Supplemental Material: Synthetic Gauge Field for Two-Dimensional
Time-Multiplexed Quantum Random Walks

In the first section of this supplemental material, we explain the experimental details. The details of the theoretical
analysis are summarized in the subsequent section.

I. EXPERIMENTAL DETAILS:

For the purpose of pulse generation in this quantum walk experiment, we used a laser diode operating at the C-band
of the telecom wavelength (1550 nm). By modulation of this laser made by Bookham technology (LC25W5172BA-
J34), we generated pulses with a power of 10mW and a pulse duration of two nanoseconds. These pulses are sent
into the setup with a repetition rate of 10 us. We used these pulses to initiate the quantum walk in our synthetic
two-dimensional space. Moreover, the polarization of the incident pulse is controlled using the polarization beam
splitter.

Figure 1b in the manuscript shows the experimental setup used for making the synthetic two-dimensional space.
The initial pulse after passing through the first 50/50 beam splitter chooses to continue its path through either the
1 m or 2 m fiber length. This leads to different delays that can be regarded as choosing the left or right direction
in the x movement. By reaching the next beam splitter, the pulse chooses either the 130 m or 118 m fiber spool.
This determines whether the pulse has gone to the up or down direction in the y movement. In this way, we encode
the x and y movement of the pulses based on the delay in reaching the detectors. We used 90/10 beam splitters to
out-couple 10% of the light for detection purposes.

In order to compensate for the loss in the experimental setup, we used semiconductor optical amplifiers made
by Thorlabs (SOA1117S). These amplifiers, which are turned on for a fraction of a repetition period at each cycle,
provide the capability to amplify the pulses without ruining their phase coherence. However, in addition to amplifying
the signal they increase the background noise due to spontaneous emission. Such noises should be filtered out using
band-pass filters. For this purpose, we used narrow band-pass filters (< 0.3 nm) right after the semiconductor optical
amplifiers, as shown in Fig. 1b.

Despite this compensation, the ratio of the optical pulse power at different positions of the synthetic space relative
to the noise degrades with increasing time steps due to the diffusion and the added noise. Because of the degradation
of the signal-to-noise ratio and the finite ratio of the time delays corresponding to the x and y movements, we limited
our measurement of the quantum walk distribution to 10 steps. By measuring the power of the pulses present in each
step, we can determine the distribution of the quantum walk at every time step.

In addition, the polarization of the incident pulse varies by passing through the fiber network. To compensate for
these polarization changes, we used polarization controllers in our setup.

Furthermore, we used two phase modulators in this setup that apply opposite phases to the left and right moving
pulses. These phase modulators (MPZ-LN-10-P-P-FA-FA) made by Cybel company can provide a switching speed of
12Gb/s and have 3 dB loss.

We note that the error in our measurement of the intensity of the pulses at different time delays (corresponding to
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Figure S1. Simplified version of the schematic of the two-dimensional quantum walk setup.



different positions in the synthetic space) is around 3% (AP, /P, = 3%). This error will propagate to the error in
the calculated quadratic means, as explained in the following.

By defining Py = 3 2P, and Py = > 2y Pey, in which P, is the power detected at coordinates x and y in
the synthetic space, the quadratic mean of z is calculated based on:
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By assuming that AP, /P, , = D = 3%, since z* > 0 and P, > 0, then:
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A similar analysis holds for the y direction. Therefore, the error bars in the quadratic means are less than 3% and
are smaller than the size of the plotted data points in the manuscript.



I1I. THEORETICAL ANALYSIS:

In the following, the evolution of pulses (representing the quantum walkers) in the two-dimensional quantum walk
is analyzed. For the theoretical analysis of the quantum walk, we can assume that all the losses in the setup, including
the losses caused by the 90/10 beam splitters as well as phase modulators, are fully compensated by the amplifiers.
Moreover, we can assume that polarization controllers compensate for the polarization changes in the setup. Therefore,
we can simplify the schematic for theoretical analysis and consider an ideal setup as shown in Fig. S1.
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Note that the applied phases are assumed to be explicit functions of the time step (n) as well as y coordinate but
not x coordinate due to experimental limitations.

Pulses which are input to the second beam splitter, {I?(/my ], will produce the outputs as (movement in the y
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direction):
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Therefore, [ ZJE y) ] will produce the following pulses after traversing both of the beam splitters:
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Alternatively, based on the above results DHET? +1) | can be produced from other pulses as:
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The above two equations fully describe the evolution of the pulses. We can prove that any constant phase indepen-
dent of the time step and coordinate will not change the dynamics the of evolution. For this purpose, we separate
out any such constant phase from ¢, , and we assume that ¢, , can be written as:
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This shows that the evolution is invariant under such a constant phase application.
By defining Sg(gnﬁ = Uiny) + DSZ and Py;) = Uﬁ"y) — Dﬁfﬁ, the obtained equations can be written as:



S(" 1,y+1

S(nﬂ)] 1{ e—ibnatl  gibnyil  _p—ibny—1 ez‘a&n,yl} p<")
2

(n+1) vt
P Sm(f)l,yfl
Pz+1,y71

_6_7;¢7n,y+1 _ei¢n,y+1 _6_7;¢n,y71 ei(bn,yfl

Now that we have the governing equation in the real space, we can think about its solution in the Fourier space.

