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Synthetic dimensions provide a promising platform for photonic quantum simulations. Manipulating the flow of pho-
tons in these dimensions requires an electric field. However, photons do not have charge and do not directly interact
with electric fields. Therefore, alternative approaches are needed to realize electric fields in photonics. One approach
is to use engineered gauge fields that can mimic the effect of electric fields and produce the same dynamical behavior.
Here, we demonstrate such an electric field for photons propagating in a two-dimensional synthetic space. Generation
of electric fields in a two-dimensional synthetic lattice provides the possibility to guide photons and to trap them
through the creation of quantum confined structures. We achieve this using a linearly time-varying gauge field gener-
ated by direction-dependent phase modulations. We show that the generated electric field leads to Bloch oscillations
and the revival of the state after a certain number of steps dependent on the field strength. We measure the probability
of the revival and demonstrate a good agreement between the observed values and the theoretically predicted results.
Furthermore, by applying a nonuniform electric field, we show the possibility of waveguiding photons. Ultimately, our
results open up new opportunities for manipulating the propagation of photons with potential applications in photonic
quantum simulations. © 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
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1. INTRODUCTION

Photons are promising candidates for implementing quan-
tum simulations due to their wave characteristics that exhibit
strong interference effects. Recently, numerous complicated
quantum simulations have been performed using photonic sys-
tems by molding the flow of light in real space [1–4]. However,
there are limitations for these systems to simulate the higher-
dimensional quantum systems needed for modeling a wider class
of Hamiltonians. Synthetic dimensions provide a promising alter-
native approach for photonic quantum simulations in a scalable
and resource-efficient way without requiring complex photonic
circuits [5–18]. One powerful technique to implement a synthetic
space is through time multiplexing [19–24], which can scale to
a higher number of dimensions efficiently. But significant chal-
lenges remain to fully control the evolution of photons in synthetic
spaces.

One important challenge is that photons do not directly inter-
act with electromagnetic fields because of their lack of charge. This
limitation makes it difficult for photons to simulate the complex
dynamical behavior of electrons or atoms. But significant progress
in the past decade has led to the development of techniques to

engineer magnetic and electric fields for photons [25–28]. In
particular, the realization of synthetic magnetic fields has led to
the exploration of topological physics in photonic systems [29]
and the measurement of associated topological invariants [18,30–
32]. Similarly, various ways to engineer electric fields have been
reported in real dimensional photonic circuits [33–35]. One out-
come of applying a constant electric field in periodic systems is
the generation of state revivals known as Bloch oscillations, origi-
nally predicted in electronic systems [36–38]. Bloch oscillations
have been observed in photonic systems such as coupled optical
waveguide arrays [39–45] and one-dimensional quantum walks
of photons [46,47]. Bloch oscillations in one dimension have
also been explored using frequency as a synthetic dimension [48–
50]. However, the extension of electric fields to two-dimensional
synthetic spaces and demonstration of the associated Bloch oscil-
lations has not yet been explored. Furthermore, the introduction
of nonuniform electric fields in two-dimensional quantum walks
remains largely unexplored. Such nonuniform fields could open up
new methods to achieve quantum confinement for trapping and
guiding of quantum walkers in synthetic dimensions.
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Here we demonstrate an electric field for photons in a two-
dimensional synthetic space. We use time multiplexing as a
versatile platform to create the synthetic space and a time-varying
gauge field to create the electric field. Under the application of a
constant electric field, we show that photons return to the original
state after a certain number of steps and thus demonstrate Bloch
oscillations. Furthermore, by generating a spatially nonuniform
electric field, we realize a synthetic quantum well, which guides
photons without the use of a bandgap. Instead, the guiding is
mediated by a discontinuous gauge field. This guiding effect does
not have a direct analogue in one-dimensional systems, and it is
therefore unique to two-dimensional systems with nonuniform
fields.

2. RESULTS AND DISCUSSION

In our time-multiplexed photonic quantum walk, the quantum
walker state space is mapped into time delays of optical pulses.
The experimental setup is a closed-loop fiber architecture com-
posed of two beam splitters with their ports connected to fibers of
different lengths mapping the ±x and ±y directions to different
time delays. Full details of the experimental setup are explained
in Supplement 1. One complete propagation of an optical pulse
around the loop is equivalent to the hopping of the walker to one
of the four possible corners in the synthetic space (Fig. 1). In the
first part of each time step, the quantum walker moves toward
the right or left directions and acquires opposite phase shifts. In
the second part of the time step, the quantum walker chooses to
move toward the up or down direction. Semiconductor optical
amplifiers as well as polarization controllers are used in the setup to
compensate for the losses and polarization changes that the optical
pulses experience in each round-trip, respectively. The quantum
walk distribution at each time step is studied via two photodetec-
tors analyzing two channels that we refer to as the up and down
channels (see Fig. S1 of Supplement 1). A single incident laser pulse
that is injected into the up channel initializes the quantum walk
evolution from the origin in the synthetic space.

