the birefrin-
gence is too low, or the fiber is too short. For example, in a
2-m-long bismuth-oxide-based fiber with parameters given in

Table I, the wavelength separation between the pump and the
probe would have to be about 120 nm in order to satisfy (7).

In many applications, including wavelength conversion and
demultiplexing, we need the cross-phase modulation spectral
density to be polarization-independent only within a small band-
width corresponding to bandpass filter. We now explain how a
polarization-independent wavelength can be found in the cross-
phase modulation-generated spectrum. By tuning the bandpass
filter to this wavelength, optical switching with very low polar-
ization sensitivity can be achieved.

A. Theory

To begin, we assume that the pump is initially polarized along
the x-axis of the fiber. If the fiber axes are uniformly oriented
over its length, then the pump will remain linearly polarized
throughout the fiber, allowing us to conclude that A1y = 0. In
this case, (2a) and (2b) simplify to

∂A2x

∂z
+ β′

2x

∂A2x

∂t
+

i

2
β′′

2x

∂2A2x

∂t2
= iγ2|A1x |2A2x (13a)

∂A2y

∂z
+ β′

2y

∂A2y

∂t
+

i

2
β′′

2y

∂2A2y

∂t2
= iγ

2
3
|A1x |2A2y . (13b)

Once the pump evolution A1x(z, t) is determined, (13a) de-
scribes a linear, time-varying system relating the input probe
signal A2x(0, t) to the output A2x(L, t). The system is linear
because all terms in the governing differential equations are
linearly related to the probe amplitude A2x , but time-varying
because the proportionality constant appearing on the right-
hand side depends on t through |A1x(z, t)|2 . Equation (13b) is
likewise a linear time-varying system that can be integrated to
find the output A2y (L, t) from the input A2y (0, t).

We now suppose that the input probe signal has intensity p(t)
and is polarized in the x-direction. Because (13a) and (13b)
are decoupled, the output signal must also be polarized in the
x-direction. In general, we could express the solution as

A2x(L, t) = hx(t), A2y (L, t) = 0 (14)

where the function hx(t) is obtained by solving (13a) under the
assumption that A2x(0, t) =

√
p(t).

If the input signal had the same intensity, but were instead
polarized in the y-direction, then the output could, in general,
be represented as

A2x(L, t) = 0, A2y (L, t) = hy (t) (15)

where the function hy (t) is similarly obtained by integrating
(13b) with the initial condition that A2y (0, t) =

√
p(t).

We now suppose that the input probe signal has an intensity
p(t) and an arbitrary polarization state[

A2x(0, t)
A2y (0, t)

]
=

√
p(t)

[
ex

ey

]
(16)

where ex and ey are complex numbers specifying the Jones
vector of the input signal, normalized so that |ex |2 + |ey |2 = 1.
Because (13a) and (13b) are linear, we conclude that the output
signal is given by a superposition of (14) and (15):

A2x(L, t) = exhx(t), A2y (L, t) = eyhy (t). (17)
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Fig. 11. Illustration of how the spectral shift produced through cross-phase
modulation depends upon the relative polarization state of the pump and probe.
The greatest shift is produced when the pump and probe are copolarized, while
the spectral shift is 3× smaller when the pump and probe are cross-polarized.

The output power spectrum of the probe signal is then given
by

S(ω) = |ex |2 |Hx(ω)|2 + |ey |2 |Hy (ω)|2 (18)

where Hj (ω) denotes the Fourier transform of the time signal
hj (t) (where j = x, y).

Finally, suppose that the functions |Hx(ω)|2 and |Hy (ω)|2
were to intersect at some frequency ω0 , i.e,

|Hx(ω0)|2 = |Hy (ω0)|2 ≡ S0 . (19)

At this frequency, the output spectral density is given by

S(ω0) = S0(|ex |2 + |ey |2) = S0 (20)

which does not depend on the input polarization state. This re-
sult, which is based entirely on the linearity of the differential
equations, and makes no assumptions about the dispersion, loss,
or birefringence, proves that if the output cross-phase modula-
tion spectra intersect for two different input polarizations, then
they must intersect for all possible input polarizations. We next
address the question of how to ensure that such a crossing point
exists.