By defining s,(cz)ky and pgcz)ky as Fourier transforms of S\") and P}, we have:
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This equation can be used to solve the Fourier transforms as functions of the time step. In the following subsections,
we solve this equation for two cases of no phase modulation as well as time-independent linear phase modulation.



A. Zero phase modulation:

For the case of no applied phase modulation, we have:
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Note that the evolution matrix has the determinant of 1. Based on this matrix, the effective Hamiltonian, H.sr =
ilog (U), is given by:
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The obtained Hamiltonian is obviously Hermitian. The eigenvalues of this Hamiltonian are given by:
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we can write the Hamiltonian as:
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Based on the obtained eigen-energies, the band diagram for the zero phase modulation has been plotted in Fig. 3c.
The evolution after n steps is described by:
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The deterministic equation for the evolution matrix, A* — 2\ sin (k, ) sin (k,) +1 = 0, gives the following eigenvalues:
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They are equal to e *F+ as we expect. We can define the following two orthogonal functions for calculating the

matrix power:
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These functions obey the following independent equations:
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Assuming that the whole evolution is caused by a single pulse at the origin (UQE; 0 (x)0 (y) and Df(,;% = 0, which
are equivalent to SS??), =6 (x)d (y) and Pég} =6 ()4 (y)), then we would have:

Therefore, for the down channel pulses, d,(;:),ky =0.5 (S;n)k — pin)k ) we have:
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All the moments, such as the distribution variances and averages ((x?) ,, (¥*),,(x), and (y) ) as functions of
the time step n, can be obtained from the above expression.
Based on the fact that:
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Therefore, the following equations can be obtained, straightforwardly:
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In the limit of large n, we have:
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which shows that <y2>D is three times less than <x2> . These results prove that the spatial quadratic means of the
quantum walk distribution linearly vary with the time step. Note that these average values are normalized relative to



the total power in the up and down channels. However, they can also be normalized relative to the total power present
in the corresponding channel. Such a normalization has been used in the manuscript to calculate the experimental
and theoretical quadratic means. Since the probabilities of Pp and Py tend toward constant values, by the latter
normalization the asymptotic behavior of the quadratic means remains linear relative to the time step.

It is interesting to test some first steps:
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Similarly, we can investigate the up channel:
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For the first few steps, we have:
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05(x=-1,y=1)

u,(clz),ky = ie” " sin (k) — U;lg =¢ —05(x=1y=1)
0 (Otherwise)
—0.25(z = —2,y = 0)
—0.5(zx =0,y =0)
—0.25(x =2,y =0)
ul? =~ (cos (ky) +icos (2k,)sin (k) = U2 ={ 0.25(z=—2,y=2)
o —05(z =0,y =2)
0.25(x =2,y = 2)
(Otherwise)
0.125 (x = =3,y = —1)
0.125(x = —1,y = —1)
—0.125 (z =1,y = —1)
—0.125 (z = 3,y = —1)
—0.25(z = -3,y=1)
—0.25(z=-1,y=1)
u,(jc))ky =i~ sin (k) (cos (2k,) cos (2k,) — 2 cos® (ky) + isin (2k,)) — UL) = 0.25(x =1,y =1)

0.125 (z = —3,y = 3)
—0.375(x = —1,y = 3)
0.375 (z = 1,y = 3)
—0.125(z =3,y = 3)
0 (Otherwise)

These are consistent with what we expect from recursive analysis of the evolution.
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B. Time-independent phase modulation:
Uniform modulation

For the case of time-independent linear phase modulation, ¢, , = y¢, we have:

S;(;:;ly) - je k= sin (ky) gika cos (ky) 3;!:)7)%*_(23
(n+1) (n)

—e %= cos (k) —iett= sin (k n
b (ky) Ky) ]| 22k, o

For rational values of ¢/2m = p/q, we can consider sy, k,, Sk, .k, +é> Skoky+26s -5 Sy k,+(g—1)p @ Well as pr_ k.,
Dy ky+¢s Phaky+26s s Pl k,+(q—1)¢ tOgether as a vector. Then we can obtain the evolution equation for this vector.

Note that this approach does not work for irrational values of ¢/27. By representing this vector as

[ ) (n) (n) . (n) (n) T
i) = [Skz»ky Skakyto 0 ko byt (a1 Phoky Phokyt+o 0 Phikyt(a-1)¢ |

we can write the evolution equation as:

O = M (ks ky) ™

In this equation, M is the evolution matrix and its size linearly increases with increasing g.
For a general propagation matrix, the eigen-energies can be calculated from the following characteristic equation:

|M — eI =0

For instance, the evolution matrix for the case of ¢ = 7 is given by:

0 e~ sin (ky) 0 etk cos (k)
M- ie~ e sin (k, + ) 0 e'Fe cos (ky + ) 0
B 0 —e~ %= cos (k) 0 —ieke sin (ky)
—e~ %= cos (ky + ) 0 —ietks gin (ky + ) 0

In this case, the eigen-energies are given by:

E (ky, ky) = +arccos (j:\/l — sin? (k) sin® (ky)>

Similar expressions can be obtained for other phase modulations. The obtained band diagrams for different values
of ¢ are shown in Fig. S2.