In this setup, we use electro-optic modulators that can intro-
duce desired phase shifts to pulses moving to the right or left
directions to generate the synthetic gauge field. Specifically, here
we implement a linearly time-varying gauge field ( EA=−E t x̂ ,
in which t denotes the time step and x̂ is the unit vector in the x
direction) that leads to the generation of a constant electric field

Fig. 1. Applied phase modulation scheme for the nth step of the quan-
tum walk.

( EE =−∂ EA/∂t). To implement this gauge field, a phase modu-
lation needs to be applied that varies with the time step. Figure 1
depicts the synthetic lattice with the required phase modulation
criteria describing the amount of phase that the walker accumulates
in hopping to the four possible corners at time step n.

This method of generating an electric field is distinguished
from the approaches based on position-dependent but time-
independent gauge fields [51–53] used in discrete-time quantum
walks. In these approaches, an effective linear electric potential
V =−Ex is implemented, which leads to the generation of electric
fields based on EE =−∇V . In order to create such a gauge field in
discrete-time quantum walks, the unitary operation in each time
step must have an extra term relative to the standard quantum walk
evolution operator U0 as Uφ = e iφx U0. In contrast, the current
approach does not require any coordinate-dependent unitary
operation to generate an electric field. This is of particular interest
for time-multiplexed quantum walks, as it relaxes the need for
any variation of phase modulations during each time step. The
equivalence of these approaches can be understood in terms of a
gauge transformation [54]. The similarity between the approach
used and the conventional coordinate-based method of imple-
menting an electric field in a two-dimensional quantum walk
[53] is described in Supplement 1. We show that the total phase
accumulated in some sample closed loops that start from the origin
and return to it in both pictures are the same. In fact, this similarity
holds for any closed path starting from the origin and ending at it.

The application of the electric field in our two-dimensional
discrete-time quantum walk will lead to Bloch oscillations
and the revival of the quantum state. This can be intuitively
explained through the band diagram structure of the system. In
the band structure, we refer to energy eigenvalues of the system as
pseudo-energies due to the time dependency of the gauge fields
to distinguish them from the term quasi-energies we used for the
case of time-independent gauge fields. Due to the periodicity of
the system by time, pseudo-energy values are between −π and
π similar to quasi-energies. As we show in Supplement 1, for a
phase modulation with a fractional value of φ as φ = 2π/q , the
band structure has 2q bands. The analytical expressions for the
pseudo-energy band structure under such a phase modulation are
given by
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where kx and ky are the momentum wave vectors in inverse syn-
thetic space and n ∈ Z. This expression for q = 1 returns to the
form of E± =± arccos(sin(kx ) sin(ky )), which represents the
band structure for the quantum walk under no effective applied
gauge field [55]. Figure 2 shows the band diagrams for three dif-
ferent values of the phase modulations. As this figure shows, in
these band diagrams there exists no bandgap. By increasing q ,
the bands become flatter and equidistant from each other, and
the corresponding group velocities tend toward zero. As has been
demonstrated in one-dimensional quantum walks, this will lead
to the revival of the quantum walk with high probability [52].
This band flattening also occurs in the two-dimensional Floquet
quantum walks considered here, which will lead to the return of
the quantum walker toward the origin after q steps. In our system,

https://doi.org/10.6084/m9.figshare.12145245
https://doi.org/10.6084/m9.figshare.12145245
https://doi.org/10.6084/m9.figshare.12145245
https://doi.org/10.6084/m9.figshare.12145245


Research Article Vol. 7, No. 5 / May 2020 / Optica 508

Fig. 2. Pseudo energy band diagrams of the two-dimensional quantum walk for different gauge field strengths: (a) φ = π/2, (b) φ = π/3, and (c) φ =
π/4. In each row the left figure shows the full band diagram, while the right one shows the zoomed in part of the band diagram.