In an earlier work, we explained how such a spectral crossing
point can be achieved with a CW probe signal [35]. Here, we
consider the more interesting and practical case when both the
pump and probe are optical pulses, temporally aligned so as to
induce a spectral shift of the weaker probe pulse, as depicted in
Fig. 1. By comparing the right-hand sides of (13a) and (13b),
we expect that when the signal is copolarized with the pump, the
cross-phase modulation-induced spectral shift will be 3× larger
than in the cross-polarized case. As depicted schematically in
Fig. 11, we, therefore, expect that the two output spectra will ex-
hibit an intersection point. The theory presented before predicts
that any intermediate polarization state will yield a cross-phase
modulation spectrum that reaches the same intersection point.

Fig. 12. Experimental setup used to observe the polarization dependence of
cross-phase modulation between two optical pulses.

The position of the spectral crossing point is proportional to the
pump power. In practice, the pump power must be sufficiently
large to allow the spectrally shifted channel to be separated from
the remaining channels with a bandpass filter.

If the pump signal is not polarized along one of the prin-
ciple axes of the fiber, the role of the nonlinear polarization
rotation should be considered when determining the pump evo-
lution [36]. In this case the x-polarized and y-polarized input
probes generate outputs that have both x-and y-components. As
long as the outputs corresponding to x-and y-polarized inputs re-
main orthogonal, the same argument can be used to predict that
any crossing point in the output spectra will be polarization-
independent. Our experimental measurements and numerical
simulations show that the polarization-independent point can
be found for any pump polarization state.

B. Experimental Measurements and Numerical Simulation

Fig. 12 depicts the experimental setup used to observe the
polarization-independent crossing point in the cross-phase mod-
ulation spectrum. The pump and probe pulses were generated
by two synchronized 10 GHz mode-locked fiber lasers, with
wavelengths of 1550 and 1534.6 nm and pulsewidths of 1.8 and
2.5 ps, respectively. The pump and the probe were amplified
to an average power of 22.5 and 12.5 dBm, respectively, and
launched into 2 m of highly nonlinear bismuth-oxide-based
fiber, with parameters given in Table I. The relative delay be-
tween the pump and the probe was adjusted to produce a blue-
shift of the probe pulses.

Fig. 13(a) plots the experimentally measured optical spec-
tra before and after the nonlinear fiber. The two solid curves
show the minimum and maximum spectral shift that could be
obtained by adjusting the probe polarization state. Although it
is impossible to precisely quantify the input polarization states
corresponding to these spectra, it is notable that the spectral shift
varies by a factor of approximately 3×, as expected. More sig-
nificantly, the measured spectra for all other polarization states
were observed to fall between the two extreme cases plotted
here.

Fig. 13(b) shows the results of a numerical simulation, cal-
culated using a full-vector split-step propagation solver. The
simulation used only the measured optical and material prop-
erties, with no adjustable fitting parameters. The output spectra
were calculated for 16 different input probe polarization states
distributed evenly on the Poincaré sphere.
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Fig. 13. (a) Measured optical spectrum of pump and probe pulse after cross-
phase modulation, showing the minimum and maximum spectral shift. (b) Nu-
merically calculated optical spectra for the minimum and maximum case, as
well as 14 other polarization states distributed around the Poincaré sphere.

The simulations show excellent agreement with the measure-
ments, confirming that all of the spectra intersect at the same
point. We note that the spectrum measurements were performed
with an instrument resolution bandwidth of 0.5 nm, which was
also incorporated in the simulation. Thus, even when the spec-
tra are viewed through an 0.5 nm bandpass filter, they exhibit
a distinct crossing point. Polarization-independent cross-phase
modulation can, therefore, be achieved by adjusting the output
bandpass filter to coincide with a crossing point in the optical
spectrum.