Considering the evolution of the quantum walk under the effect of time-independent gauge fields, Fig. S3 summarizes
the numerical results for the variation of the quadratic means with the time step for different values of ¢. The obtained
results show that the applied gauge fields cause the quadratic means of x and y to decrease relative to the zero phase
modulation case. These numerical results are obtained using the quantum walk distributions determined according to
the pulses detected in the down channel. However, the quadratic means are normalized relative to the total power in
the up and down channels in Figs. S3a and S3b. The corresponding quadratic means normalized to the total power
in the down channel are shown in Figs. S3c and S3d. Moreover, these quadratic means are also plotted for just the
first 10 steps in Figs. S3e and S3f.
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(c)

Figure S2. The energy band diagrams for the time-independent phase modulation with (a) ¢ = 7, (b) ¢ = 7/2, and (c)
¢=m/3.
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Figure S3. (a) The quadratic mean of x and (b) y as a function of the time step for different values of phase modulations.
These quadratic means are normalized relative to the total power in the up and down channels. (c) The quadratic mean of
z and (d) y as a function of the time step for different values of phase modulations. These quadratic means are normalized
relative to the total power in the down channel. (e) The quadratic mean of z and (f) y for different values of phase modulations
for the first 10 time steps.

Non-uniform modulation

We next consider the case in which the phase modulation pattern changes across a boundary. This type of phase
modulation can lead to the emergence of the edge states right along the boundary. We have assumed y = 0 as the
boundary separating two time-independent linear phase modulations in y > 0 and y < 0. Since we do not have
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Figure S4. The left panel shows the energy band diagrams for the time-independent non-uniform phase modulations of (a)
¢r = —¢pp =7/2, (¢) o7 = —¢pp = /3, and (e) ¢r = —¢p = w/4. The right panel shows the corresponding band diagrams
for the uniform phase modulations of (b) ¢ = ¢ = 7/2, (d) ¢7 = ¢ = /3, and (f) ¢ = ¢ = 7/4.

translational symmetry in the y direction anymore, we cannot define k, for this configuration. However, we can still
obtain the allowed eigen-energies for different k, values. In order to obtain these eigen-energies, we should obtain the
propagation matrix in the real space under the appropriate boundary conditions. Depending on the phase modulations
at the top (¢r) and the bottom (¢p), we obtain different band diagrams. Numerical results show that if one of ¢r
and ¢p be zero then there exists no edge state. Moreover, the edge states exist only if 0 < ¢ < 7& — 7 < ¢pp <0
or0<¢pp<nm& —7m < <O0.

We have plotted the energy band diagrams as functions of k, momentum for different ¢ and ¢p in Fig. S4. In
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this figure, we have considered different cases of ¢ = —¢p as non-uniform configurations with a boundary separating
two different linear phase modulations. Note that swapping the values of ¢ with ¢ will modify the band diagram
by replacing the edge states with the ones that propagate in the reverse direction. We have also shown the band
diagrams corresponding to uniform modulations with ¢ = ¢ for comparison.

Robustness of the edge modes against sharp bends

In order to analyze the robustness of the edge modes against sharp bends, we have studied the propagation of the
quantum walk in the synthetic space composed of two domains with opposite gauge fields separated by a nonplanar
interface. Similar to the case considered in Fig. 4 in the manuscript, a phase pattern of 7y/2 is applied to the region
on top of the boundary and a phase pattern of —7wy/2 is applied to the region below the boundary. However, the
boundary, as shown by the dashed lines in Fig. S5, is deformed by a bump relative to the planar boundary considered
in the manuscript. The coordinates of the bump are assumed as (—1,0), (=1,4) , (—5,4), and (—5,0) in this analysis.
Starting with a unity pulse at the origin in the up channel, we have studied the propagation of the quantum walk and
have plotted its distribution in the down channel at different time steps in Fig. S5. In spite of the presence of the
bump, as this figure shows, the quantum walk distribution remains confined to the boundary and moves along it in
both forward and backward directions. Moreover, the speed of the movement along the boundary is 0.5 irrespective
of the shape of the boundary, which is equal to what we expect from the group velocity of the topological edge modes
based on the dispersion diagram. These results confirm the robustness of the edge modes against sharp bends.
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Figure S5. The quantum walk distribution in the down channel after (a) 1, (b) 12, (c) 16, and (d) 24 time steps. These
distributions clearly show how the quantum walk moves along the boundary and remains confined to it in spite of its nonplanar
shape.