Exp. (Up Channel)(a)

(b) Theory (Up Channel)

Fig. 3. (a) Experimental observations and (b) theoretical predictions of the evolution of the quantum walk distribution under the application of the time-
dependent phase modulation with φ = π/4. The columns from left to right show the distributions at time steps of 0, 2, 4, 6, and 8, respectively. In these
plots, all the distributions are normalized to their maximum.
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(a)

(c)
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(d)

Fig. 4. Theoretical values for the quadratic means of (a) y and (c) x as a function of the time step for different gauge field strengths. Experimental values
for the quadratic means of (b) y and (d) x as a function of the time step for different gauge field strengths.

(a)

(c)

(b)

(d)

Fig. 5. Theoretical values for the norm ones of (a) y and (c) x as a function of the time step for different gauge field strengths. Experimental values for the
norm ones of (b) y and (d) x as a function of the time step for different gauge field strengths.
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the application of an electric field in the x direction will lead to the
revival of the quantum walk not only in the x direction but also in
the y direction (see Supplement 1). This is quite interesting that
the revival happens not only in the direction of the applied electric
field but also in the orthogonal direction.

To experimentally demonstrate Bloch oscillations in our 2D
time-multiplexed quantum walk caused by the applied electric
field, we investigate the evolution of the quantum walk distribu-
tion at different time steps. In order to measure the quantum walk
distribution, we measure the power of the optical pulses received
by the photodetectors at different time delays for each time step.
Figure 3(a) shows the experimentally measured quantum walk
distributions at different time steps. This figure demonstrates state
revival under the application of the time-varying gauge field due
to the uniform electric field generated. The phase strength of the
applied electric field in this case is φ = π/4. As this figure shows,
after eight steps, the quantum walker returns to the origin with
a probability as high as 0.6. The experimental results are in good
agreement with the corresponding theoretical predictions shown
in Fig. 3(b).

We measure the quantum walk distribution at different
time steps under the application of the proposed time-varying
gauge fields with different phases (φ = 0 [deg], φ = 90 [deg],

Fig. 6. Probability of revival: experimental (blue solid squares) and
theoretical (red solid circles) probabilities of the walker returning to
the origin with respect to the required number of steps for the revival to
happen. The error bars in the measurements are smaller than the size of
the plotted data points.

φ = 60 [deg], φ = 45 [deg], and φ = 36 [deg]). Using the mea-
sured probability distributions, we can calculate the statistical
averages of the distribution at different time steps. Specifically, we
calculate the quadratic means as well as the norm ones of the x and

(c) Theory (Up Channel)

(a)

Exp. (Up Channel)(b)

(d)

Fig. 7. Confinement of the quantum walker through the application of a discontinuous electric field. (a) Schematic describing the phase modulation
pattern in the synthetic space that leads to a zero electric field for−2< y < 2 and a nonzero electric field outside this range. (b) Experimental observations
and (c) theoretical predictions of the evolution of the quantum walk distribution under the discontinuous electric field. The columns from left to right show
the distributions at time steps of 1, 5, and 9, respectively. All the distributions are normalized to their maximum. (d) Experimentally measured and theo-
retically predicted quadratic means of x and y as a function of the time step. The error bars in the measurements are smaller than the size of the plotted data
points.
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(a)

(b)

(c)

(d) (e)

Fig. 8. Theoretical predictions of the evolution of the quantum walk distribution under the discontinuous electric field for the thickness of (a) t = 2,
(b) t = 6, and (c) t = 8. The columns from left to right show the distributions at time steps of 0, 4, 8, and 12, respectively. All the distributions are normal-
ized to their maximum. Quadratic means of (d) x and (e) y as a function of the time step for different thicknesses of the discontinuity.

y coordinates at different time steps. The corresponding results are
shown in Figs. 4 and 5. As these results show, the quadratic means
as well as the norm ones of x and y tend toward the local minimum
values after 2π/φ steps. The variational behaviors of these quan-
tities with the time step confirm the revival effect in both the x
and y directions and are in good agreement with the theoretically
predicted results.

To quantify the effect of the gauge field on the revival of the
quantum state, we measure the probability of the walker returning
to the origin [revival probability PU (0, 0)] as a function of the
number of steps taken (Fig. 6). We measure this probability for
different time-varying phase modulations after the appropriate
number of time steps (2π/φ steps) needed for the revival to hap-
pen. As shown in Fig. 6, the revival probability increases with
increasing number of steps. Additionally, this figure indicates that
the experimental results are in good agreement with the theoretical
predictions. In Supplement 1], we demonstrate that by decreasing

the phase modulationφ, the revival probability increases and tends
toward unity.