As with the first method, we applied this technique to demon-
strate high-speed all-optical switching, using a setup similar to
that depicted in Fig. 6. In this experiment, the 10 GHz probe sig-
nal was modulated with a 223 − 1 pseudorandom data sequence
and passively multiplexed to 160 Gb/s. The average powers of
the clock and data before entering the nonlinear fiber were 22.5
and 12.5 dBm, respectively. Fig. 14(a) plots the optical spectra
measured before the nonlinear fiber, after the nonlinear fiber, and
after the bandpass filter, for one specific input polarization state.
Fig. 14(b) shows an enlarged plot of the cross-phase-modulated
data, showing the minimum and maximum spectra obtained by
varying the data polarization state. The bandpass filter is tuned
to the the intersection point of the spectra, at which point we
expect polarization-independent behavior.

In order to evaluate the system performance in the presence
of polarization fluctuations, a high-speed polarization scrambler
was inserted in the data path. Fig. 15(a) plots the demultiplexed
eye diagram (10 Gb/s) when the spectral filter was misaligned,

Fig. 14. (a) Observed optical spectra for 160 Gb/s optical demultiplexing
experiment before the HNLF (dashed), after the HNLF (solid) and after the
BPF (dotted). (b) Enlarged view of the cross-phase modulation spectrum of the
data signal for two extreme polarization states, showing the distinct crossing
point and the location of the output spectral filter [35].

Fig. 15. Observed eye diagram of demultiplexed data. (a) Non-optimal filter
tuning. (b) With the pump power and spectral filter chosen optimally.

resulting in a significant eye closure associated with polarization
dependence. The clock power and bandpass filter wavelength
were then adjusted while monitoring the BER and eye diagram
in order to achieve the lowest degree of polarization dependence.
Fig. 15(b) plots the resulting open eye diagram when the filter is
optimally tuned. Fig. 16 plots the measured BER as a function
of the received power for the 10 Gb/s demultiplexed channel,
in comparison to a back-to-back 10 Gb/s measurement. The
BER curves measured with the polarization scrambler enabled
are indistinguishable from the curves measured with a static
polarization state, thus confirming polarization-independent
performance.

In addition to the demultiplexing experiments reviewed here,
this technique has recently been used for all-optical retiming
using XPM and spectral slicing in a length of standard highly
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Fig. 16. Measured bit error rate vs. received optical power. The baseline
curve represents a back-to-back measurement at 10 Gb/s with no optical de-
multiplexing. The other two curves plot the performance of the 160–10 Gb/s
demultiplexing system when the input polarization is static and when the input
polarization is randomly scrambled, showing that there is no significant error
penalty incurred as a result of polarization scrambling [35].

nonlinear fiber [37]. This technique should also be applicable to
other devices based on XPM and spectral filtering. For example,
the CW probe results presented in [35] could be easily adapted
to XPM-based wavelength conversion [38], although for high
data rates, optimizing the filtering for the dual requirements of
polarization independence and short pulsewidths will necessi-
tate further research. It is perhaps less applicable to schemes
such as nonlinear interferometers based directly on the XPM-
induced phase shift; however, a thorough investigation of this
issue has not been undertaken, and is beyond the scope of the
present paper.

VI. CONCLUSION

The polarization dependence of nonlinear optical processes
remains an important problem that limits the practicality of
many all-optical switches. Although techniques have been pro-
posed to overcome this polarization dependence, most re-
quire significant changes to the experimental apparatus. We
here describe two different methods to achieve polarization-
independent cross-phase modulation that do not significantly
complicate the experimental setup. Using these techniques, we
demonstrate error-free all-optical demultiplexing at speeds of
up to 160 Gb/s, even when the input polarization is randomly
scrambled.

One important enabling technology behind these results is the
development of highly nonlinear fibers that can yield a sufficient
nonlinearity in a just few meters of fiber. Because of their short
lengths, it is possible to control the polarization evolution in
these fibers in ways that were simply impossible in kilometer-

length fibers. Although most nonlinear fibers are designed to
be nonbirefringent, unintentional asymmetries in the fabrication
process often lead to significant linear birefringence. The results
reported here suggest that a small, controllable birefringence
in nonlinear fibers could be exploited to achieve polarization-
independent all-optical switching.
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