We are not restricted to implementing only uniform electric
fields in our two-dimensional quantum walk. Spatially discon-
tinuous electric fields can also be created by simply controlling the
modulation pattern of the phase modulators. This provides the
possibility to perform waveguiding in the synthetic space using
gauge fields. Figure 7(a) shows an example of a discontinuous
electric field in a two-dimensional synthetic space. In this con-
figuration, the electric field is zero in the −2< y < 2 region and
nonzero outside this range. Due to the boundary created by the
discontinuous gauge fields, the quantum random walk evolution
is mainly confined to the region where the electric field is equal to
zero. Figure 7(b) presents the experimentally measured quantum
walk distributions at different time steps showing the trapping
caused by the existence of the boundaries in the electric field pat-
tern. The experimentally measured results are in good agreement

https://doi.org/10.6084/m9.figshare.12145245
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with the theoretical predictions shown in Fig. 7(c). Additionally,
more quantitative agreement can be inferred based on Fig. 7(d)
depicting the variations of the quadratic means as functions of the
time step. This figure clearly shows that the presence of boundaries
in the field pattern has led to the confinement of the quantum walk
in the y ribbon. We note that this confinement is not induced by a
bandgap and is therefore physically distinct from the confinement
in conventional crystal heterostructures.

We can also investigate the evolution of the quantum walk for
other thicknesses of the region with the electric field equal to zero.
The evolution of the quantum walk for different thicknesses of the
y ribbon are shown in Figs. 8(a)–8(c). These results correspond
to the thicknesses of t = 2, t = 6, and t = 8, respectively. The
obtained results show that the confinement in the y direction
holds for other thicknesses as well. In Figs. 8(d) and 8(e), we have
shown the variations of the quadratic means of x and y for various
thicknesses as functions of the time step. As these figures show,
the confinement in the y direction holds for all the considered
thicknesses. However, it takes increasing number of time steps for
higher thicknesses to see the effect of confinement due to the finite
speed of the quantum walkers to reach the discontinuity. None of
the three regions shown in Fig. 7(a) supports a bandgap, which thus
demonstrates that the confinement is directly induced by the gauge
field itself. These results demonstrate the possibility of using a
nonuniform electric field in order to guide the path of the quantum
walk in a desired fashion. This is in a sense similar to the guiding
of light in a waveguide. Here, however, the required refractive
index contrast between the core and the cladding of a waveguide is
emulated using discontinuous synthetic electric fields.

3. CONCLUSION

In this work, we studied the time evolution of a quantum ran-
dom walk under a time-varying gauge field in a two-dimensional
synthetic space. Using a linearly time-varying phase modulation,
an electric field acting on photonic quantum walkers can be cre-
ated. Creation of an electric field in two-dimensional discrete
time quantum walks with the possibility of controlling its spa-
tial variation enables the implementation of quantum confined
structures with potential applications in trapping and guiding
of quantum walkers. Our findings demonstrate that, under the
influence of a uniform electric field, a complete revival caused by
Bloch oscillations happens in two-dimensional quantum walks.
This revival becomes more accurate as we increase the number
of steps. Moreover, by exploiting spatially varying electric fields,
we demonstrated and analyzed a new type of quantum confined
structure: a synthetic quantum well. This structure, which has no
analogue in one-dimensional systems, guides quantum walkers
when there is no bandgap. The use of spatially varying electric fields
in synthetic dimensions opens up the possibility to explore a broad
range of quantum confined structures in discrete time quantum
walks using smoothly varying fields as well as confinement in
higher-dimensional systems. Time-multiplexed synthetic space
provides a particularly compelling implementation, because it can
realize quantum walks in higher-dimensional lattices unlike spatial
quantum walks, which are limited to three dimensions.

While we demonstrated the Bloch oscillation for a quantum
walk initiated with classical coherent laser pulses, the same phys-
ics holds at the single-photon level. The obtained results can be
extended to the investigation of the effect of dynamic localiza-
tion [56–62]. Our demonstration of an electric field for photons

in time-multiplexed synthetic lattices could also have potential
applications in photonic quantum simulations, for example, mul-
tiphoton interference and Boson sampling in the time domain
[63], and the realization of photonic lattices with strong nonlinear-
ities mediated via artificial atoms like quantum dots [64,65]. Our
results ultimately greatly expand the types of Hamiltonians that
could be realized for applications in photonic quantum simulation
and computation.
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